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ABSTRACT

The tropical Pacific has begun to experience a new type of El Niño, which has occurred particularly frequently during the
last decade, referred to as the central Pacific (CP) El Niño. Various coupled models with different degrees of complexity have
been used to make real-time El Niño predictions, but high uncertainty still exists in their forecasts. It remains unknown as to
how much of this uncertainty is specifically related to the new CP-type El Niño and how much is common to both this type
and the conventional Eastern Pacific (EP)-type El Niño. In this study, the deterministic performance of an El Niño–Southern
Oscillation (ENSO) ensemble prediction system is examined for the two types of El Niño. Ensemble hindcasts are run for the
nine EP El Niño events and twelve CP El Niño events that have occurred since 1950. The results show that (1) the skill scores
for the EP events are significantly better than those for the CP events, at all lead times; (2) the systematic forecast biases
come mostly from the prediction of the CP events; and (3) the systematic error is characterized by an overly warm eastern
Pacific during the spring season, indicating a stronger spring prediction barrier for the CP El Niño. Further improvements to
coupled atmosphere–ocean models in terms of CP El Niño prediction should be recognized as a key and high-priority task
for the climate prediction community.
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1. Introduction
As the most striking interannual variability in the tropical

Pacific, El Niño–Southern Oscillation (ENSO) has been in-
tensively studied for several decades. Based on the profound
effects of ENSO on environmental and socioeconomic activ-
ities worldwide, understanding the changes in ENSO’s char-
acteristics remains important and challenging (McPhaden et
al., 2006; Ashok and Yamagata, 2009). Currently, due to im-
proved observations (e.g., McPhaden et al., 1998) and mod-
eling techniques (Delecluse et al., 1998), the ability to predict
ENSO has become markedly better over the past few decades
(Latif et al., 1998; Jin et al., 2008). Indeed, ENSO forecasts
have reached the stage where skillful predictions can be made
6–12 months in advance. Several operational centers have
used climate models to routinely make ENSO predictions in
real time (Latif et al., 1998; Kirtman et al., 2001). However,
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the skill with respect to sea surface temperature (SST) fore-
casts in the equatorial Pacific is strongly model-dependent
and widely divergent across various prediction systems (Jin
et al., 2008; Barnston et al., 2012). Broadly, there is still
room for improvement in ENSO prediction (Barnston et al.,
2012).

It has been demonstrated that the real-time ENSO predic-
tion skill over the past decade is obviously lower than that in
the 1980s and 1990s (Barnston et al., 2012). For example, the
correlation between observations and ENSO hindcasts over a
nine-year sliding window has an average value of 0.65 dur-
ing 1981–2010 at a six-month lead time, but decreases to 0.42
for 2002–11 period (Barnston et al., 2012). One possible rea-
son for the shift in the ENSO prediction skill is because a
different type of El Niño—as compared to the canonical east-
ern Pacific (EP) El Niño (McPhaden et al., 2011; Yu et al.,
2012)—emerged in the 2000s. For this type of El Niño, the
maximum anomalous SST is mostly confined to the central
Pacific, and is thus referred to as the central Pacific (CP) El
Niño (Yu and Kao, 2007; Kao and Yu, 2009; Yu et al., 2010;

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany 2017



1396 PREDICTION SKILLS FOR THE TWO TYPES OF EL NIÑO VOLUME 34

Zheng et al., 2014b).
The limited predictability may be attributable to factors

such as errors in oceanic initial conditions, state-dependent
stochastic forcing, or model errors (e.g., Moore and Klee-
man, 1996; Karspeck et al., 2006; Duan and Zhao, 2015).
However, a systematic examination of climate models’ per-
formances in predicting the two types of El Niño has been
less well explored, and it remains controversial as to whether
their predictabilities are distinct in different state-of-the-art
climate models (e.g., Jeong et al., 2012; Yang and Jiang,
2014; Imada et al., 2015; Luo et al., 2016). Based on ver-
sion 2 of the National Centers for Environmental Prediction
Climate Forecast System, Yang and Jiang (2014) compared
the model skill in using the El Niño Modoki index (EMI) and
Niño3 index to predict the two types of El Niño, and showed
that the EMI was more persistent and predictable than the
Niño3 index during boreal summer and autumn. On the con-
trary, Jeong et al. (2012) and Luo et al. (2016) found EP
events to be more predictable than CP events when adopting
the coupled climate prediction multi-model ensemble suite of
the Asia–Pacific Economic Cooperation Climate Center. Us-
ing version 5 of the Model for Interdisciplinary Research on
Climate, Imada et al. (2015) also found that CP El Niño has
limited predictability and a shorter lead time for prediction
compared to EP El Niño.

