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ABSTRACT

That a model has sensitivity responses to parameter uncertainties is a key concept in implementing model parameter es-
timation using filtering theory and methodology. Depending on the nature of associated physics and characteristic variability
of the fluid in a coupled system, the response time scales of a model to parameters can be different, from hourly to decadal.
Unlike state estimation, where the update frequency is usually linked with observational frequency, the update frequency for
parameter estimation must be associated with the time scale of the model sensitivity response to the parameter being esti-
mated. Here, with a simple coupled model, the impact of model sensitivity response time scales on coupled model parameter
estimation is studied. The model includes characteristic synoptic to decadal scales by coupling a long-term varying deep
ocean with a slow-varying upper ocean forced by a chaotic atmosphere. Results show that, using the update frequency deter-
mined by the model sensitivity response time scale, both the reliability and quality of parameter estimation can be improved
significantly, and thus the estimated parameters make the model more consistent with the observation. These simple model
results provide a guideline for when real observations are used to optimize the parameters in a coupled general circulation
model for improving climate analysis and prediction initialization.
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1. Introduction
While a coupled climate model reasonably simulates the

interaction of major components (atmosphere, ocean, sea ice,
land process etc.) of the earth climate system, and gives an
assessment of climate changes (Randall et al., 2007), the sim-
ulated climate tends to drift away from the real world due to
model errors, or model biases (e.g., Collins et al., 2006; Del-
worth et al., 2006; Smith et al., 2007). There are two types of
major sources for model errors (e.g., Zhang et al., 2012). The
first type is associated with the imperfect model structure,
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including an imperfect dynamical core, approximate param-
eterizations etc., which can be referred to as structural errors.
The structural errors can be viewed as “built-in” model er-
rors and are difficult to alleviate through a direct observation-
correction process. The other type of model errors is induced
by the errors in model parameters. Model parameters are in-
troduced mostly in model physical parameterizations. Physi-
cal parameterization is an approximate expression of a certain
physical process in the atmosphere and ocean. However, the
values for most of the parameters are set empirically and are
usually not optimal in the coupled system, despite tuning by
a trail-and-error procedure in terms of better climatological
fitting. For constraining model bias and quantifying forecast
uncertainties, the problem of observation-based parameter es-
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timation in climate modeling has attracted a great deal of at-
tention (e.g., Forest et al., 2000; Andronova and Schlesinger,
2001; Knutti et al., 2002; Gregory et al., 2002).

Derived from data assimilation theory and methodology,
parameter estimation (also referred to as parameter optimiza-
tion in the literature) with observations has become a promis-
ing approach to mitigate model bias (e.g., Banks, 1992a,
1992b; Borkar and Mundra, 1999; Aksoy et al., 2006a,
2006b; Zhang, 2011), so as to constrain model climate drift
with a particular variant for coupled models (Zhang et al.,
2012). Customized from state estimation, the estimated pa-
rameters are traditionally updated with the frequency of ob-
servations available. This may work well in estimating atmo-
spheric parameters because the quickly-varying atmospheric
states may instantaneously respond to perturbations of such
parameters (Zhang et al., 2012). However, for the parameters
in the slow-varying media of a coupled system, such as the
ocean, the model may take a long time to transfer the parame-
ter uncertainties into the model states. The covariance used in
traditional parameter estimation may be unreliable because,
if the update cycle is too short, a signal-dominant covariance
may not yet have established. But how does the time scale of
the model sensitivity response impact on coupled model pa-
rameter estimation? Here, with a simple coupled model, we
address this question.

The paper is organized as follows: After this introduc-
tion, section 2 presents the methodology, including a descrip-
tion of the model, the “twin” experiment and ensemble filter.
The problem of traditional parameter estimation is examined
in section 3. The dependence of robust state-parameter co-
variance on model sensitivity response time scales is also ex-
amined in this section. Section 4 presents the results of the
impact of the model sensitivity response time scales on pa-
rameter estimation. Finally, a summary and discussion are
given in section 5.

2. Methodology
2.1. The model

The impact of the time scales of model sensitivity re-
sponse on coupled model parameter estimation is a funda-
mental issue. Here, to address this issue, we employ a sim-
ple conceptual coupled “climate” model developed by Zhang
(2011), which is quite simple compared with a coupled gen-
eral circulation model (CGCM). The simplified model does
not change the nature of the problem and it is therefore a good
tool to detect the problem and find a potentially deliverable
solution for CGCMs. The simple conceptual model takes the
following form:


ẋ1 = −σx1 +σx2
ẋ2 = −x1x3 + (1 + c1w)kx1− x2
ẋ3 = x1x2−bx3
Omẇ=c2x2 + c3η+ c4wη−Odw+S m+S s cos(2πt/S pd)
Γη̇ = c5w + c6wη−Odη

. (1)

Here, x1, x2 and x3 are the high-frequency variables that rep-
resent the atmosphere, while w is a low-frequency variable

that stands for the slab ocean, and η represents the slower-
varying deep ocean pycnocline. A dot above a model variable
denotes time tendency. The definition and standard values of
the model parameters are shown in Table 1.

