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ABSTRACT

The satellite-derived wind from cloud and moisture features of geostationary satellites is an important data source for
numerical weather prediction (NWP) models. These datasetsand global positioning system radio occultation (GPSRO)
satellite radiances are assimilated in the four-dimensional variational atmospheric data assimilation system of theUKMO
Unified Model in India. This study focuses on the importance of these data in the NWP system and their impact on short-term
24-h forecasts. The quality of the wind observations is compared to the short-range forecast from the model background.The
observation increments (observation minus background) are computed as the satellite-derived wind minus the model forecast
with a 6-h lead time. The results show the model background has a large easterly wind component compared to satellite
observations. The importance of each observation in the analysis is studied using an adjoint-based forecast sensitivity to
observation method. The results show that at least around 50% of all types of satellite observations are beneficial. In terms of
individual contribution, METEOSAT-7 shows a higher percentage of impact (nearly 50%), as compared to GEOS, MTSAT-2
and METEOSAT-10, all of which have a less than 25% impact. In addition, the impact of GPSRO, infrared atmospheric
sounding interferometer (IASI) and atmospheric infrared sounder (AIRS) data is calculated. The GPSRO observations have
beneficial impacts up to 50 km. Over the Southern Hemisphere,the high spectral radiances from IASI and AIRS show a
greater impact than over the Northern Hemisphere. The results in this study can be used for further improvements in the use
of new and existing satellite observations.
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1. Introduction

The accuracy of numerical weather prediction (NWP)
largely depends on the initial condition (analysis). The four-
dimensional variational (4D-Var) data assimilation system
used in the UKMO Unified Model (UM), which prepares the
analysis for the GCM, uses observations from a variety of
surface-based and space-based platforms. The 4D-Var assim-
ilation system combines the information from observations
and background fields (model state) and uses a linearized
forecast model to ensure that the observations are dynami-
cally consistent in the analysis field (Talagrand and Courtier,
1987; Courtier et al., 1994; Rawlins et al., 2007). The ef-
fective monitoring of such a system with a large number of
observations per 6-h assimilation cycle is an important task,
requiring great efficiency. During the past few years, ef-
forts have been made to assimilate more satellite observations
(Dee and Uppala, 2009; Polkinghorne and Vukicevic, 2011),
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but it is important to know the usefulness of these observa-
tions in the analysis and forecast. The assessment of the con-
tribution of individual observations to the analysis field is the
most challenging task in data assimilation and NWP systems
(Cardinali, 2009a).

Recently, adjoint-based forecast sensitivity to observation
(FSO) methods have been used to measure the observation
contribution to the forecast (Zhu and Gelaro, 2008; Cardi-
nali, 2009a; Joo et al., 2013). The adjoint-based FSO method
has the advantage of measuring the impact of all the observa-
tions together and present in the assimilation system, and this
methodology can infer the impact of observations at different
pressure levels in detail. In general, this methodology canbe
used to estimate the sensitivity with respect to any important
parameter in the assimilation system (Cardinali, 2009b). The
use of adjoint-based FSO has been increasing over the last
few years. Many studies have discussed the importance of
adjoint-based FSO regarding the impact of individual obser-
vations used in global NWP systems (Joo et al., 2013; Lupu
et al., 2015). In one study, Gelaro et al. (2010) used adjoint-
based FSO to compare the observation impact on 24-h fore-
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casts in three different forecast systems: the Goddard Earth
Observing System-5 (GEOS-5) of the NASA Global Mod-
eling and Assimilation Office, the Navy Operational Global
Atmospheric Prediction System (NOGAPS) of the Naval Re-
search Laboratory, and the Global Deterministic Prediction
System (GDPS) of Environment Canada. Bonavita (2014)
studied the forecasting impact of global positioning system
radio occultation (GPSRO) observations in a data denial as-
similation experiment with respect to the full observationsys-
tem. They found a statistically significant positive impact
on the tropospheric synoptic skill scores. Cardinali (2009b)
showed that GPSRO observations have a stronger impact in
the stratosphere than in the troposphere.