In the present study, we use the ensemble prediction sys-
tem (EPS) developed at the Institute of Atmospheric Physics
(IAP), Chinese Academy of Sciences (Zheng et al., 2006,
2007, 2009a; Zheng and Zhu, 2010a, 2016), to investigate
the predictability of the two types of El Niño. Hindcast
experiments are carried out with the EPS for 21 major El
Niño events observed since 1950. The predictability of the
ensemble-mean forecasts is validated and compared with re-
spect to EP and CP El Niño. The common forecast biases
for the two types of El Niño are identified and contrasted
throughout the different phases of the El Niño lifecycle.

2. Model and datasets

The IAP ENSO EPS has three main components: an in-
termediate coupled model (ICM), an air–sea coupled data as-
similation system, and a stochastic model-error model. The
ICM was developed by Keenlyside and Kleeman (2002) and
Zhang et al. (2005), and consists of a dynamical ocean model,
an SST anomaly model that empirically parameterizes the
temperature of subsurface water entrained into the mixed
layer based on sea level anomalies, and a statistical wind
stress model. The dynamical component of the ICM is de-
scribed in detail by Keenlyside and Kleeman (2002). All cou-
pled model components exchange simulated anomaly fields,
such as the wind stress in the atmosphere and the SST in the
ocean, once a day. The air–sea coupled data assimilation sys-
tem (Zheng and Zhu, 2008, 2010a, 2015) uses an ensemble
Kalman filter (EnKF) approach to minimize the errors in both
the atmospheric and oceanic initial conditions by assimilating
available atmosphere and ocean observations simultaneously

into the ICM (please refer to the electronic supplementary
material for details). A stochastic error model (Zheng et al.,
2009a; Zheng and Zhu, 2016) is embedded within the ICM to
perturb the modeled SST anomaly field randomly by adding
error terms to the right-hand-sides of the model equations.
This stochastic error model is designed to account for the
temporal evolution of the forecasted uncertainties in the SST
anomaly field (Zheng et al., 2006, 2009a, b; Feng et al., 2015;
Zheng and Zhu, 2016). The performance of the prediction
system is documented in Zheng and Zhu (2016), in which a
20-year retrospective forecast comparison shows that a good
forecast skill of the EPS with a prediction lead time of up to
one year is possible. Therefore, this EPS system is suitable
for examining the predictability of the two types of El Niño.

Because of the need to initialize the model for a long pe-
riod (1950–2012) to predict the CP and EP El Niño events,
the observational data available to us in this study only in-
clude version 3b of the Extended Reconstructed SST (Smith
et al., 2008) dataset (horizontal resolution: 2◦), and wind
stress data obtained as the ensemble mean of a 24-ensemble
member ECHAM4.5 simulation (Röckner et al., 1996; please
refer to the online supplementary file for details). The SST
data from 1950 to 2012 are used to select the EP and CP El
Niño events for the hindcast experiments (for details, see sec-
tion 3.1). For the hindcast experiments, the model’s spin-up
and data assimilation cycle are described in detail in the on-
line supplementary file.

3. Deterministic prediction skill for the two
types of El Niño

3.1. Selection of EP and CP El Niño events
The El Niño events are selected in this study based on the

National Oceanic and Atmospheric Administration (NOAA)
criterion that the Ocean Niño Index (ONI) [i.e., the three-
month running mean of SST anomalies in the Niño3.4 region
(5◦N–5◦S, 120◦–170◦W)] must be greater than or equal to
0.5◦C for a period of at least five consecutive overlapping
seasons. A total of 21 events are identified based on this
criterion and are listed in Table 1. Similar to previous studies
(e.g., Yu et al., 2012; Yu and Kim, 2013), we then determine
the type of these 21 El Niño events based on a consensus of
three identification methods, which are: the EMI method of
Ashok et al. (2007); the cold tongue (CT) and warm pool
(WP) index method of Ren and Jin (2011); and the pattern
correlation (PTN) method of Yu and Kim (2013). With the
EMI method, an El Niño event is considered to be CP-type
when the value of the December–January–February (DJF)-
averaged EMI is equal to or greater than 0.7 standard devia-
tions. With the CT/WP method, an El Niño event is classified
as CP-type (EP-type) when the DJF-averaged value of the
WP index is greater (less) than the averaged value of the CT
index. Using the PTN method, the El Niño type is determined
based on whether the spatial pattern of El Niño SST anoma-
lies resembles more closely the typical SST anomaly pattern
of EP- or CP-type El Niño. According to the consensus listed
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Table 1. The major El Niño events since 1950, as identified by the
NOAA ONI, and their type identified by the majority consensus of
three methods.

