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ABSTRACT

Based on the Taylor series method and Li’s spatial differential method, a high-order hybrid Taylor-Li scheme is proposed.
The results of a linear advection equation indicate that, using the initial values of the square-wave type, a result with third-
order accuracy occurs. However, using initial values associated with the Gaussian function type, a result with very high
precision appears. The study demonstrates that, when the order of the time integral is more than three, the corresponding
optimal spatial difference order could be higher than six. The results indicate that the reason for why there is no improvement
related to an order of spatial difference above six is the use of a time integral scheme that is not high enough. The author
also proposes a recursive differential method to improve the Taylor-Li scheme’s computation speed. A more rapid and high-
precision program than direct computation of the high-order space differential item is employed, and the computation speed
is dramatically boosted. Based on a multiple-precision library, the ultrahigh-order Taylor-Li scheme can be used to solve the

advection equation and Burgers’ equation.
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1. Introduction

Numerical models are powerful tools for probing weather
prediction and climate change. Regarding the complex non-
linear interactions between variables, there are large uncer-
tainties in model simulations. One of the main objectives of
the Intergovernmental Panel on Climate Change is to gain
an improved understanding of these uncertainties (Mastran-
drea et al., 2010). The sources of such uncertainties mostly
stem from the physical parameters, the framework of mod-
els, the observation errors, and the computation errors (von
Neumann and Goldstine, 1947). The computation errors of
numerical simulations generally exist in atmospheric general
circulation models (Wang et al., 2007), coupled models (Song
et al., 2012), simple chaotic dynamic systems (Li et al., 2000;
Liao, 2009), and quasi-geophysical models (Teixeira et al.,
2007). It is important to reduce the accumulation of compu-
tational errors in long-term numerical computations to obtain
reasonable simulations.

In the field of weather and fluid mechanics, some models
are defined as 0F /0t = LF, where L is an operator involved in
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F and the spatial derivatives of /. When a numerical method
is used to simulate F based on this type of equation, the accu-
racy of the algorithm depends on the step size, both spatially
and temporally. The computation of spatial derivatives is an
important research topic. Previous studies have shown that a
second-order spatial difference scheme is enough, but other
studies related to direct simulations of turbulent flow further
demonstrated that a high-order algorithm is necessary (Lele,
1992). Since then, high-order algorithms have been applied
in simulating complex fluid motion (Lele, 1992; Ma and Fu,
1996). Nevertheless, a lower-order (e.g., order of three) time-
integration algorithm is often implemented. This causes a
mismatch between the spatial and temporal computation pre-
cision in the model integration, along with a reduction in the
accuracy of computations in long-term simulations.
Additionally, to reduce total errors in numerical simula-
tions, it is necessary to improve the spatiotemporal precision
(Tal-Ezer, 1986, 1989). Building a spatiotemporal precision-
matched high-order scheme for the integration of an atmo-
spheric numerical model could help reduce the uncertainty
associated with computation errors in numerical experiments.
Two types (directions) of computations are used when
applying numerical methods to solve time-dependent partial
differential equations (PDEs): the spatial direction (differ-
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ence method, spectral method, finite volume method, etc.),
and the temporal direction (time-integration method). It is
possible to reduce the errors in the difference method by in-
creasing the order of schemes or by reducing the grid size.
However, increasing the scheme order is generally difficult in
a three-dimensional complex fluid dynamical system. Also,
this often leads to an increase in the computation by 2* times
when reducing the grid size by half. While high-precision
schemes have been proposed, the computation stability de-
creases with increasing precision. To ameliorate the deficien-
cies, Ji et al. (1999) applied a conservation scheme to balance
computation precision and stability.

Li (2005) proposed a new method for computing the high
order of spatial derivatives. The advantage of this method is
that it applies an explicit scheme to perform computations.
In addition, the method is time-saving and has the ability to
obtain derivatives of 10 orders or higher. Feng and Li (2007)
employed the method of Li (2005) in a high-order scheme
for a one-dimensional advection equation, the in-viscid Burg-
ers’ equation (Hopf, 1950), the barotropic vorticity equation,
and shallow-water equation, and found that the sixth-order
scheme produced the best result without a large increase
in computation time. However, when the scheme order in-
creased (e.g., to 7-10), the improvement in the result was
only slight, and even became worse. When the order was
higher than seven, the results became weak compared to the
sixth order.