Le Marshall et al. (2005) studied the impact of atmo-
spheric infrared sounder (AIRS) observations on the NWP
system and showed that the AIRS radiance observations sig-
nificantly improved global forecasting skill. The impacts
of various subsets of space-based observations were stud-
ied by Joo et al. (2013), particularly those from instru-
ments on board the European Organisation for the Exploita-
tion of Meteorological Satellites Meteorological Operational-
A (MetOp-A) platform. They found that satellite data ac-
counted for 64% of the short-range global forecasting error
reduction, with the remaining 36% coming from the assimila-
tion of surface-based observations. In addition, they showed
that the GPSRO technique had the largest mean impact per
profile of observations among satellite types.

In this study, our focus is mainly on the satellite-derived
wind (SATWIND) from four different types of geostationary
satellites: GOES [National Oceanic and Atmospheric Ad-
ministration/National Environmental Satellite, Data and In-
formation System (NOAA/NESDIS) in the United States],
METEOSAT-7, 10 [European Organisation for Meteorolog-
ical Satellites (EUMETSAT)], and MTSAT-2 [Multifunc-
tion Transport Satellite, Japanese Meteorological Agency
(JMA)]. In the first part of our study, we calculate the statis-
tics of the observation increments (observation minus back-
ground; hereafter, O-B) from SATWIND observations and
the short-range forecast from the UM background. The aim
of this study is to analyze the SATWIND observation incre-
ment (O-B) values at the different pressure levels (lower level,
> 700 hPa; middle level, 700–400 hPa; and upper level,< 400
hPa). The O-B values can tell where the large values come
from and how they vary from one time to another. They help
us to understand the observation error characteristics, toim-
prove error treatment in the operational NWP system. To fur-
ther investigate the impacts of these SATWIND observations
in the short-range 24-h forecast, we use adjoint-based FSO.
The adjoint-based FSO can tell what type of observations
or subsets of observations are actually improving the fore-
cast skill. The impact of the SATWIND observations within
the National Centre for Medium Range Weather Forecasting
(NCMRWF) NWP system for 20 days (1–20 January 2015),
with four assimilation cycles per day (0000, 0600, 1200 and
1800 UTC), is diagnosed using the adjoint-based FSO tech-
nique with 24-h short-range forecasts. This study also dis-
cusses the use of adjoint-based FSO to identify the impact of

various satellite wind observations on the 24-h forecast er-
ror reduction in different regions. In addition, we also illus-
trate the impact of radiances from hyperspectral sensors like
the infrared atmospheric sounding interferometer (IASI) and
AIRS, and the impact of GPSRO in 24-h short-range fore-
casts.

In section 2 we describe the model configuration, the
data, and the FSO method used in this study; section 3
presents the results, and section 4 the summary and discus-
sion.

2. Method

2.1. Model description

We use the NCMRWF global UM (NCUM), which is
based on the PS28 version of the UKMO UM (Rajagopal et
al., 2012). It includes an atmospheric forecast model (UM),
an observation processing system (OPS), and a 4D-Var data
assimilation system (VAR). The UM forecast model has a
horizontal resolution of N512 (∼25 km in the midlatitudes),
with 70 vertical levels up to 80 km height. In the OPS, data
quality control is performed based on an internal consistency
check against the model background and against neighbor-
ing observations. The quality control in OPS is based on the
estimation of probability gross error (PGE; Lorenc and Ham-
mon, 1988; Ingleby and Lorenc, 1993) of each observation.
The threshold value of PGE is set to 0.5. Only those obser-
vations having a PGE value of less than 0.5 are used in the
4D-Var assimilation system. The pre-processing of satellite
data in the NCUM system (like GOES, IASI and Aqua-AIRS
radiances), including retrievals and bias correction applied,
are discussed by Prasad (2014). The VAR system is based
on an incremental 4D-Var assimilation technique (Rawlins et
al., 2007), which prepares the atmospheric initial condition
for the UM model. The VAR system is capable of assimi-
lating various conventional as well as satellite observations.
The analysis increments are computed from N216 state vari-
ables (resolution of∼60 km). The 4D-Var assimilation is con-
ducted on a 6-h data assimilation cycle. Each cycle includes
observations during a 6-h period. The background error co-
variance matrix, a climatological file, is used in this study,
including four control variables. The four control variables
are stream function, velocity potential, unbalance pressure,
and humidity. The latest version of the NCMRWF varia-
tional data assimilation system, along with details of its anal-
ysis product, including a surface analysis system, is discussed
by George et al. (2016). The UM 4D-Var system requires a
linear perturbation forecast (PF) model rather than a tangent
linear model (Lorenc, 2003). The PF model is designed to ap-
proximate the perturbation to the nonlinear forecast due toa
finite change to the initial conditions with similar amplitude
to the analysis increment (Rawlins et al., 2007). The study
by Stiller and Ballard (2009) discussed how the model’s pa-
rameterizations are constructed. The observation increment
statistics (O-B) are computed against the model background,
produced at N512 resolution, by the UM global model short-
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range forecast (forecast with 6-h lead time). The background
fields are valid at the same time and location as the observa-
tions. The observation increment statistics computationsfor
this study are carried out for all four data assimilation cycles
per day for the period 1–20 January 2015.