2.2. Ensemble filtering parameter estimation
In climate and ocean modeling, we can use parameteri-

zation to approximate many physical variables, with one or
more parameters playing important roles in the parameteriza-
tions. However, usually, a trial-and-error tuning procedure is
used to heuristically set the values of such parameters, which
could be a reasonable guess for the particular parameteriza-
tion rather than an optimal guess for the whole coupled model
(Zhang et al., 2012). The errors in the values of parameters
are an important source that leads to the climate drift of the
model away from the real world.

In an ensemble-based filter, the error statistics evalu-
ated from ensemble model integrations, such as the error
covariance between model states and model parameters, is
used to transform the observational information to optimize
the parameters’ values (Anderson, 2001; Yang and Delsole,
2009). Here, we choose the ensemble adjustment Kalman
filter (EAKF) (Anderson, 2001) to conduct the state and
parameter estimation. EAKF is a sequential implementation
(Evensen, 1994) of the Kalman filter (Kalman, 1960; Kalman
and Bucy, 1961) under an “adjustment” idea. While its se-
quential implementation is convenient for data assimilation,
EAKF maintains the nonlinearity of background flows in the
filtering process as much as possible (Anderson, 2001, 2003;
Zhang and Anderson, 2003). There are two important steps

Table 1. Parameters of the simple conceptual model.

Standard
Parameters Definition values

σ Sustain the chaotic nature of the atmosphere 9.95
k Sustain the chaotic nature of the atmosphere 28
b Sustain the chaotic nature of the atmosphere 8/3
c1 Represent the slab ocean forcing on the at-

mosphere
0.1

c2 Represent the atmosphere forcing on the
slab ocean

1

Od The damping coefficient of the slab ocean 1
Om The heat capacity 10
S m The magnitudes of the annual mean 10
S s Seasonal cycle of the external forcing 1
S pd The period of the external forcing is com-

parable with the slab ocean time scale,
defining the time scale of the model sea-
sonal cycle

10

Γ A constant of proportionality 100
c3 The linear forcing of the deep ocean 0.01
c4 The nonlinear interaction of the slab and

deep ocean
0.01

c5 Denote the linear forcing of the slab ocean 1
c6 The nonlinear interaction of the slab and

deep ocean
0.001
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in the implementation of EAKF parameter estimation. The
first step is to calculate the ensemble observational incre-
ment, which is identical to state estimation. The second step
projects the observational increment onto the relevant param-
eter. This step is key for us to understand the special perspec-
tive of parameter estimation. The default values of parameters
can be viewed as the erroneously-set ones and the associated
errors can be transferred into the model states through the
model integration. Due to the high nonlinearity in a model,
the errors of parameters can lead to the model errors. We can
then apply the observational increments to the error covari-
ance between the model states and prior parameter ensemble
through a local least-squares filtering to perform the param-
eter estimation (optimization) (Anderson, 2001, 2003). This
process can be formulated as

∆βi =

K∑

k=1

c(β,∆yk)
σ2

k

∆yk,i . (2)

Here, ∆βi stands for the adjustment amount for the ith en-
semble member; k stands for the observational location or
observed variables (in this study, for instance); ∆yk,i repre-
sents the observation increment of the ith ensemble member;
c(β,∆yk) defines the error covariance between the prior en-
semble of the parameter β and the model-estimated observa-

tion ensemble; and σk is the standard deviation for the model
estimated ensemble. The detailed computational implemen-
tation is described in the Appendix.

2.3. Twin experiment setup
We use a biased twin experiment framework in this study.

On the one hand, a “truth” model is the model described
in section 2.1, with standard values for all parameters. The
“truth” model is used to generate the “true” solution of
the model states and produce the observations sampling the
“truth”, and its timeline is shown in Fig. 1a. The method for
generating “observations” is the same as employed in Zhang
et al. (2012). In order to simulate the feature of the real ob-
serving system, the observational intervals are set as 0.05 TU
(The “TU” is non-dimensional time unit defined in Lorenz
1963. The physical sense is the time scale by which the “at-
mosphere” approximately goes through a lobe of the attrac-
tor. 1 TU = 100 steps) for x1, x2 and x3, and 0.2 TU for
w. The standard deviation of observational errors is 2 for x1,
x2 and x3, and 0.5 for w. There is no observation for deep
ocean. The obtained “truth” solutions and observations are
used in all the assimilation experiments described next. On
the other hand, the “biased” model is a model that has one
or more biased parameters. The estimated parameter Perror
is erroneously guessed with a 50% overestimated error from