There are two ways to reduce the errors of time integra-
tion: decrease the time step-size or increase the time inte-
gration order. Decreasing the time step-size is the simplest
method, as discussed in Li et al. (2000) and Teixeira et al.
(2007), who showed the sensitivity of the results to time
step-size. However, the result for a chaotic system is not
only sensitive to the time step-size, but also the order of
the scheme and float-point precision. Additionally, the actual
computation time is limited by the cost of the executing pro-
gram. Wang et al. (2012) examined the cost of a fourth-order
Runge—Kutta method and the Taylor method in computation
of the Lorenz system, and argued that higher-order methods
can decrease the computation time exponentially.

Previous studies have indicated that applying a high-order
scheme to reduce the time integration error is important.
For example, Li et al. (2000) utilized 2—10-order numeri-
cal schemes to investigate the error evaluation rule. In ad-
dition, Lorenz (2006) reported that the Taylor series method
has high-order characteristics, and is suitable for the study
of chaotic dynamical systems. By applying the Moore (1966,
1979) recurrence method to compute coefficients, Barrio et
al. (2005, 2011), Liao (2009) and Wang et al. (2014) used
an ultrahigh order (in this study, the author regards a 4-9-
order scheme as being high order, and an > 10-order scheme
as ultrahigh order) Taylor method to examine the Lorenz sys-
tem, Kepler system, and Henon—Heiles system (Hénon and
Heiles, 1964). These results suggest that, for a certain pre-
defined time, #, the method is capable of generating highly
precise numerical solutions, and the Taylor series method has
a strong ability and broad application prospects in issues re-

HIGH ORDER TAYLOR-LI SCHEME

VOLUME 34

lated to high precision or long-term integration.

Base on the high-order Taylor series method, the forward
period analysis (FPA) method (Wang, 2016), which is very
efficient for the long-term simulation of periodic Hamilto-
nian systems, was built. Some PDE systems also have pe-
riodic properties [e.g., the barotropic vorticity equation on
a sphere (Neamtan, 1946)], while others may not [e.g., the
Allee effect (Sun, 2016) in population dynamics]. An issue
often encountered when applying FPA to the periodic PDE
system is that there is no integration scheme available with
sufficiently high precision for the integration within one cy-
cle of such PDE and then determine the period value of the
PDE system. Nevertheless, Sun et al. (2016) pointed out that
the spatial dynamic pattern described by a PDE is ubiquitous
in nature, and building a high-order scheme for a PDE dy-
namical system is also valuable for FPA in dealing with such
systems.

Feng and Li (2007) conducted numerous experiments by
applying the Li (2005) method in simple PDE problems.
Nevertheless, there are two problems that need to be solved
when applying such high-order schemes. Firstly, the higher-
order scheme is only used in the spatial direction, with a low-
order (third-order Runge—Kutta) method used in the temporal
direction. Therefore, errors still accumulate in the numerical
results, mainly due to the time-integration error. This means a
> 6-order spatial algorithm cannot produce adequate results.
Secondly, the initial values selected are not continuous in the
spatial direction, or the spatial derivative is infinite, so that
the difference method is unstable and the high-order algo-
rithm is unable to generate results superior to a low-order al-
gorithm. However, these deficiencies do not mean that the Li
(2005) method is unsuitable for problems where the deriva-
tive is continuous and bounded. Therefore, considering these
problems, a high-accuracy algorithm for time-dependent dif-
ferential equations remains to be established.

In this paper, the author proposes a high-order scheme
in both the spatial and temporal direction to compute a kind
of time-dependent PDE. Several experiments are also con-
ducted to investigate the type of problems that this high-order
scheme is suitable for, and those for which it is not, so as to
determine the advantages of such a high-order scheme.