2.2. Satellite data

The atmospheric motion vector (AMV) wind fields from
satellites are derived from the tracking of cloud and water va-
por features (Hayashi and Shimoji, 2012). Wind observations
are very important over the tropics, where they cannot be
inferred from temperature because of the weak geostrophic
wind relationship. The AMV from geostationary satellites
provides tropospheric wind information with near global cov-
erage at a high temporal frequency. There have been signif-
icant updates to SATWIND observations, which come from
the geostationary satellites, such as METEOSAT, GOES, and
MTSAT, and the polar orbiting satellites containing mod-
erate resolution imaging spectroradiometers (MODIS), like
the NASA spacecraft TERRA and AQUA. Many changes in
the use of SATWIND in the NWP system have been imple-
mented in recent years. These include temporal and spatial
thinning schemes, observation error statistics, and bias cor-
rection methods (Cotton, 2014). Before the OPS in the UM
system, all SATWIND data are packed in an OBSTORE file
format with different batch numbers and individual element
lists. A single SATWIND OBSTORE file contains observa-

tions from all the geostationary as well as polar satellites. De-
tails of the SATWIND data pre-processing with UM and the
list of observations used can be found in Prasad and Indira
Rani (2014). A spatial distribution of the four different types
of geostationary SATWIND observations before quality con-
trol and thinning, along with the observations actually assim-
ilated in the NWP system, for a typical day (1 January 2015
for the 0000 UTC assimilation cycle), is shown in Fig. 1. It
is noted that less than 10% of the wind data are actually used
in the assimilation system after quality control and thinning
to prepare the analysis field for the single assimilation cycle.
Among all the SATWIND observations, only about 1.25% of
GOES and 2.5% of MTSAT wind data are assimilated in the
UM system (Prasad and Indira Rani, 2014). This is because
of the different quality control and thinning criteria of the UM
system depending on the types of SATWIND observations. It
results in a large variation in number of assimilated observa-
tions from one assimilation cycle to another.

The impact of GPSRO observations from the Global Nav-
igation Satellite System Receiver for Atmospheric Sound-
ing (GRAS), the Constellation Observing System for Mete-
orology, Ionosphere, and Climate (COSMIC), and the Grav-
ity Recovery and Climate Experiment (GRACE-A/B) satel-
lite data are studied here. These datasets are regularly as-
similated in the 4D-Var UM system. The GPSRO observa-
tions have high accuracy with a relatively high vertical res-
olution of the moisture profile (Kursinski et al., 1997). In

Fig. 1. Spatial distribution of four different types of SATWIND observations before quality controland thin-
ning (gray dots) and the observations actually assimilated(black dots) in the NWP system for a typical day, 1
January 2015 at the 0000 UTC assimilation cycle.
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a study by Eyre (2008), it was shown that these observa-
tions have low systematic errors and can deliver similar in-
formation to that available from satellite radiances (Collard
and Healy, 2003). The GPSRO observations were found to
improve the NWP forecast skill and to decrease temperature
biases (model-induced) in the analysis (Bonavita, 2014). In
addition, the impact of hyperspectral radiances from IASI on
board MetOp-A (Prunet et al., 1998) and AIRS on board the
NASA-AQUA satellite (Aumann et al., 2003) was also stud-
ied.