Fig. 1. Timelines for the “truth” model (a) and “biased” model (b). The “truth” model is first in-
tegrated for 3×104 TUs (1 TU = 100 steps) starting from the initiation condition (x1, x2, x3, w,
η) = (0, 1, 0, 0, 0) for sufficient spin-up and then integrated for another 7×104 TUs to generate
the “truth” solution of the model states and produce the observations sampled from the “truth”.
As in the “truth” model, the “biased” model firstly runs for 3×104 TUs starting from the initi-
ation condition for spin-up. Then, another 2× 104 TUs are extended with the “biased” model
to produce 20 independent initial ensemble conditions for each assimilation experiment. The
independent initial ensemble conditions are produced by adding a white noise with the same
standard deviation as observational errors on the model states apart each 1000 TUs during the
second 2× 104-TU biased model integration. Then, starting from these 20 independent initial
ensemble conditions, each assimilation experiment using the “biased” model is integrated for
5× 104 TUs, and the parameter estimation is activated after 20 TUs (2000 model integration
steps). Finally, the data obtained in the last 3×104 TUs are used to calculate error statistics for
evaluation.
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its standard value —namely, Perror = (1+0.5)Ptrue—and then
perturbed by the Gaussian random noise centered at Perror
with a standard deviation σest, which is 10% of the truth
(σest = 10%× Ptrue). The timeline of the “biased” model is
shown in Fig. 1b. After sufficient spin-up, 20 independent ini-
tial ensemble conditions for each assimilation experiment are
produced. Then, starting from these 20 independent initial en-
semble conditions, each assimilation experiment with the bi-
ased model setting is integrated for 5×104 TUs. In this way,
we minimize the dependence of the results on initial states.
We analyze the mean value of 20 cases and the uncertainty
evaluated from these cases.

In order to examine the impact of the time scales of model
sensitivity response on coupled parameter estimation, the es-
timated parameter is updated with different frequencies of the
observations, while model states are always updated with the
same ones (0.05 TU for the “atmosphere” and 0.2 TU for
the ocean) in all parameter estimation experiments (denoted
as CDAPE). It should be emphasized that the atmospheric
states are adjusted only by the observation of atmosphere
(with an interval of 0.05 TU), while the oceanic states are
updated only by the oceanic observations (with an interval
of 0.2 TU). Here, we are concerned with parameter estima-
tion for the parameters in slow-varying media, so we focus
on the performance of oceanic parameters and the estimated
parameter is adjusted only using the oceanic observations.
According to Zhang et al. (2012), to allow coupled model
states to be constrained by observations sufficiently, the pa-
rameter estimation is activated after 20 TUs (2000 steps of
model integrations), and the error statistics for evaluation are
conducted with the data in the last 3 × 104 TUs. In addi-
tion, using the same parameters and initial ensemble condi-
tion as CDAPE, a free assimilation model control (without
observational constraint — denoted as CTL) and a state esti-
mation only by coupled data assimilation (without parameter
estimation—denoted as CDA) are conducted, serving as ref-
erences for the evaluation of parameter estimation. The state
estimation in CDA is same as that in CDAPE.

In order to analyze the results of parameter and model
state estimation properly, the sum of the root-mean-square
errors (RMSEsum) for the model states (x1, x2, x3,w,η), and
the RMSE of the estimated parameter, are used to evaluate
the result in each assimilation experiment (Pan et al., 2011,
2014). The RMSEsum of model states is calculated as

RMSEsum =

(
RMSEx1,PE

RMSEx1,CTL

)
+

(
RMSEx2,PE

RMSEx2,CTL

)
+

(
RMSEx3,PE

RMSEx3,CTL

)
+

(
RMSEw,PE

RMSEw,CTL

)
+

(
RMSEη,PE

RMSEη,CTL

)
, (3)

where RMSEx1,PE means the RMSE of model state x1 in the
parameter estimation experiment, while RMSEx1,CTL means
that in CTL. The RMSE of the model state or parameter is
computed from the data obtained in the last 3× 104 TUs of

each assimilation experiment by the following equation:

RMSE =

√∑Tend
i=Tstart

(xi− xtrue)2

(Tend−Tstart)
, (4)

where x stands for one of the model states (x1, x2, x3,w,η) or
the estimated parameter; xtrue is the corresponding true value
of x; and xi represents the ensemble mean of that obtained
from each assimilation experiment (i is the index of time).
Tstart denotes the start time to calculate the RMSE and Tend is
the end time.

Following Zhang and Anderson (2003), an ensemble size
of 20 is used in all the assimilation experiments throughout
this study.

3. The problem in traditional parameter esti-
mation

In this section, we use a simple example to address the
potentially unreliability of traditional parameter estimation,
especially for slow-varying media of a coupled system. Then,
we examine the model sensitivities, focusing on oceanic pa-
rameters, and investigate the reliability of state-parameter co-
variance within a short update interval.