2. Taylor-Li scheme

2.1. The linear case

The form of a one-dimensional advection equation is

ou Ou
a tax 0 M
which can be solved by many high-precision algorithms. The
Taylor method is the traditional method, and many studies
have discussed this method in solving chaotic systems, such
as the Lorenz system (Lorenz, 2006; Liao, 2009; Wang et al.,
2014). Here, we briefly introduce a 7 time step-size and M
order Taylor series scheme (in grid position x;), as
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The core process involved in the Taylor series method is com-
putation of the derivative, u Accordmg to Eq. (1), the first-
order time derivative is
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and the second-order time derivative is
ik u_ 0 (9_14 ou(x;)
o2~ or\or az Ox

_ 0 [oux)\ _ 8y
ax( ot )‘ o e ()

1
(),

u®(x;) =

Since u(l)(xi) is computed in a previous step, the second-
order time derivative can be computed from u (x,) by its
partial derivative in space, and the kth-order time derivative
is

uP(x) = (=1 (u/‘ Dx) . 4)

In addition, the arbitrary spatial derivative formula is ob-
tained from Li (2005):

n

") = ﬁz i, f0)) 5)

j=0

The precision of the formula is in the (n —m+ 1) order, where
i is the position number of reference points, j is the position
number of coefficients points and the meaning of da" +1 4jcan
be found in Li (2005). In this study, we choose m = 1, and
the nth-order precision spatial derivative requires (n + 1) grid
points. It should be noted that y; in the formula is a relative
position numbered from O to n, and not the absolute grid po-
sition of u(x;) on an actual grid.

The N grid is in the x direction, and each (9(u§k7])(xi)) /0x
item can be computed by Eq. (5). The precision involves
the nth order using (n+ 1) grids selected from N grid points
(n < N —1). Equation (4) indicates that u(k) can be ob-
tained by (~1*'a* V(x)/0x. If x; is computed and
(n+1) is an odd number, then the (n + 1) selected grids are
(Xi=nj2,** Xy *+ , Xignj2) (Xi—n/2 corresponds to yg,- -, x; COI-
responds to y,/2,-+,Xi+p/2 corresponds to y,) and x; is lo-
cated in the center of the (n+ 1) selected grid. However,
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when (n+ 1) is an even number, the selected n grid points are
(Xies1)/25" "+ > Xis** s Xi+(n+1)/2—1), Which makes x; approach
the center grid points. x; can be set to a position where the
n grid points continue besides the left or right lateral, but it
cannot be set at the center when x; approaches the boundary.
Therefore, we select periodical boundary conditions when
they are available; x; is close to the center of all computation
points.
The first-order spatial derivative (m = 1) is

1 n
K00 =3 2,100

Jj=0
The computation retains the nth-order precision in the spa-
tial direction, and the computation of temporal derivatives
UM (x) = (=M ‘la(ufM_l)(x,-)) /O0x only requires the formula
of f;l)(y,-); in this way, we can simplify the computation of
d1(11+)111 In order to obtain a certain accuracy of the time
derivative, a grid with a size of at least (M + 1) is required.
For example, when N = 64 and M =5, six grid points are
needed in each computation (and so on). The specific com-

putation formula is as follows:

1 _ 1 _ .
d201 =1, d210 -1
e,
= e i )
n+li,j y(n ])!
(1) (1) e
dn+1zt Z dn+llj (lfl_J)’
Jj=0,j#i
aio_)l,i’] =ag(—i,-+-,k—1i,---,n—10),(k # i,k # j)
=(0)-C) k=)o) (n=0), (k£ L,k # ).

The data array in the program is d[m][n][i][j] (m = 1),
and one dimension can be reduced, i.e., to dV[n][i] [j]. The
n depends on M in general, and once 7 is selected the data ar-
ray can then be reduced to a two-dimension array a o L
which costs a maximum storage space of (n+ 1) X (n+1).

2.2. The nonlinear case
In view of the nonlinear equation
Ou  Ou
o ox’
where A = A(u), the initial value is located in N grid points.
We select n as the grid point from N grid points and apply
Eq. (5) to compute uﬁl) = A(Ou/0x). The result is of nth order
(O(Ax™)).
If we then let B = du/dx, then

o Pu 0 0A . OB OA du a(au)

(6

=— = (AB)= —B+A— = — —B+A—[—|.
d or? ar( ) * ot
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Since Ou /ot = uil)
cal value in the previous step, and the item 8u§l) /0x can then
also be computed by Eq. (5), as
o Pu_ P 5

= =—(AB)=—B+2
d o o ) or?

, we obtain an nth-order precision numeri-
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where
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Similarly, u;z) is obtained in the last step, and thus the item

6(u§2)) /0x can also be computed by Eq. (5). Correspondingly,
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The item that includes ™ A/0¢" can be computed using the
following procedure:
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The higher-order item can be obtained analogously, which
ultimately gives

BmA 6’”_

atA(l)am 1-i (1)
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Therefore, we can obtain the 1 — (k + 1)-order time deriva-
tives, and each of the (k + 1)-order items can be computed
using the previous kth-order numerical values. It is also pos-
sible to reduce the overall computation time by repeatedly
using the previous result. Therefore, it is necessary to have a
proper organizational data storage strategy.