Type

EMI CT/WP PTN
El Niño years method method method Consensus

1951/52 EP EP MIX EP
1953/54 EP CP EP EP
1957/58 CP EP CP CP
1958/59 CP CP MIX CP
1963/64 CP CP MIX CP
1965/66 CP EP CP CP
1968/69 CP CP CP CP
1969/70 EP EP CP EP
1972/73 EP EP MIX EP
1976/77 EP EP MIX EP
1977/78 CP CP CP CP
1982/83 EP EP EP EP
1986/87 EP EP MIX EP
1987/88 EP CP CP CP
1991/92 CP EP MIX CP
1994/95 CP CP CP CP
1997/98 EP EP EP EP
2002/03 CP CP CP CP
2004/05 CP CP CP CP
2006/07 EP EP MIX EP
2009/10 CP CP CP CP

in Table 1, nine of the twenty-one major El Niño events are
classified to be EP-type, and the other twelve are CP-type.

3.2. Deterministic prediction skill
Next, the EPS is used to perform retrospective ensem-

ble forecasts for the 21 major El Niño events. A unique in-
dex (i.e., Niño3.4 index), rather than the Niño3 and EMI in-
dices used in previous studies (e.g., Yang and Jiang, 2014,
Luo et al., 2016), is adopted to evaluate the skill of the EPS
in forecasting the two types of El Niño. A 12-month hind-
cast is initialized each month during the period 1950–2010
with 100 ensemble members. Figure 1 shows the determinis-
tic retrospective forecast results for the strongest EP El Niño
(i.e., the 1997/98 event) and the strongest CP El Niño (i.e.,
the 2009/10 event) since 1950. Here, the strength of the El
Niño event is measured by the peak value of the Niño3.4 SST
anomalies. The 1997/98 El Niño is also the strongest EP type
El Niño event during the past century (McPhaden and Yu,
1999; Picaut et al., 2002), and the 2009/10 El Niño event is
considered the largest CP-type El Niño event in the historical
record (e.g., Yu et al., 2012). For both events, the EPS system
can successfully predict their onset and development as early
as 12 months in advance, albeit with errors still existing in
the forecasts of their magnitudes.

The anomaly correlations and root-mean-square er-
rors (RMSEs) between the observed and ensemble-mean-
predicted SST anomalies in the Niño3.4 region are shown

Fig. 1. Deterministic predictions for the largest (a) EP and (b)
CP El Niño since 1950. The thick black curves are the observed
Niño3.4 SST anomalies, and the thin curves of red, green, blue
and orange are the ensemble-mean predictions starting 12, 9, 6
and 3 months, respectively, before the peak of each El Niño.

in Fig. 2 as a function of lead time. The hindcasts for the both
types of El Niño have generally high skill at all lead times.
The correlations are greater than 0.93 for the one-month lead
time and remain above 0.6 even for the twelve-month lead
time. The skill scores of the hindcast are significantly higher
for the EP events than for the CP events at all lead times.
There is a distinct difference between the EP and CP events
in skill score beyond the two-month lead time. At the nine-
month lead time, the correlation coefficient for the EP events
is still above 0.8, and is approximately 0.2 higher than that
for the CP events. The RMSEs of the hindcast for both
the EP and CP events remain smaller than 0.75◦C up to the
nine-month lead time. Beyond the nine-month lead time, the
RMSEs of the hindcast are about 0.1◦C–0.15◦C smaller for
the CP events than for the EP events. This is because the
CP events have a relatively weak signal compared to the EP
events (Zheng et al., 2014b; Fang et al., 2015), and thus they
are more affected by atmospheric noise; this prevents the de-
velopment of oceanic signals that can be used for prediction
(e.g., Imada et al., 2015).