3.1. Unstable parameter estimation
Customized from state estimation in data assimilation,

traditionally, a parameter is updated based on the fre-
quency of observations available. To examine the perfor-
mance of traditional parameter estimation, we first show
the results of two experiments —CDAPEPc2 (c2),Oobs(w) and
CDAPEPc5 (c5),Oobs(w)—in which the oceanic parameters c2
and c5 are estimated with the interval of observations (Iobs)
of w (see Table 2 for detailed descriptions). Here, Iobs repre-
sents 0.2 TU (every 20 model steps) (in real oceanic obser-
vations, it is usually daily). The subscript Pc2 (c2) [Pc5 (c5)]
represents only parameter c2 (c5) being perturbed and esti-
mated in each experiment and, similarly, Oobs(w) represents
only the observations of w being used in parameter estima-
tion, in which “obs” means the update interval of the param-
eter is the same as the observation interval of w being sam-
pled. The examined parameter is perturbed, as mentioned in
section 2.3, while other parameters remain as standard val-
ues. At the same time, four experiments—CTLc2 , CDAc2 ,
CTLc5 , CDAc5—are conducted, in which the subscript stands
for the parameter being perturbed. The ensemble means of
the estimated parameter varying with time in the first case of
CDAPEPc2 (c2),Oobs(w) and CDAPEPc5 (c5),Oobs(w) are plotted as
the red and blue lines in Fig. 2, while the black line repre-
sents the “truth” (both c2 and c5 take the value of 1).

From Fig. 2, we can see that, starting from a big error at
the initial time, the estimated parameter c2 (c5) converges to
the “truth” very quickly, but there are some big oscillations
in the time series for each case. The biggest deviation for c5
is about 0.1 (10% of the “truth” value), observed at around
1.17×104 TUs, while two bigger oscillations for c2 occur at
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Table 2. List of experiments.

Abbreviation Description Meanings of parameters

CTLc2 The free model ensemble CTL Subscript c2 represents only c2 being perturbed
CTLc5 The free model ensemble CTL Subscript c5 represents only c5 being perturbed
CDAc2 The single coupled data assimilation CDA Subscript c2 represents only c2 being perturbed
CDAc5 The single coupled data assimilation CDA Subscript c5 represents only c5 being perturbed
CDAPEPc2 (c2),Oobs(w) Parameter estimation using the traditional method Subscript Pc2 (c2) represents c2 is perturbed and esti-

mated while Oobs(w) represents only the observa-
tions of w being used in parameter estimation and
the update interval of parameter is the same as ob-
servational interval of w being sampled

CDAPEPc5 (c5),Oobs(w) Parameter estimation using the traditional method Same as CDAPEPc2 (c2),Oobs(w) but for the case of pa-
rameter estimation of c5

SensTw Sensitivity study of oceanic model state w responses
to different parameters

CDAPEPc2 (c2),OV (w) Parameter estimation experiment to determinate suit-
able update interval for c2

OV (w) represents only the observations of w being
used in parameter estimation while V means the up-
date interval of parameter is varied

CDAPEPc5 (c5),OV (w) Parameter estimation experiment to determinate suit-
able update interval for c5

Same as CDAPEPc2 (c2),OV (w) but for the case of param-
eter estimation of c5

CDAPEPc2 (c2),OV,win(w) Parameter estimation experiment using an observa-
tional time window to determinate suitable update
interval for c2

Same as CDAPEPc2 (c2),OV (w) but for the case of param-
eter estimation using an observational time window

CDAPEPc5 (c5),OV,win(w) Parameter estimation experiment using an observa-
tional time window to determinate suitable update
interval for c5

Same as CDAPEPc5 (c5),OV (w) but for the case of param-
eter estimation with an observational time window

CTLc2,c5 The free model ensemble CTL with both c2 and c5
being perturbed

Subscript represents c2 and c5 being perturbed

CDAPEPc2 ,c5 (c2,c5),Oobs(w) Parameter estimation using the traditional method
with both c2 and c5 being perturbed and estimated

Same as CDAPEPc2 (c2),Oobs(w) but for the case of c2
and c5 being perturbed and estimated

CDAPEPc2 ,c5 (c2,c5),OV,win(w) Parameter estimation experiment using an observa-
tional time window with both c2 and c5 being per-
turbed to determinate suitable update interval for c2
and c5

Same as CDAPEPc2 (c2),OV,win(w) but for the case of c2
and c5 being perturbed and estimated

CDAPEPc2 ,c5 (c2),Oobs(w) Parameter estimation using the traditional method
with both c2 and c5 being perturbed while only c2
being estimated

Same as CDAPEPc2 (c2),Oobs(w) but for the case of c2
and c5 being perturbed and only c2 being estimated

CDAPEPc2 ,c5 (c2),OV,win(w) Parameter estimation experiment using an observa-
tional time window with both c2 and c5 being per-
turbed to determinate suitable update interval for c2

Same as CDAPEPc2 (c2),OV,win(w) but for the case of c2
and c5 being perturbed and only c2 being estimated

CDAPEPc2 ,c5 (c5),Oobs(w) Parameter estimation using the traditional method
with both c2 and c5 being perturbed while only c5
being estimated

Same as CDAPEPc2 (c2),Oobs(w) but for the case of c2
and c5 being perturbed and only c5 being estimated

CDAPEPc2 ,c5 (c5),OV,win(w) Parameter estimation experiment using an observa-
tional time window with both c2 and c5 being per-
turbed to determinate suitable update interval for c5

Same as CDAPEPc5 (c5),OV,win(w) but for the case of c2
and c5 being perturbed and only c5 being estimated

about 7.4× 103 TUs and 2.82× 104 TUs, having the biggest
deviation of more than 12% from the “truth”.