We apply the scheme to solve the one-dimensional in-
viscid Burgers’ equation,

ou  Ou
” +u e =0. @)
This equation is a special case of Eq. (6) for A(u) = —u, and
we regard B = 0u/0x.

The analytical solution of this equation has properties
whereby if the initial solution is u(x,0) = f(x), then u(x,?) =
f(x—u(x,nr) is the solution of time, .

In the computation, item 0™ A/df" can be computed using
the following procedure:

0A

2ol ie, A =1,
au 1. u
and
0A (9A(3u

A(m) IO, >1 , '. y — = — — (1)’
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Where C denotes the combination. It is easy to determine that
uﬁk)(xi) can be obtained from the previous spatial derivative,
the time derivative, or their combination.

After we obtain ugk) in each grid, we use the formula

Mk
Tk
W) = )+ Y )
k=1 "

to compute the solution in the next time step; and the solu-
tion precision is O(h? + ™), where M and g represent the
order of the time integration and the spatial difference, re-
spectively. This scheme is tested in section 3.1 and 3.2. It
firstly computes the spatial derivatives using the Li (2005)
method. Secondly, it computes recurrence of the time deriva-
tives. Thirdly, it applies the Taylor series method to compute
time integrations as the Taylor-Li scheme.

2.3. Implementation of multiple-precision Taylor-Li
scheme

The scheme in this study is distinct from that of Feng
and Li (2007) in the computation of item jg("l)(yi) where

dilﬁl i is repeated m times as opposed to directly applying
d’g":)l i . This procedure is a recurrence type of computation,

the beneﬁts of which are as follows: F1rst1y, When m and n
are large integers, then the computation of d +1 i inside the
program is time-consuming, particularly when m is higher
than 10 orders. The memory required for direct computation
ismx(m+1)X((m+1)x(n+1), which is a large amount of
memory that may decrease the CPU cache rate and ultimately
slow down the computation speed. Secondly, even if the co-
efficients dn 11, are applied as previous data inputs, it is still
not possible to reduce the memory usage. Thirdly, the item
d, +)1 is simple and fast in the actual computation. Once
the result is stored, it can be used many times. In addition,
the memory storage size is one to two orders of magnitude
smaller than that of dn":l L

The next problem related to the high-order scheme is the
round-off error. As the computation of spatial difference is at
orders higher than 6-10 in the experiments of this study, the
solution value is O(1). When only the double-precision com-
putation is used, the absolute error of the high-order scheme
oscillates between 107! and 107!, which is the minimal
relative error of double-precision float computation. In or-

der to analyze the performance of the high-order scheme,
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multiple-precision computations are necessary. In this study,
the multiple-precision (MP) library is used. In the compu-
tation, we apply a float precision of 1024 bits, which corre-
sponds to above 200 significant digits in the decimal system.
This precision can identify the absolute error at around 107200
in the numerical results. It is worth noting that the speed of
the MP version is 100 times slower than that of double preci-
sion (see Table 1). Therefore, the author plans to reduce the
wall-time in future versions by using parallel computation.
Table 1 lists the time cost of the computation for the ad-
vection equation. This benchmark starts from the 6th-order
(for the non-recurrence method), and adds 1 each time until

Table 1. Time cost (wall-time; units: s) in Expt. 1 from different
methods. DP refers to double precision and MP multiple precision.
The platform for the benchmark is an Intel E5-2640 2.6 GHz CPU
running on a Linux system.