The horizontal distributions of the anomaly correlations
and RMSEs between the observed and predicted SST anoma-
lies at lead times of three, six, nine and twelve months are dis-
played in Figs. 3 and 4. Geographically, the performance of
this system is particularly good in the central-eastern equato-
rial Pacific (Zhang et al., 2005; Zheng and Zhu, 2015). Also,
for predicting the EP events, the correlation is above 0.8 in
the central basin and above 0.7 in the eastern equatorial Pa-
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Fig. 2. Anomaly correlations (upper panel) and RMSEs (lower panel) between the observed and
predicted SST anomalies in the Niño3.4 region as a function of lead time. Values are shown
separately for all El Niño events (dot-dashed lines), EP El Niño events only (lines with solid
circles), and CP El Niño events only (lines with open circles). The results are obtained as the
means of the ensemble hindcasts made for the El Niño events during the period 1950–2012.

cific at the three-month lead time (Fig. 3a). As the lead time
increases, the correlation drops first and fastest in the eastern
basin. However, even at the six-month lead time (Fig. 3b), the
skill does not drop much in the central basin (the correlation
remains greater than 0.7) and there is only a slight decrease
in the eastern basin. At a twelve-month lead time (Fig. 3d),
correlations larger than 0.7 can still be found over a sizeable
region of the central Pacific, but the correlation drops below
0.6 east of 100◦W. Consistent with Fig. 2, there is an obvious
decrease in the correlations for the prediction of the CP events
over the entire region. The correlations for the CP events are
approximately 0.1–0.2 lower than those for the EP events at
all lead times. The difference is particularly significant in the
central and eastern Pacific (Fig. 3). At the same time, the
forecasted errors in the EP El Niño predictions are approxi-
mately 0.2◦C larger than those in the CP El Niño predictions
over the eastern Pacific at all lead times (Fig. 4).

3.3. Systematic error
In coupled prediction systems, climate drift is still a sig-

nificant problem. In some cases, systematic model biases
can be much larger than the anomalies to be predicted (e.g.,
Schneider et al., 2003; Zhang et al., 2005). Typically, the sys-

tematic errors can be identified by averaging the differences
between the predicted and observed physical fields over all
ensemble members. In Fig. 5, we show the systematic errors
of the IAP ENSO EPS in the ensemble-mean prediction of
equatorial Pacific SST anomalies as a function of initial cal-
endar month. When the systematic errors are calculated from
the predictions for all 21 El Niño events (the top row), the
errors are characterized by a warm bias in the eastern basin
and a cold bias in the central part of the basin. The largest
warm bias (close to 0.5◦C) occurs in May with the predic-
tions starting from January and April. When stratifying the
systematic errors by the predictions of the EP El Niño events
(middle row) and the CP El Niño events (bottom row), it is
noticeable that the systematic errors are significantly smaller
for the EP El Niño predictions than for the CP El Niño pre-
dictions. The systematic errors in the El Niño predictions are
mostly related to predicting CP El Niño events. The warm
bias might be caused by the model’s deficiency in simulat-
ing the thermocline feedback over the equatorial eastern Pa-
cific during the CP El Niño events. Moreover, the obvious
systematic errors in forecasting the CP El Niño events also
contribute to the forecast errors in the CP El Niño predictions
(Fig. 4). The weak systematic errors in the EP El Niño pre-
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Fig. 3. (a–d) Horizontal distribution of the anomaly correlations between observed and ensemble-mean-forecasted SST anoma-
lies for the EP El Niño events at a lead time of (a) 3 months, (b) 6 months, (c) 9 months and (d) 12 months. The contour interval
is 0.2, and the shaded areas represent correlation coefficients above 0.5 with 0.1 interval. (e–h) As in (a–d) but for the prediction
of CP El Niño events.

dictions also indicate the errors in forecasting the EP El Niño
events are mainly stochastic (Zheng et al., 2016).

3.4. Seasonality of the prediction skill
The robust center of high systematic error in May over

the eastern Pacific might indicate that CP El Niño events are
more difficult to predict through the spring season. Errors
in observations can easily lead to a spring prediction barrier
(SPB; Webster and Yang, 1992) in the prediction of CP events
due to the larger forecast bias (Zheng and Zhu, 2010b). To
examine the seasonality of the prediction skill in a determin-
istic sense, Fig. 6 displays the anomaly correlations for the
ensemble-mean forecast calculated as a function of the ini-
tial month and lead time. As shown in many previous stud-
ies, the skill in predicting SST anomalies depends sensitively
on the initial month (e.g., Latif et al., 1998; Jin et al., 2008;
Zheng and Zhu, 2010b). For example, as shown in Fig. 6,
the correlation is relatively low for the predictions initialized
before and even during the spring season, and is significantly
higher for the predictions initialized thereafter. Moreover, the
SPB can be characterized as a decay in the anomaly corre-
lation skill of ENSO forecasts made before and during the

spring being much more obvious and rapid than those made
after spring (e.g., Webster and Yang, 1992; Zhang et al.,
2005). Our results further indicate that a stronger SPB exists
for CP El Niño predictions than for EP El Niño predictions.
The ensemble-mean forecasts for the EP El Niño events have
higher anomaly correlation coefficients than those for the CP
El Niño events at all lead times and initial months. In particu-
lar, the decline in correlation skill for the CP El Niño predic-
tions initialized before and during spring is much more rapid
than that for the EP El Niño predictions.