The hyperspectral radiances from IASI and AIRS are pro-
cessed through the OPS and assimilated in the VAR System.
AIRS is a grating spectrometer with 2378 channels covering
the thermal infrared spectrum between 3 and 15µm. A to-
tal of 324 channels are selected for assimilation (out of 2378
channels) according to the peak weighting function and me-
teorological importance (Collard, 2004). Also, accordingto
the surface type and day–night conditions, some of the chan-
nels are not assimilated in the VAR. An OSSE (observing
system simulation experiment) was conducted to identify the
impact of the AIRS radiance in the NCUM forecast system
(Srinivas et al., 2016). The impact of AIRS is positive in the
hyperspectral radiances, like IASI, CrIS (Cross-track Infrared
Sounder), and in infrared and microwave sensors.

In addition, IASI provides information on the vertical
structure of the atmospheric temperature and humidity with
an accuracy of 1 K and a vertical resolution of 1 km. It mea-
sures the radiance emitted from Earth in 8641 channels, cov-
ering the spectral interval 645–2760 cm−1. The high volume
of data resulting from IASI presents many challenges, partic-
ularly in the area of assimilation (Collard, 2007). A total of
314 channels are selected (out of these 8641), depending on
the relevance of information in each channel to be assimilated
in the 4D-Var system. The assimilation of hyperspectral radi-
ances like AIRS and IASI improves the analysis field, with a
positive impact in the forecast (Sharma et al., 2016; Mallick
et al., 2016).

Many studies have discussed the satellite retrievals meth-
ods of temperature and water vapor (Nerry et al., 1988; Sal-
isbury and D’Aria, 1992). These satellite-retrieved atmo-
spheric variables depend on surface parameter estimation.
The surface contribution to the simulated radiances is lim-
ited by the uncertainties regarding skin temperature and land
emissivity. The hyperspectral radiances from infrared instru-
ments are exploited more over ocean than over land (Vin-
censini et al., 2012). In addition, the surface temperature
varies much more over land than over sea and the land surface
emissivity varies with wavelength, surface type, roughness,
soil moisture and viewing angle (Snyder et al., 1998; See-
mann et al., 2008). It should be noted that, over the ocean,
the emissivity is provided by the Infrared Surface Emissiv-
ity Model (ISEM-6) (Sherlock, 1999). These parameter-
ized emissivity values are accurate to 0.0002 for the ISEM-
6 model (Saunders, 2001). Further, the UM OPS computes
the brightness temperature from the first guess field using
RTTOV-9 (Radiative Transfer for TOVS) with ISEM-6 emis-
sivity (Saunders et al., 2010).

2.3. The FSO method

This study uses an adjoint-based FSO method in the
NCUM system, which is based on the UKMO FSO system
(Marriott et al., 2012; Lorenc and Marriott, 2014). Full de-
tails of the FSO system are documented in Lorenc and Mar-
riott (2014). The mathematical expression of FSO is given
by

ŷyyo =

(

∂eee
∂yyyo

)T

,

and the impact due to observations by

EEEo = (yyyo)T
(

∂eee
∂yyyo

)T

,

whereeee is a measure of the error in the forecast andyyyo are
the observations. The hat above theŷyyo indicates the deriva-
tive of the forecast error with respect to that variable. The
mean impact per observation is defined as