Temporal and ~ Non-recurrence  Recurrence Recurrence
spatial order method (DP)  method (DP) method (MP)
M=6,n=6 0.01 <0.01 -

M=6,n=10 0.02 <0.01 -

M=10,n=10 0.42 <0.01 2.37

M=11,n=11 1.74 - -

M=12,n=12 7.44 - -
M=13,n=13 31.96 - -
M=14,n=14 136.80 - -
M=15n=15 583.36 0.01 3.21

M=16,n=16 2476.49 - -

M =20,n=20 - 0.03 4.39
M =30,n=30 - 0.06 7.30
M =40,n=40 - 0.11 11.78
M =50,n=50 - 0.17 17.11
M =60, n =060 - 0.24 24.46
M=70,n="70 - 0.33 33.54
M =80,n=80 - 0.43 41.86
M =90,n=90 - 0.55 51.53
M =100, n =100 - 0.69 63.41
(a) Square initial
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the 16th order. The initial order is 10 for the recurrence
method, and the interval is 10 until the 100th order. The
benchmark results indicate that, for the non-recurrence
method, when (M, n) increases by 1 order, the time cost is
increased by a factor of 4.25. For the recurrence method,
when (M, n) increases by 10 orders, the time cost is only in-
creased by a factor of 1.5. Therefore, the increase in speed
when using the recurrence method is much more remarkable
than that of the non-recurrence method.

3. Linear advection experiments using the
Taylor-Li scheme

3.1. Expt. I—Appling the square initial wave to solve [Eq.
(D]

We apply the square initial wave conditions to solve Eq.

07 P
x < D)
=0 = — <Xx< o,
u(X)=0 =19 1, 3 <Y< 3
9
i < 1’
0, 7 <x

where the spatial step-size in the x direction is & = 1/64, the
time step-size is T = 1/128, the computed region is x € [0, 1],
and the integration is 128 steps (just one period). Theoreti-
cally, the final status is the same as the initial status. In this
experiment, the order of time integration is from three to six.

Based on Takacs (1985), we define the total error E =

\/ Zf\; (up — ur)?/N, where up means the numerical solution,
ur is the analytical solution, and N is the grid numbers in the
x direction. Here, we apply the square root to enable the error
to have the same units as the original variables.

The simulated results are shown in Fig. 1b. When the time
integration order is M = 3 and the spatial difference order is

(b) Error of w
P Y IR I I T R

0.18 - -

0.15 1 -
0.12 1 s
0.09 1 | -
0.06 - s
0.03 -

0.00 ] T T T T T T T T
0 3 6 9 12 15 18 21
Order

Fig. 1. (a) Square initial. (b) Error versus spatial difference order, where the abscissa is the spatial difference
order, the ordinate is error, and curves in blue, red, green and black correspond to the third, fourth, fifth and

sixth time-integration orders, respectively.
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n = 6, the error decreases to a minimum. In addition, when
the spatial difference order, n, is above six, there is no signif-
icant decrease in the error. When the time integration order
increases to (M =4,5,6), the error continues to decrease with
an increase of n, but the error value does not decrease to such
a large extent. Furthermore, the curves of M =5 and 6 over-
lap. The results suggest that, with the square initial wave, it
is not possible to improve the result with a time integration
order above five.

3.2. Expt. 2—Applying the Gaussian initial wave
u(x)|=0 = e 4006057 4o initial conditions to solve

the advection equation [Eq. (1)]

The spatial step-size in the x direction is # = 1/200, the
time step-size is T = 1/400, the computed region is x € [0, 1],
and there are 400 steps involved in the computation.

In Fig. 2b, when M = 3 and n reaches the sixth order, the
error becomes invariant; this result is in broad agreement with
that of Feng and Li (2007). However, for the M = 4 order,
when n reaches the eighth order, the error becomes minimal;
for the curve of M =5, when n reaches the 10th order, the
error become minimal; for the curve of M = 6, and when n
reaches the 12th order, the error become minimal. These re-
sults indicate that, for these types of initial values, the total
error of the result is greatly influenced by the time integra-
tion. When the time integration order is high enough, the
order of the spatial difference exceeds far beyond six.

A comparison of the results from Expt. 1 and Expt. 2
shows that, for the initial value of the square wave, the high-
order scheme is only able to produce a result close to that
of the third-order time integration scheme. However, for the
smooth periodical initial values, it is easy to obtain a good
result. The reason for this difference is that the first type of
initial values is non-continuous, which also makes the deriva-
tive in the x direction discontinuous, and the computation re-

(a) Gauss initial
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sult is not very accurate. For the second type of initial values,
all the derivatives are continuous and the computation error
is very small, leading to a better result.