The different speeds of decline in the correlations of the
EP and CP El Niño events are likely related to the different
seasonal evolution of the EP and CP events (Kao and Yu,
2009; Yeh et al., 2014). While both types of El Niño reach
their maximum amplitude during boreal winter, the onset of
the positive SST anomalies for EP events typically happens in
the eastern Pacific during spring, but for CP events this usu-
ally takes place from the eastern subtropics into the tropical
central Pacific during summer. Due to the difference in evo-
lution, SST anomalies tend to be more persistent from spring
to summer for EP events than for CP events. Consequently,
EP El Niño tends to have a high persistence prediction skill
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Fig. 4. As in Fig. 3, but for the RMSEs. Contour interval is 0.2◦C, and the shaded areas represent RMSEs larger than 0.5◦C
with 0.1◦C interval.

across the spring season and a weak SPB, whereas CP El
Niño tends to have a more rapid decline in persistence pre-
diction skill and a strong SPB.

4. Conclusions and discussion

It has been noticed that CP-type El Niño events have oc-
curred more frequently in recent decades, and that this type of
El Niño may be generated by a mechanism distinct from that
of the traditional EP-type El Niño (Yu et al., 2010, 2017). In
this study, the deterministic prediction skill of the IAP ENSO
EPS is examined separately for EP- and CP-type El Niño.
The prediction skill is found to be lower for CP-type El Niño.
Beyond a three-month lead time, the prediction skill is con-
sistently higher for predicting EP events (0.1–0.2 higher in
terms of the correlation coefficient) than CP events. Also,
the system produces overly warm SSTs in the eastern basin
during the spring season when predicting CP El Niño events.
This bias indicates that the SST anomalies in the prediction
model may be too sensitive to wind forcing. This oversensi-
tivity may be because most El Niño prediction models have
been designed, tuned and tested to capture the thermocline
dynamics of the traditional EP-type El Niño. These thermo-

cline dynamics are suggested to be less important for CP El
Niño, and thus may manifest as a systematic error when pre-
dicting such events. Our results indicate that further improve-
ments in El Niño prediction can be realized if we can improve
the performance of coupled atmosphere–ocean models in pre-
dicting CP El Niño, which should be recognized as a key and
high-priority task for the climate prediction community.

Efforts to improve the ability of the IAP ENSO EPS in
predicting CP El Niño are currently in progress. For example,
the current version of the system does not consider the phys-
ical processes involving freshwater flux and salinity variabil-
ity over the tropical Pacific (Zheng and Zhang, 2012; Zheng
et al., 2014a), and the effects of salinity are not included in the
current model. Because El Niño events, especially CP events,
can be modulated by the interannually varying salinity (Zhu
et al., 2014; Zheng and Zhang, 2015), such effects need to
be considered. Using data assimilation methods in the initial-
ization system to include more accurate salinity information
may also help improve CP El Niño forecasts (Zheng and Zhu,
2010a, 2015). Moreover, as demonstrated in previous stud-
ies (Chen et al., 2004; Zheng et al., 2009a, 2016; Wang et al.,
2010; Barnston et al., 2012), strong decadal variations exist in
the predictability of ENSO, with the most recent decade hav-
ing the lowest predictability among the past six. Because of
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Fig. 5. Systematic errors of the predicted SST anomalies along the equator from the IAP ENSO EPS at different lead times.
Results are shown for predictions starting in January (first column), April (second column), July (third column), and October
(fourth column); and for the predictions for all the El Niño events (top row), the EP El Niño events only (middle row), and the
CP El Niño events only (bottom row). Contour interval is 0.1◦C, and the shaded areas represent biases larger (smaller) than
0.3◦C (−0.3◦C).

Fig. 6. Anomaly correlations in the Niño3.4 region as a function of lead time and start month for the ensemble-mean
forecasts performed using the IAP ENSO EPS: (a) for the EP El Niño events; (b) for the CP El Niño events.
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the relatively low reliability of the data in the 1950s–70s com-
pared to recent decades, it is better to assess the predictability
of the two types of El Niño by comparing the difference in
prediction skill between the recent and previous decades by
including as many El Niño events as possible.
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