∑n
i=1 EEEo,i/n, where

n is the number of observations and
∑n

i=1 EEEo,i is the total im-
pact. The forecasting error originates from the initial condi-
tion error and the model error. The adjoint sensitivity of the
forecasting error to the initial conditions can be obtainedby
a single backward integration of the adjoint model, assum-
ing that a forecast aspect of interest is an input to the adjoint
model and there is no contribution of model error to the fore-
cast error. Therefore, it is considered that the forecasting er-
ror is entirely caused by the initial condition error. One ofthe
drawbacks with the FSO method is the tangent linear assump-
tion, which is valid up to 3 days (Cardinali and Prates, 2011).
Isaksen et al. (2005) showed that in adjoint-based FSO mod-
els the analysis uncertainties obtained throughout the adjoint
integration can be incorrect if the propagating back signalis
weak. The accuracy of the linear forecast model, including
the error contributed from linear approximation against the
full nonlinear model, was discussed by Lorenc and Marriott
(2014). The study showed that the linear PF model is capable
of producing reasonable forecasts of prognostic model fields
up to 27 h. The linearizing about the average trajectory im-
proves the accuracy of the PF model increments for different
variables with relative RMSEs lower than 1.0, as compared
to the nonlinear model increments. Also, the PF model with
moist physics processes has the effect of increasing the mag-
nitude of analysis impact. They concluded that the linear PF
model has adequate overall skill to produce useful observa-
tion impacts. The linearity assumption in the FSO method
works better with a smaller time step in the backward inte-
gration of the linear model (Joo et al., 2012). Our study is
performed by the hourly averaged linearization trajectoryof
the PF model, which is a limitation discussed by Lorenc and
Marriott (2014). It is important to investigate the increased
nonlinearity of both the model forecast and the observations,
but this is left for future study.

The observation impacts give an estimate of the change
in the 24-h forecasting error due to the assimilation of the
observations. The term, observation impact, will refer to the
partial sums of the observation impact over different obser-
vation types (subset). We calculate the observation impactto
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Table 1. Satellite observation types used in this study and the affected NWP variables.

Observation type Description NWP variables

METEOSAT-7 AMVs derived from METEOSAT-7 cloud imagery Wind

METEOSAT-10 AMVs derived from METEOSAT-10 cloud imagery Wind

MTSAT-2 AMVs derived from MTSAT-2 cloud imagery Wind

GOES AMVs derived from GOES-13 and 15 cloud imagery Wind

GPSRO GPSRO from the GRACE and COSMIC satellites Temperature, humidity

IASI Satellite radiances from the IASI instrument on board MetOp-A. Temperature, humidity

AIRS Satellite radiances from the AIRS instrument on board Aqua. Temperature, humidity

assess the relative importance of each observation type within
the context of this experiment. Although our main focus is
on the mean impact of SATWIND observations and their im-
pact at different levels, we also calculate the mean impact per
observation for three other satellite subtypes separately(GP-
SRO, IASI, and AIRS), as shown in Table 1. It should be
noted that the observation impact depends on the data accu-
mulation period, and it should not be compared directly with
that of experiments looking at a different period (Joo et al.,
2013). Therefore, it is more appropriate to compare the mean
impact per observation. It should be noted that we calculate
the mean impact per observation and for the different types of
observations separately. These results are described in sec-
tion 3. Finally, a comparison is made between the UKMO
and NCMRWF GPSRO observation impacts with the same
model configuration but for the period 1800 UTC 22 August
to 1200 UTC 29 September 2010. In our experiment, ob-
servation impacts are produced for the period 0000 UTC 1
January to 1800 UTC 20 January 2015.

3. Results

3.1. O-B statistics

The SATWIND observation increment (O-B) is used in
quality control, as well as the forecast implications. Dur-
ing the 4D-Var assimilation process, SATWIND observation
increments are used to correct the model fields, which pro-
duce a more accurate and dynamically consistent analysis for
a new forecast cycle. The daily mean observation increment
(O-B) of the eastward wind component (top panel) and north-
ward wind component (bottom panel) for the four satellites
during 1–20 January 2015 are shown in Fig. 2. The num-
ber in parentheses represents the 20-day mean O-B. It can be
seen that the mean value is negative in the case of the east-
ward wind. In addition, METEOSAT-7 shows a higher nega-
tive value (−0.65 m s−1) compared to GOES (−0.33 m s−1),
MTSAT (−0.21 m s−1), and METEOSAT-10 (−0.24 m s−1).
In the case of the northward wind, only GOES shows a posi-
tive mean value (0.03 m s−1), with the others having negative

Fig. 2. Daily mean observation increment (O-B) of eastward wind (top panel) and northward wind (bottom
panel) for four different satellites over the globe during 1–20 January 2015. The numbers in parentheses in the
figure legend represent the mean O-B for the whole period.
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Fig. 3. Kernel density distribution of O-B for (U,V) component winds (units: m s−1) for the four types of SATWIND and at
three different levels.

values. The daily variation of the mean negative O-B lies
between−1 and 1 m s−1, with the errors almost randomly
distributed. This indicates that the model background from
UM has larger easterly components than those observed from
SATWIND.

