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ABSTRACT

The initial errors constitute one of the main limiting factors in the ability to predict the El Nifio-Southern Oscillation
(ENSO) in ocean—atmosphere coupled models. The conditional nonlinear optimal perturbation (CNOP) approach was em-
ployed to study the largest initial error growth in the El Nifio predictions of an intermediate coupled model (ICM). The optimal
initial errors (as represented by CNOPs) in sea surface temperature anomalies (SSTAs) and sea level anomalies (SLAs) were
obtained with seasonal variation. The CNOP-induced perturbations, which tend to evolve into the La Nifia mode, were found
to have the same dynamics as ENSO itself. This indicates that, if CNOP-type errors are present in the initial conditions used
to make a prediction of El Niflo, the El Nifio event tends to be under-predicted. In particular, compared with other seasonal
CNOPs, the CNOPs in winter can induce the largest error growth, which gives rise to an ENSO amplitude that is hardly ever
predicted accurately. Additionally, it was found that the CNOP-induced perturbations exhibit a strong spring predictability
barrier (SPB) phenomenon for ENSO prediction. These results offer a way to enhance ICM prediction skill and, particularly,
weaken the SPB phenomenon by filtering the CNOP-type errors in the initial state. The characteristic distributions of the
CNOPs derived from the ICM also provide useful information for targeted observations through data assimilation. Given the
fact that the derived CNOPs are season-dependent, it is suggested that seasonally varying targeted observations should be
implemented to accurately predict ENSO events.
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1. Introduction CLIVAR (Climate Variability and Predictability) program.
Right now, models can be successfully used to make predic-
tions with a one-year lead time (Zhang et al., 2005b; Chen
and Cane, 2008). However, pronounced errors in real-time
ENSO predictions still exist (Jin et al., 2008; Luo et al.,
2008). For instance, many models incorrectly predicted a
warming event in early 2014, and barely forecasted its oc-
currence in early 2015. Generally, the current prediction
skill with regards to ENSO is mainly restrained by the in-
trinsic limitation of ENSO prediction, incomplete model dy-
namics (e.g., uncertainties in parameterization schemes), and
errors in initial conditions (Toth and Kalnay, 1997). In par-
ticular, the role of initial conditions in ENSO prediction has
caused extensive concern (Blumenthal, 1991; Goswami and
Shukla, 1991; Moore and Kleeman, 1996; Mu et al., 2003).
Chen et al. (2004) performed retrospective ENSO forecast

The El Nifio—Southern Oscillation (ENSO) is a dominant
interannual variability mode in the tropical Pacific, and has
been intensively studied over the years (Bjerknes, 1969; Phi-
lander, 1983; Zhang et al., 1998; Wang and Fiedler, 2006;
Chen et al., 2015) because of its climatic effects and par-
ticularly the associated natural disasters (Ropelewski and
Halpert, 1987; Ropelewski et al., 1996; Moore et al., 2009).
In recent decades, improvements in numerical models have
deepened our understanding of its physical mechanism (Bat-
tisti, 1988; Wang and Picaut, 2004; Zhang et al., 2008; Zhang
and Gao, 2016). Various programs have been conducted to
improve our ability to predict ENSO, such as the TOGA
(Tropical Ocean—Global Atmosphere) program and the
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experiments and suggested that ENSO prediction capability
is significantly dependent on the initial conditions. Zhu et al.
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(2012), based on NCEP CFSv2, found that ENSO prediction
skill is highly sensitive to the ocean analysis used for initial-
ization. Various approaches have been developed to reveal
the relationships between the spatial structure of the initial
conditions and the error growth of predictions.

The linear singular vector (LSV) approach has been
widely used to determine the optimal initial errors (OIEs) that
could invoke the fastest error growth. This approach was first
introduced by Lorenz (1965), and promoted the ENSO pre-
dictability research carried out by Blumenthal (1991). Sub-
sequently, based on the LSV method, considerable effort has
been made to study the OIEs in various ENSO models. As
expected, it has been found that the spatial structure of the
OIEs is model-dependent. For example, Moore and Kleeman
(1996) found that the strong signal of OIEs is confined to the
central Pacific. Furthermore, Xue et al. (1997a, 1997b) im-
plemented the LSV approach in the Zebiak—Cane (ZC) model
(Zebiak and Cane, 1987), and found a dominant growth struc-
ture characterized by an east—west dipole sea surface tem-
perature anomaly (SSTA) mode. In contrast, the OIE pat-
terns were less dependent on the initial time and optimiza-
tion periods. Additionally, Chen et al. (1997) investigated
the sensitivity of OIEs under various reference states in a
coupled atmosphere—ocean model (Battisti, 1988), and found
that there is only one dominant pattern of OIEs. Recently,
Zhou et al. (2008) examined the impact of atmospheric non-
linearities on OIEs. Note that the LSV method assumes lin-
earity for a nonlinear dynamical model; using such a linear
theory cannot adequately describe the nonlinear effect.