4. In-viscid Burgers’ equation experiments us-
ing the Taylor-Li scheme

4.1. Expt. 3—Applying the initial condition of u(x,0) =
—sinx to solve the in-viscid Burgers’ equation [Eq.
(7]

The nonlinear case is different from the linear

one, and ul"V = ¥k _ cm@m Aoy Bl =

_an:o Ckmugm)(?(ugk_m))/ax uses all the previous mth-order

time derivatives, uﬁm), and not only the kth-order time deriva-

tives. In the program, to maintain precision of the time
derivatives and avoid the error accumulation from spatial
derivatives, n is usually set to be larger than M, and the
actual value of n can be determined from experiments.

In the experiments, the x-axis computation region is
[-m, 7], the grid number N = 800, the time step-size is 7 =
0.001, and the lateral periodical boundary conditions are ap-
plied. The target time of experiments is ¢ = 0.8, with a total
integration of 800 steps.

The results of Expt. 3 are shown in Fig. 3. Since the to-
tal error is smaller than 10713, the experiment is conducted
using the MP version of the program. Figure 3c indicates
that, when M = 3, and n reaches the sixth order, the error is
almost unchanged (thus order six is called the maximal ef-
fective spatial difference order corresponding to M = 3). In
addition, when the time integration order is the fourth, fifth
and sixth order, the effective spatial difference order is 11,
18 and 33. The results illustrate that, for these types of initial
values, the in-viscid Burgers’ equation can use the spatial dif-
ference scheme far beyond six, as long as the time integration

(b) Error of u

o J U S S I A S

-3.0

40 4 -

{/

~ -5.0

lg(F

-6.0

-7.0

-8.0

'90:|||||
0 5 10 15 20 25 30
Order

Fig. 2. (a) Gaussian-type initial. (b) Error versus spatial difference order, where the abscissa is the spatial dif-
ference order, the ordinate is the logarithm of error (logg), and the blue, red, green and black curves denote the
third, fourth, fifth and sixth time-integration orders, respectively.
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(a) u(x)=-sin(x), (t=0) (b) u(x), (t=0.8) (c) Error of u(t=0.8)
-3 4 L
0.8 A F 0.8 A F
-6 4 L
0.4 1 - 0.4 - \
3 0.0 3 0.0 S 97 N
12 4 L
0.4 1 . 0.4 1
-0.8 1 . -0.8 1 151 I
T T T T '18 T T T T
20 0.0 2.0 20 0.0 2.0 0 10 20 30 40 50
x x Order

Fig. 3. (a) Initial u at r = 0. (b) Analytical solution of u at r = 0.8. (c) Error versus spatial difference order, where the
abscissa is the spatial difference order and the ordinate is the logarithm of error (logjg); curves in blue, red, green and
black correspond to the third, fourth, fifth and sixth time-integration order, respectively.

order is high enough.

4.2. Expt. 4—Applying the initial condition of u(x,0) =
—arctan(x) to solve the in-viscid Burgers’ equation
[Eq. (7)]

In the experiments, the x-axis computation region is
[-1,1], the grid number N = 64, and the time step-size is
7 =0.005. The lateral boundary conditions are the analyti-
cal conditions u(—1,7) and u(1,¢), resulting from the algebraic
equation u + arctan(x — ut) = 0. The target computation times
for this experiment are = 0.5, r = 0.8, and r = 1.0.

Figure 4d shows the solution at t = 0.5, when the shock
wave has not appeared. The high-order scheme is capable of
generating solutions with good precision. In this experiment,
when M = 3, the spatial difference order reaches the sixth to
eighth orders, and the error trend increases. When the time
integration order is 4, 5 and 6, the minimal total error posi-
tion moves to the right at the horizontal axis and the value of
the total error becomes smaller. This result indicates that an
increase in the spatial difference order can reduce the total er-
ror, and the corresponding effective spatial difference orders
are 10, 16 and 16. These effective spatial difference orders
are all above six, and the results are distinct from those of
Feng and Li (2007).

The shock wave does not occur when the integration time
reaches ¢ = 0.8 (Fig. 4e). However, it is closer to the time
of shock-wave occurrence. At this moment, the high-order
scheme obtains a certain precision solution, but the precision
is lower than that of time ¢ = 0.5. The total error is at a mag-
nitude of 107>, which is bigger than the error 10710 - 1073 of
t=0.5. Although an increase in the time integration order can
cause the minimal error point to move right at the horizontal
axis (spatial difference order increase), there is no obvious
decrease in the minimal error.