The kernel density distribution (Wilks, 2006) of the ob-
servation increment is computed at three different levels: a
lower level (LL, > 700 hPa); a middle level (ML, 700–400
hPa); and a higher level (HL,< 400 hPa). It is noted that the
error distribution follows a Gaussian curve with mean value
limits at zero (Fig. 3). The negative O-B spread at the HL is
more pronounced, and is reduced towards the LL. In addition,
the O-B distribution for both eastward and northward winds
follows a similar pattern for MTSAT-2, METEOSAT-7 and
METEOSAT-10, and the error range is higher for all levels
(−30 to 30 m s−1) compared to GOES (−15 to 15 m s−1). Fig-
ure 4 shows that the mean eastward wind observation incre-
ment increases from LL to HL for MTSAT-2, METEOSAT-7
and METEOSAT-10; whereas, for GOES, the mean observa-
tion increment is higher at the ML (−0.7 m s−1). This may
be because, in the case of GOES, the total number of ob-
servations assimilated is less than for the other satellites due
to quality control and thinning during the observation pre-
processing. In the case of the northward wind components,
the error is positive at the ML. For the HL O-B, there are very
similar negative values in all cases.

3.2. Satellite observation impact

In this section, we present the satellite observation im-
pact results calculated from the UM forecast system. The
percentages of beneficial observations for the eastward wind
and the northward wind from GOES, MTSAT, METEOSAT-
7 and METEOSAT-10 are depicted in Fig. 5. The results
show that only just over 50% of the observations have a

Fig. 4. The 20-day mean O-B eastward wind (U, top panel) and
northward wind (V , bottom panel) at the high level (< 400 hPa),
middle level (700–400 hPa) and lower level (> 700 hPa) for
GOES, MTSAT-2, METEOSAT-7, and METEOSAT-10.

beneficial impact, which has been confirmed with many sys-
tems (Gelaro et al., 2010; Lorenc and Marriott, 2014). In
addition, large variability of GOES’ beneficial observations
is observed compared to the other satellites. The geograph-
ical distributions of the 24-h SATWIND observation impact
at the HL (top panels), ML (middle panels), and LL (bottom
panels) for the satellite-derived eastward wind (U-wind, left
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Fig. 5. Percentages of beneficial observations for eastward wind (U, top panel) and northward
wind (V , bottom panel) from GOES, MTSAT, METEOSAT-7 and METEOSAT-10.

Fig. 6. Geographical distribution of 24-h SATWIND observation impact per day (units: 10−6 J kg−1) at the (a, b) upper
level, (b, c) middle level and (e, f) lower level, for satellite-derived eastward wind (U, left panels) and northward wind
(V , right panels). The average impact value is calculated over20 days and for all four assimilation cycles (0000, 0600,
1200 and 1800 UTC).
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panels) and northward wind (V-wind, right panels) are shown
in Fig. 6. The largestU-wind andV-wind impacts are seen
in the HL winds. In the ML and over the tropical region,
the number of observations assimilated is very small, com-
pared to the subtopical region. So, the impact is less over the
tropical region compared to subtropical regions at that level.
The percentage of the impact per observation contributed by
each satellite’s wind for theU-wind andV-wind components
corresponding to the levels is shown in Fig. 7. In terms of
the individual contribution at all levels for bothU-wind and
V-wind, METEOSAT-7 shows a higher percentage of impact
(∼50%) compared to GEOS, MTSAT-2 and METEOSAT-10.
The others are all below 25% of the total SATWIND impact.
At the ML, GOES shows a 60%U-wind impact compared to
MTSAT-2 and METEOSAT-10. Note that the impact is calcu-
lated by taking the sum of the impact at level wise separately.
The total impact value is divided by the number of observa-
tions within that level, as discussed in the previous section.
The mean impact of METEOSAT-7 is the highest for all lev-
els, but the results in this case may slightly skewed. It should
be noted that no observations are assimilated at the ML.