The corresponding time series of model states x2 and w
around the first big oscillation in the estimation experiment
CDAPEPc2 (c2),Oobs(w) are shown in Fig. 3. Compared to the
case of state estimation only by coupled data assimilation
(without parameter estimation) CDAc2 , which is quite sta-
ble (solid black lines in Fig. 3), the estimated model states x2
and w in CDAPEPc2 (c2),Oobs(w) deviate from the “truth” with a

big amplitude (dashed lines in Fig. 3) around the times that
the estimated parameter c2 has computational oscillations. It
is clear that the parameter estimation makes that problem. It
is worth mentioning that such a deviating phenomenon can
be frequently observed in other time periods and other cases
starting from different initial conditions. Here, what is shown
in Figs. 2 and 3 only serves as an example.

In fact, as the time scale of the “ocean” is relatively
longer, the coupled model takes a longer time to respond to
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Fig. 2. Time series of the ensemble means for c2 (red) and
c5 (blue) in the first case of 20 (described in section 2.3)
parameter estimation experiments, CDAPEPc2 (c2),Oobs(w) and
CDAPEPc5 (c5),Oobs(w), with an update interval of 0.2 TU. The
“truth” value (1 in this case) of both c2 and c5 is marked as the
horizontal black line.

Fig. 3. An example of instability caused by insufficiently devel-
oped covariance in traditional parameter estimation. Shown is
the time series of the errors of ensemble means of (a) x2 and
(b) w between 7300 and 7500 TUs in the first case of 20 exper-
iments, CDAPEPc2 (c2),Oobs(w) (dashed line) (traditional CDAPE,
with 0.2-TU update interval as observational interval). The er-
rors of state estimation by coupled data assimilation without
parameter estimation (CDA) are plotted in black as reference.

the perturbed oceanic parameters (2–10 TUs) (Zhang et al.,
2012). Next, we examine the relationship between the time
scale of model sensitivity response and parameter estimation
frequency in a coupled model.

3.2. Different time scales of model sensitivity response to
different parameters

As our chief concern is the estimation of parameters in
slow-varying media such as the ocean, the first step is to ex-

amine the sensitivity of the model to parameters related to the
slab ocean (w). There are nine parameters (Om,c2,c3,c4,Od,
S m,S s,c5,c6) related to w in the simple model, and the sen-
sitivity of w to each of them is examined in an experi-
ment called SensTw. To study the sensitivity, each exam-
ined parameter is perturbed by adding a white noise with
10% of the standard value as its standard deviation. Starting
from the 20-member ensemble initial conditions described
in section 2.3, the model ensemble for each parameter is
integrated for another 104 TUs. The model sensitivity to
each parameter is assessed by examining the 20-case mean
temporal evolution of the ensemble spread of model state
w. The ensemble spread is calculated as follows at each
step:

wstd(i) =

√∑N
j=1(wi, j−wi)2

N
, (5)

where wstd(i) denotes the ensemble standard deviation of
model state w at the ith step, wi, j stands for the state of the
ensemble member j, wi is the ensemble mean of each exper-
iment, and N denotes the ensemble size. The time series of
the 20-case mean of the ensemble standard deviation of w
over 0–30 TUs for each of Om, c2, c3, c4, Od, S m, S s, c5 and
c6 is plotted in Fig. 4.

From Fig. 4, it is apparent that w differs in its sensitivity to
different oceanic parameters. Specifically, c2 is the quickest
parameter for the w sensitivity response. It reaches saturation
(no longer systematically increasing with time) by about 5–6
TUs. Following c2 are Od, Om and S m. We refer to these pa-
rameters as fast oceanic parameters. In contrast, the slowest
parameters for the w sensitivity response are c5 and c6. Both
show a similar sensitivity response time scale of 10–12 TUs
to reach saturation. Such parameters are referred to as slow
oceanic parameters.