If the integration time approaches ¢ = 1.0 (Fig. 4f), a sin-
gularity point appears and the shock wave occurs. In this
situation, any of the numerical methods used to compute the
derivatives is not very accurate, and the error accumulates
from the singularity. Figure 4 indicates that the high-order

scheme is able to generate similar precision as the third-order
scheme, consistent with the result of Feng and Li (2007).

In summary, for the in-viscid Burgers’ equation, the abil-
ity of the Taylor—Li scheme to generate good results depends
strongly on the form of the initial values, mainly because of
the target computation time. When the derivative is contin-
uous (and does not appear as an infinite value) at the target
computation time, the high-order scheme is effective. In con-
trast, if the derivative is discontinuous, or is a derivative to
infinity, shock waves occur and the higher-order scheme is
unable to obtain a high-precision numerical solution.

Furthermore, once the numerical computation is applied
to periodical boundary conditions, the precision of the solu-
tion is generally higher than the non-periodical one. A pos-
sible reason for this is that, when the periodical boundary
conditions are applied, the objective computed point can be
placed at, or next to, the center of the selected grid points.
The derivative error is therefore smaller than that when the
objective point is not located near the center. This issue in-
dicates that when the formula of Li (2005) is applied to the
edge points, it is not as accurate as when applied to the center
points.

5. Ultrahigh-order experiment using the
Taylor-Li scheme

5.1. Expt. 5—ultrahigh-order result of Expt. 2

This experiment is the same as Expt. 2, but the time in-
tegration order is set to M = [10,40], interval of 10, and the
spatial difference order (n) is from M to 100 or above.

Figure 5 shows that the error decreases at a time integra-
tion order of 10. When the spatial difference order increases
(order 11-23) up until the 23rd order, the error remains con-
stant. This implies that, for M = 10, the maximal effective
spatial differential order is 23. In the case of M = 20, the
range of the spatial difference order causing the error to de-
crease is 21-75, and a near-constant error is then maintained.
When the time integration order increases to M = 30 and
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Fig. 4. (a) Analytical solution for u at r = 0.5. (b) Analytical solution for u at = 0.8. (c) Analytical solution for
u att = 1.0. (d) Error versus spatial difference order at r = 0.5, where the abscissa is the spatial difference order
and the ordinate is the logarithm of error (logp). The blue, red, green and black curves signify the third, fourth,
fifth and sixth time-integration order, respectively. (e) As in (d) but for # = 0.8. (f) As in (d) but for # = 1.0.

l9(E)

-4.0
-5.0
-6.0
-7.0
-8.0
-9.0

-10.0

-11.0 A

l9(E)

Ig(E)

0.0
-1.0
-2.0
-3.0
-4.0
-5.0

6.0 -

0.0
-0.5
-1.0
-1.5
-2.0
-2.5
-3.0

(d) Error of u (t=0.5)

0 3 6 9 121518 21
Order
(e) Error of u (t=0.8)
0 3 6 9 121518 21
Order
(f) Error of u (t=1.0)
O 3 6 9 12 15
Order

VOLUME 34



DECEMBER 2017 WANG 1469
Error of U Error of u

0 ] = = A L 8 1o | | [

; : SEIRE -

'10 t DDD ? 1 - r

1 [ 167 - a

221 a I B a

> ] i 2 24 - -

-30 5 ] " ,

] i 28 1 N

-40 - -32 A -

50 Ty -360”3‘0“6‘0”9‘0”12‘0 150
0 30 60 90 120 150 180

Order

Fig. 5. Error versus spatial difference order for solving the ad-
vection equation. The abscissa is the spatial difference order
and the ordinate is the logarithm of error (logj(). The blue, red,
green and black curves correspond to the 10th, 20th, 30th and
40th time-integration orders, respectively.

M = 40, the minimal error appears until the spatial difference
order (n) approaches 130. When the grid number at the x-axis
is 200, the 190th-order spatial difference is close to the upper
bound of the grid points. The curves of the 30th and 40th or-
ders overlap, which means that the 30th time-integration or-
der is sufficient for this problem, and the > 40th-order time-
integration scheme can be omitted (experiments of M = 40
are only computed to an order of n = 150). Finally in this ex-
periment, the (M = 30, n = 151) Taylor-Li scheme is able to
control the computation error at a bound of about 10746, with
a relatively high-precision result.