In terms of the percentage of beneficial observation im-
pacts by observation type (Fig. 8a) for the full trial period,
just over 50% of all satellite observations show beneficial
observations. In addition, the SATWIND observations have
a higher percentage of beneficial observations, at just over

Fig. 7. Percentage of the total impact contributed by each satel-
lite’s eastward wind (U) and the northward wind (V) compo-
nents corresponding to the levels are shown. The 20-day total
impact ofU andV calculated separately for all the satellite wind
for with all assimilation cycles (00, 06, 12, and 18 UTC).

Fig. 8. The (a) percentage of beneficial observations of 24-h ob-
servation impact, and (b) percentage of impact per observation
with different observation types for the full 20-day trial period.

53%, as compared to the radiances from AIRS (51.5%) and
IASI (52.1%). The GPSRO shows fewer beneficial observa-
tions (50.6%) compared to the other sets. It should be noted
that during the last few years many authors have expressed
different opinions in terms of this finding of “just over 50%
have beneficial observations” (Gelaro et al., 2010). A study
by Johnson et al. (2006) showed that even a perfect obser-
vation in a perfect data assimilation system can degrade the
forecast. Figure 8b shows the percentage of mean impact per
observation by different observation types for the full trial pe-
riod. Note that, to calculate the mean AMV impact per obser-
vation in this case, theU-wind andV-wind components are
not counted separately. The (U,V) pair is considered to be a
single observation. METOSAT-7 shows the highest mean im-
pact at above 20%, as compared to METOSAT-10, MTSAT-2
and GOES. In addition, IASI shows a higher percentage of
mean impact compared to AIRS and GPSRO.

Figure 9a shows a comparison of the impact of the GP-
SRO observations by height. The results are similar to those
in Lorenc and Marriott (2014), because the configuration and
energy norm calculation used in this study follows Lorenc
and Marriott (2014), but for a different time period. The ben-
eficial impacts are seen from the GPSRO observations up to
50 km, above which they are not assimilated. Lorenc and
Marriott (2014) discussed reasons for the quick drop-off of
the impacts at a height of around 15 km and small detrimental
impacts at 20 km and above. Although our results are sim-
ilar to those in Lorenc and Marriott (2014), the drop-off of
the impact is more pronounced from 20 km and above in our
case. It should also be noted that in our experiment no detri-
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mental (positive value) impacts are observed above 20 km.
Figure 9b shows the latitude-averaged plots of the GPSRO
total impacts percentage to latitude above and below 20 km.
In the tropics (30◦N–30◦S), the percentage of GPSRO im-
pacts is higher in all cases. In terms of the percentage of total
GPSRO impacts above 20 km, 51% are from the Southern
Hemisphere and 49% from the Northern Hemisphere. How-
ever, at the lower levels (below 20 km), 55% of total impacts
are from the Southern Hemisphere and 45% from the North-
ern Hemisphere.

The geographical distribution of the 24-h observation
impact of the radiances from the hyperspectral sensors like
IASI (top panel) and AIRS (bottom panel) are shown in Fig.
10. The IASI observation impact has higher values from
30◦–60◦S and 30◦–60◦N. In terms of the percentage of the
total IASI observation impact, 45% are from 30◦–60◦S and
32.7% from 30◦N–30◦S. It is interesting to note that over
the Southern Hemisphere the percentage of impact is high
(73%), compared to the Northern Hemisphere. In the case
of AIRS, although the geographical distribution of the im-
pact is mixed, the higher percentage of impacts is from the
Southern Hemisphere, especially from 30◦–60◦S, where the
percentage of AIRS total impact is 36%; and from 30◦S to
the equator, where the value is 33%. Only 5% of the im-
pacts are from above 30◦N (Fig. 11). Also, over the Southern
Hemisphere, the percentage of AIRS impact is high, which
is very similar to the IASI impact. This may be due to the