The sensitivity results show that, for slow-varying media
like ocean, it takes a certain amount of time for the model to
respond to the parameter perturbations (or errors). If the time
within a parameter estimation cycle is too short for the model
to transfer the uncertainty of the parameter to the model state,
the signal-to-noise ratio of the state-parameter covariance is
low. This will cause the parameter estimation to be unreli-
able. For example, if the model takes about 5–6 TUs for w to
reach a sufficient sensitivity response, that is 30 times longer
than the interval of observations of w (0.2 TU). Obviously, the
covariance between the estimated parameter and the oceanic
model state has not been established sufficiently within such
a short observational interval. The parameter estimation with
the covariance that has a low signal-to-noise ratio can cause
computational oscillations of estimated parameter values, as
shown in Figs. 2 and 3. But how does the time scale of model
sensitivity response impact on the parameter estimation, and
what is a suitable update frequency for these parameters be-
ing estimated? We answer these questions in the next section
via a series of parameter estimation experiments with differ-
ent update frequencies.
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4. Parameter estimation update frequency de-
pending on the model sensitivity response
time scale

In this section, we examine one slow oceanic parameter
(c5) and one fast oceanic parameter (c2) and compare their es-
timation performance to understand the relationship between
the model sensitivity response time scale and the parameter
estimation update frequency. We begin by examining the re-
sults of a single case, and then use the statistics of 20 cases to
prove the robustness of the conclusion.

4.1. Impact of longer update interval on parameter esti-
mation in slow-varying media

A series of experiments, CDAPEPc2 (c2),OV (w) and
CDAPEPc5 (c5),OV (w), with different parameter update intervals
that are longer than the 0.2 TU observational interval of w is

conducted with the first set of ensemble initial conditions we
created at 3× 104 TUs, as described in section 2.3. The up-
date intervals vary from 1 TU to 20 TUs, with an increment
of 1 TU. The RMSE of the model states calculated by Eq. (4)
in the c2 and c5 estimation cases is shown in Fig. 5.

From Fig. 5, we find that the model state errors decrease
with the longer update intervals within 5 TUs in both cases,
and then increase gradually as the update interval increases.
This phenomenon is consistent with the one discovered in
Pan et al. (2014). We observe that, in parameter estimation
with a longer update cycle (2 TUs for c2 and 5 TUs for c5, for
instance), the oscillations in estimation with Iobs (hereafter,
Iobs denotes the traditional parameter estimation with the 0.2
TU update interval), as shown in Fig. 2, is eliminated (see
Fig. 6), and model variability is recovered more accurately
(compare Fig. 7 to Fig. 3). We also notice that, in the c2 case,
the RMSEsum within 11 TUs of update intervals is less than
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by a Gaussian noise for the cases of c2 (black), Om (pink), c3 (blue), c4 (yel-
low), Od (cyan), S m (dotted green), S s (solid green), c5 (red), and c6 (dashed
green). Shown is the 20-case mean of ensemble spread in 20 experiments with
independent initial conditions. The evolution of ensemble spread with model
integration times starting from a randomly perturbed parameter is a measure of
model sensitivity response with respect to the parameter being examined.

Fig. 5. The variation in RMSE of model states in the space of update intervals from the first case of 20 experiments: (a)
CDAPEPc2 (c2),OV,win(w); (b) CDAPEPc5 (c5),OV,win(w). The black curve is the result with different update intervals (from 1
TU to 12 TUs, with an increment of 1 TU), and the dashed line is the result of traditional parameter estimation using
the observational interval (0.2 TU) to update the parameter being estimated.
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Fig. 6. Time series of the ensemble mean of parameters c2 (blue) and c5 (red) in the first case
of 20 parameter estimation experiments, with update intervals of 2 TUs for c2 (blue solid) and
5 TUs for c5 (red solid). The cases using a 0.2-TU update interval for both c2 and c5 are also
plotted as dotted lines for reference. The black line marks the “truth” value of c2 and c5 (both
are 1 in this case).

Fig. 7. As in Fig. 3 but for the case using the 2-TU update inter-
val (New CDAPE).

that of Iobs (Fig. 5a), while in the c5 case the RMSEsum is
always greater than that of Iobs (Fig. 5b) (shown as a coinci-
dent case when the statistics of 20 experiments are discussed
later). We understand that the parameter estimation is a result
of trade-off between reliable state-parameter covariance and
the strength of observational constraint. If the update interval
is too short, the state-parameter covariance is unreliable, even
though with stronger observational constraint. If the update
interval is too long, the observational constraint becomes too
weak, so the parameter estimation effect is weak, despite re-
liable state-parameter covariance. This can explain why the
RMSEsum increases when the update interval is larger than 5
TUs in both cases—a point we discuss in more depth in the

next section.