5.2. Expt. 6—ultrahigh-order result of Expt. 3

This experiment is the same as Expt. 3, but the time in-
tegration order is set to M = [5,20] with an interval of five,
and the spatial difference order (n) ranges from M to 100 or
above. The grid number in this experiment is N = 1600, i.e.,
Ax is half of that in Expt. 3.

In Fig. 6, when the time integration order is M = 5, the er-
ror decreases and the spatial difference order increases to 13.
The error remains unchanged, suggesting that the maximal
effective spatial difference order is 13. In the case M = 10, the
range of spatial difference order causing the error to decrease
is 11 to 39, where the error then becomes constant. When
the time integration order increases to M = 15 and M =20, a
minimal error (of about 1073%) appears until the spatial dif-
ference order (n) approaches 150. The curves of the 15th and
20th orders overlap, implying that the 15th time-integration
order is enough (current parameters), and the > 20th-order
time integration scheme experiments could be omitted. If a
more precise result is required, the grid step-size (Ax) will de-
crease (for example, when Ax =1/3200, M =20, and n = 150,
the error can be reduced to 1079).

Order

Fig. 6. Error versus spatial difference order in the computation
of the in-viscid Burgers’ equation. The abscissa is the spa-
tial difference order and the ordinate is the logarithm of error
(log1p). The blue, red, green and black curves correspond to the
Sth, 10th, 15th and 20th time-integration orders, respectively.

6. Conclusions

The spatial differential formula of Li (2005) and the Tay-
lor series method are used to implement a new high-order
scheme to deal with a type of time-dependent PDE. The new
scheme is applied to solve the one-dimensional advection
equation. By comparing numerical solutions with the theoret-
ical solution, variations in the computation error and scheme
orders are investigated. The results suggest that, when the
time integration order is three for the smooth and periodi-
cal initial conditions [as used in Feng and Li (2007)], the
error will be saturated after the spatial differential order in-
creases to six. However, for a time integration order above
three, such as four, five and six, at a time after the spatial
differential order increases to above six, the error continues
to decrease, and the corresponding effective maximal spatial
differential order is beyond six. These experiments interpret
the phenomenon, as reported in Feng and Li (2007), that a
spatial difference order above six is unable to improve the
computation result. This is because they didn’t apply a time-
integration scheme which order high enough. In addition, for
the case with square initial wave conditions, the results of our
work are the same as those of previous studies.

Furthermore, the ultrahigh-order Taylor-Li scheme pro-
duces accurate results for the advection example, and bounds
the error within 1074, This is a superior result compared to
other types of schemes and the standard spectral method (the
general spectral method is limited by a round-off error, and
thus it only controls the error at a magnitude of 10719).

A smooth and periodical test case for the in-viscid Burg-
ers’ equation results demonstrates that the Taylor-Li scheme
is capable of producing good results. Compared to a previous
study (Feng and Li, 2007), which applied the third-order time
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integration and sixth-order spatial difference scheme, the new
Taylor-Li scheme easily generates the Sth-order, 10th-order,
and even 20th-order time integration schemes, and the cor-
responding spatial difference order can be extended from the
6th to the 30th, 50th, 100th, and even the 500th order. The
computation in Expt. 3 shows that a 15th-order time integra-
tion and 150th-order spatial difference Taylor—Li scheme re-
duces the error to a magnitude of about 1073, Once the grid
size is further reduced, the scheme can reduce the error to an
even smaller value (107°). Therefore, all the experiments
identify the effectiveness of the new scheme.

Although we can increase the time integration precision
by reducing the time step-size, this method is not as effective
as that which increases the time integration order, as previ-
ously demonstrated in Wang et al. (2012). Compared to the
previous scheme, which only increased the spatial difference
order, the first improvement in this scheme is related to an
increase in the scheme order in two directions (spatially and
temporally), where the author ensures the precision in both
directions within the computation. The second improvement
is that the author proposes a recurrent method to estimate the
time derivatives, which improves the speed of the Taylor-Li
scheme, and makes it hundreds of times faster than that of the
direct computation method. The third improvement involves
controlling the round-off error in the procedure’s computa-
tion, where the MP library is introduced and the ultrahigh-
order program is implemented to solve the advection and in-
viscid Burgers’ equation.

In addition to the above three improvements, the program
of the Taylor-Li scheme is flexible in specifying the order
and step-size of the time integration and spatial difference;
it is therefore convenient for probing the complex relation-
ships between orders of the scheme, the temporal and spatial
step-size, and computational errors.
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