Fig. 9. (a) GPSRO observation impact by height. (b) Percentage
GPSRO observation impact in six different regions.

fact that the land area over the Southern Hemisphere is
only 32%, whereas over the Northern Hemisphere it is 68%.
Over the land area, there are good amounts of conventional
observations (e.g., surface synoptic observations, automatic
weather station, wind profiler and dropsonde) available and
they are used in the assimilation system. In other words, the
data-sparse area shows a higher impact compared to the data-
dense area. It is also interesting to note that the impact value
is higher over the oceanic regions than over land. This may
be due to the fact that satellite-derived radiance depends on
surface parameter estimation. In addition, only radiancesthat
are not affected by the surface are assimilated, as discussed
in the last paragraph of section 2.2 satellite data.

4. Summary and discussion

This study describes the importance of the satellite winds
in the UM NWP system and their impact on short-term 24-h
forecasts. The quality of the observations is compared to the
short-range forecast from the model background. Less than
10% of the wind data are actually used in the 4D-Var assimi-
lation system after quality control and thinning to preparethe
analysis field for each assimilation cycle. Observation incre-
ments (O-B) are computed as the satellite-derived wind mi-
nus the model forecast with a 6-h lead time. The O-B statis-
tics are produced for error pattern analysis from the first 20
days of a winter month (January 2015). The 4D-Var assim-
ilation system, including observation processing, has thead-
vantage of monitoring and analyzing O-B statistics between
co-located observations and the UM background at individ-
ual observation times. The adjoint-based FSO method is used
to measure the potential forecast impacts for each type of ob-
servation.

The result shows that the mean O-B has negative values at
the higher level, while the observation increment has similar
negative values for all cases. This means that the model back-
ground has larger easterly components than from observa-
tions. In terms of the percentage mean impact of SATWIND
from FSO, METEOSAT-7 shows a higher percentage mean
impact compared to GEOS, MTSAT-2 and METEOSAT-10.
At the mid-level, GOES shows a high mean impact compared
to MTSAT-2 and METEOSAT-10. The SATWIND observa-
tions have a higher percentage of beneficial observations as
compared to the radiances from AIRS and IASI. The GPSRO
shows fewer beneficial observations as compared to the other
sets. Over the Southern Hemisphere, the impact of high spec-
tral radiances from IASI and AIRS shows higher values as
compared to the Northern Hemisphere. This is due to the fact
that the land area over the Southern Hemisphere is only 32%
(and there are fewer observations), whereas over the Northern
Hemisphere it is 68% (and more observations).

The FSO method is found to be useful for the quality con-
trol of bad observations and determining the relative impact
of observations. The adjoint-based FSO method has increas-
ingly been used at many NWP centers in the last few years to
study the impact of all types of observations, including satel-
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Fig. 10. Geographical distribution of 24-h IASI (top panel) and AIRS(bottom panel) observation
impact per day (units: 10−6 J kg−1).

lite radiances and winds. The present study is important in
operational aspects because FSO allows us to visualize the
performance of the satellite data in the NWP system.

Although our study is based on 20-day mean O-B values
of four assimilation cycles during the winter period, the same
work can be carried out for the summer period. It is important
to identify the seasonal variation of O-B; for example, during
the monsoon season the behaviour of O-B may differ com-
pared to the post-monsoon and pre-monsoon period. Another
possibility for research in this field could be to compare dif-
ferent regions, e.g., the tropics and subtropics. The next step
could be to determine where the large O-B values come from,
i.e., whether there are problems with the observations or the
model background. The impacts of SATWIND observations
can vary depending on cloud interaction, observation time,
and land/sea properties. In this study, these varying condi-
tions are not explored and are left for future work. It is also
possible to use FSO with any type of observation as a func-
tion of time or domain. This may provide information for the

Fig. 11. Percentage IASI and AIRS observation impact in six
different regions.

use of any new satellite observations in an operational NWP
system.
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