4.2. Impact of observational constraint strength on pa-
rameter estimation

To understand the phenomena in the case studies shown
in section 4.1 and eliminate the case-dependence of results,
in this section, we discuss the results of the whole 20 exper-
iments with independent initial conditions described in sec-
tion 2.3. The mean RMSEsum of 20 experiments for both
the model states and the examined parameters (c2 and c5)
are shown in Figs. 8a and b and Figs. 9a and b. It is clear
that, for the c2 case, the RMSEsum of both model states and
the parameter are less than that of Iobs within 6 TUs of up-
date intervals (Figs. 8a and b), while the RMSEsum of the c5
case is less than that of Iobs within 2 TUs of update inter-
vals (Figs. 9a and b). For both cases, when the update in-
terval is greater than a certain magnitude (5 TUs for c2 and
2 TUs for c5), the RMSEsum of both model states and the
parameter start to increase and quickly exceed that of Iobs.
As we know, besides the state-parameter covariance, the per-
formance of parameter estimation also relies on the strength
of observational constraints. In Fig. 6, compared to the Iobs
case, the parameter estimation with longer update intervals is
more stable but takes much longer to converge due to much
weaker observational constraints. Indeed, as the observation
is the only information resource to update the model param-
eter, parameter estimation cannot succeed without sufficient
observational constraint. When the update interval increases,
the model has a more sensitive response to parameter per-
turbation, meaning the state-parameter covariance becomes
more signal-dominant but the number of observations used
to constrain the parameter are obviously less. For example,
for parameter estimation with an update interval of 2 TUs, the
amount of observational information used to constrain the pa-
rameter is only 10% of the amount used in the Iobs case. As
the update interval significantly increases, although the state-
parameter covariance is more reliable than that of Iobs, the
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Fig. 8. The variations of 20-case mean RMSEsum of (a, c) model states and (b, d) parameter c2 in the space of update
intervals in parameter estimation experiments (a, b) CDAPEPc2 (c2),OV,win(w) and (c, d) CDAPEPc2 (c2),OV,win(w). The exper-
iments in CDAPEPc2 (c2),OV,win(w) use an observational time window of 0.1 TU (10 observations at each update step). In
each panel, the solid line represents the ensemble mean of 20 experiments with independent initial conditions, described
in section 2.3, while the shading represents the spread of these 20 cases. The blue line and blue shading are the results
of parameter estimation with a 0.2-TU update interval, while the red line and the green shading are the results of using
different update intervals. Note that, with or without an observational window, the scope of RMSE convexity is quite
different, so panels (a, b) and (c, d) use different horizontal axis scales.

weak observational constraint suppresses the positive impact
of reliable covariance, so the parameter estimation diverges.

In the real world, an observational time window is usu-
ally used to collect measured data to increase the number of
samples of observational information for an assimilation cy-
cle (e.g., Pires et al., 1996; Hunt et al., 2004; Houtekamer
and Mitchell, 2005; Laroche et al., 2007). This assumes that
all the collected data are the samples of the “truth” variation
at the assimilation time (Hamill and Snyder, 2000; Zhang,
2011; Gao et al., 2013). In a coupled system, due to dif-
ferent characteristic time scales in different media, how to
choose a suitable observational time window in different me-
dia so that while sampling information increases the charac-
teristic variability maintains, is an important and interesting
research topic, but one that is beyond the scope of this study.
Here, we only discuss the impact of observational constraint
strength on parameter estimation when the update interval is
long. For simplicity, we apply a comparable observational
constraint with the Iobs experiment to further understand the
impact of model sensitivity response time scales on parame-
ter estimation. Figures 9c and d and Figs. 10c and d are the
results of re-running the 20 experiments for c2 and c5 esti-
mation but with a 0.1-TU observational time window (each
parameter estimation step uses 10 observations), referred to

as CDAPEPc2 (c2),OV,win(w) and CDAPEPc5 (c5),OV,win(w) (see Ta-
ble 2). In this way, for the cases with the 2-TU update in-
terval, the parameter estimation in CDAPEPc2 (c2),OV,win(w) and
CDAPEPc5 (c5),OV,win(w) has an equivalent observational con-
straint strength as Iobs. From Figs. 8c and d and Figs. 9c and
d, we can see that the errors of parameter estimation exhibit a
wide convex shape when the estimation has a reasonable ob-
servational constraint. Of course, when the update interval is
longer, the observational constraint becomes weaker and the
representation of observations also becomes poorer, so the
estimation error starts to increase.

From the analyses above, we conclude that the state-
parameter covariance requires some response time to estab-
lish a reliable signal (reaching equilibrium) as the model re-
sponds to parameter perturbations. Thus, it is necessary to
update the parameter with an update interval comparable to
the model sensitivity response time scale in parameter esti-
mation.

4.3. Multiple parameter estimation
In order to test the impact of the model sensitivity re-

sponse time scales on multiple parameter estimation, we
conduct a series of experiments—CDAPEPc2 ,c5 (c2),OV,win(w),
CDAPEPc2 ,c5 (c5),OV,win(w) and CDAPEPc2 ,c5 (c2,c5),OV,win(w) (see
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Fig. 9. As in Fig. 8 but for the case of parameter estimation of c5.

Fig. 10. The variations of RMSEsum of parameter (a) c2, (b) c5 and (c) model states in the space of update inter-
vals in multiple parameter estimation experiments CDAPEPc2 ,c5 (c2,c5),OV,win(w) when c2 and c5 are estimated simulta-
neously with 50% initial bias for both. Panel (d) shows the results of only estimating c5 when c2 remains biased
(CDAPEPc2 ,c5 (c5),OV,win(w)). All other notation is the same as in Fig. 8.



1356 IMPACT OF THE TIME SCALE OF MODEL SENSITIVITY VOLUME 34

Table 2 for detailed descriptions)—with different parame-
ter update intervals that are longer than the 0.2-TU obser-
vational interval of w (all experiments with 0.1-TU observa-
tional time window). Parameters c5 and c2 are perturbed to-
gether in all of these experiments. While both are estimated
together in CDAPEPc2 ,c5 (c2,c5),OV,win(w), only c5(c2) is esti-
mated in CDAPEPc2 ,c5 (c5),OV,win(w) (CDAPEPc2 ,c5 (c2),OV,win(w)).
The RMSEsum of model states and parameters from 20-case
statistics are shown in Figs. 10a–d. From Figs. 10a–c, we
see that the RMSEsum for the model states and parameters
(c5 and c2) are reduced quickly as the update intervals in-
crease, meaning that the covariance between model states and
the parameter is more stable with longer update intervals in
multiple parameter estimation. As in the single parameter
estimation cases shown before, when the observational con-
straint strength becomes too weak and with overly long up-
date intervals, the RMSE shows gradual growth. Clearly, the
result of multiple parameter estimation is consistent with that
of single parameter estimation. Comparing Fig. 10c to Fig.
10d, we can see that the RMSE is much bigger when both
c5 and c2 are perturbed but only c5 is estimated (Fig. 10d),
meaning the fast oceanic parameter (c2) has a big influence
on the result of model integration if it is not corrected.

5. Conclusion and discussion

Based on filtering theory, parameter estimation with the
observation of model states is a promising approach to mit-
igate model bias. Customized from traditional state esti-
mation, traditional parameter estimation usually updates the
parameter being estimated according to observational fre-
quency. Without direct observations on parameters, the co-
variance between model states and the estimated parameter
plays a critical role in parameter estimation. The sensitivity
response time scales of model to parameter perturbations in
a coupled system can be different, from hourly to decadal,
depending on the nature of the associated physics and char-
acteristic variability of the fluid. With an ensemble filter
consisting of a simple coupled model, this study addresses
the impact of the time scale of model sensitivity response on
coupled model parameter estimation. Meanwhile, the influ-
ence of observational constraint strength on parameter esti-
mation is discussed. Results show that it is necessary to up-
date the parameter with an update interval comparable to the
model sensitivity response time scale in parameter estima-
tion. These results provide a guideline for when real obser-
vations are used to optimize the parameters in a CGCM for
improving climate analysis and prediction initialization.

Although the new parameter optimization scheme has
shown great promise with a simple model, many challenges
remain in applying it to CGCMs. Firstly, it is assumed in this
study that the errors of model parameters are the only source
of model biases. Actually, the dynamical core and physical
schemes themselves are also imperfect and serve as signifi-
cant sources of model biases in a CGCM. How the new pa-
rameter estimation scheme works with multiple model bias

sources needs to be examined. Secondly, in order to deter-
mine the suitable update interval, the sensitivity of a model
state to parameters has to be studied first. So, a thorough
examination of the sensitivity of a CGCM with respect to
its numerous parameters is an important but challenging is-
sue. When a real-world observing system is combined with a
CGCM, all of these issues need to be further investigated and
addressed.
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APPENDIX
Implementation of Parameter Estimation

We choose the ensemble adjustment Kalman filter
(EAKF) to conduct the parameter estimation in this study.
The implementation of ensemble filtering for parameter esti-
mation is processed through the following four steps:

Step 1: Draw M Gaussian random numbers, which are
set as the default values for the parameter to be estimated (M
is the ensemble size, which is set to 20 in this study). The
ensemble of the default values of the estimated parameter is
the initial prior ensemble of the parameter for parameter esti-
mation.

Step 2: Compute the ensemble observational increments
of a state variable at the observational location k. The ob-
servational increment ∆yk,i for the ith ensemble member pro-
duced for the kth observation is computed as

∆yk,i =
yk

1 + r2(yk,yo,k)
+

yo,k

1 + r−2(yk,yo,k)
+

yk,i− yk√
1 + r2(yk,yo,k)

− yk,i , (A1)

where yk,i is the ith prior ensemble member for the kth ob-
servation; yk is the model estimate ensemble for observation
yo,k; and r(yk,yo,k) is the ratio of the model ensemble standard
deviation and the observational error standard deviation.

Step 3: Compute the error covariance between the prior
ensemble of the parameter β and the model-estimated obser-
vation ensemble of yk as

cov(β,yk) =

∑M
i=1(βi− β̄)(yk,i− ȳk)

σβσyk

, (A2)

where βi is the ith ensemble member of the parameter being
estimated.

Step 4: Apply each observation increment and covariance
sequentially to Eq. (2) to update the parameter ensemble until
all observations are applied to the estimated parameter, and
an updated ensemble of parameter is produced for the next
cycle of parameter estimation.
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