Given the drawback of the LSV approach, Mu et al.
(2003) further extended it to a nonlinear dynamical system
and proposed the conditional nonlinear optimal perturbation
(CNOP) approach. By analyzing a simple theoretical model
(Wang and Fang, 1996), it was found that CNOP-resultant
initial errors (CNOPs) could lead to larger error growth than
that of the LSV (Mu et al., 2003, 2007a). In particular, Xu
(2006) and Yu et al. (2009) detected the spatial distributions
of CNOPs using the ZC model and found two types of OIEs:
one showed a dipole pattern with negative SSTAs in the equa-
torial central Pacific and positive anomalies in the eastern Pa-
cific, which plays a role in predicting a large El Niflo event
in the ZC model; and the other has almost the same pat-
tern but with opposite signs, possessing the potential to pre-
dict a weak El Nifio. The CNOP-based approach has been
successfully used to investigate the spring predictability bar-
rier (SPB) phenomenon, which is notorious as one of the
main factors limiting the prediction skill of ENSO (Zebiak
and Cane, 1987; Xue et al., 1994; Balmaseda et al., 1995;
Webster, 1995; Fan et al., 2000; Samelson and Tziperman,
2001). For instance, Mu et al. (2007b) found that the evolu-
tions of CNOPs in the ZC model are season-dependent and
closely related to the SPB. Since CNOPs represent the spa-
tial structure of the fastest possible growing errors, it may
be possible to improve the prediction skill of ENSO by fil-
tering the initial CNOP-type errors in the initial conditions.
This can be further combined with data assimilation to effec-
tively improve the prediction skill. For example, one way to
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avoid the appearance of CNOP-type errors is through targeted
observations—an observing strategy that aims to identify
key regions (sensitive areas) where adding observations may
yield a more accurate prediction than doing so in other re-
gions (Mu et al., 2015). As such, observational data in sensi-
tive areas can be more effectively used to constrain the model
solution. Indeed, Mu et al. (2014) compared the similarities
between the optimal precursors for ENSO and CNOP-type
errors in El Nifio predictions. It was found that additional
observations in the sensitive areas determined by the CNOP
approach are able to not only reduce the initial errors, but also
better detect the early signals for ENSO events to give rela-
tively accurate predictions. As demonstrated by Chen et al.
(1995, 1997), adopting a coupled ocean—atmosphere data as-
similation procedure in the ZC model can effectively weaken
the SPB phenomenon. It is believed that data assimilation
in sensitive areas identified by the CNOP approach provides
great potential for effectively improving the prediction skill.
Indeed, based on the ZC model and CNOP approach, Yu
et al. (2012) divided the tropical Pacific into six parts, and
suggested that the central and eastern Pacific regions are the
sensitive areas for ENSO prediction in the ZC model. They
further demonstrated that implementing additional SST ob-
servations in these regions can improve the ENSO prediction
skill. However, when using another coupled model, Morss
and Battisti (2004a, 2004b) suggested that the most effec-
tive regions for data assimilation are in the southeastern and
western equatorial Pacific. Thus, the sensitive areas for ef-
fective data assimilation can be model-dependent. Given the
high cost of oceanic observations in providing the initial con-
ditions for ENSO prediction, identifying a sensitive area to
maximize the prediction skill has great economic value, and
the CNOP approach offers a way to achieve this.

At present, ENSO predictions are strongly model-
dependent, exhibiting wide spread across various coupled
models; see http://iri.columbia.edu/our-expertise/climate/
forecasts/enso/current. The above-discussed CNOP analy-
ses for ENSO prediction were mostly performed using the
ZC model; thus, the insight gained into the relationships
between error growth and the spatial structure of the initial
conditions may not apply in other models. Due to the model
dependence, the spatial characteristics of errors in the initial
conditions derived from the ZC model can differ from those
derived from other models. There is a clear need to examine
the extent to which the CNOP approach can also provide
useful information on how to improve ENSO prediction in
other coupled models.

In this study, we use a relatively new intermediate cou-
pled model (ICM; Zhang et al., 2003) to perform the CNOP-
based analyses. This ICM has been widely used for various
modeling studies (Zhang et al., 2008; Zhang and Gao, 2016;
Gao and Zhang, 2017), and is also one of the real-time ENSO
prediction models used at the IRI of Columbia University for
routine monthly assessments. In particular, this model can
successfully reproduce the “double dip” evolution of SSTAs
in 2010-11 (Zhang et al., 2013). Nevertheless, systematic bi-
ases still exist in the prediction of SSTAs for the tropical Pa-
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cific (Zhang et al., 2005b). A strong SPB in the model might
be related to its initialization scheme, i.e., observed SST data
are only applied during model initialization. Recent studies
have suggested that the relationship between the thermocline
and SST exhibits strong seasonality, being weakest in spring
(Zhu et al., 2015a). Correspondingly, the SST-derived sub-
surface thermal condition is the least accurate during spring
(Zhu et al., 2015b). To improve the prediction skill, Gao et al.
(2016) implemented a four-dimensional variational (4D-Var)
data assimilation method into the ICM, including the devel-
opment of the adjoint component of the ICM. In the present
study, the CNOP approach was adopted to further investigate
in this ICM the spatial structure of the errors in the initial
conditions and its relationship with ENSO prediction.

A number of questions will be addressed in detail in this
paper: What kinds of initial errors can cause significant pre-
diction errors in the ICM? Do the CNOPs in the ICM have the
same pattern as those in the ZC model? If so, how do these er-
rors evolve and what are the relevant dynamics? Does the er-
ror growth of the CNOPs show obvious seasonal dependence
and cause the SPB of ENSO? And what kind of important in-
formation can be provided for targeted observations and data
assimilation?

Following the introduction, section 2 describes the ICM.
In section 3, the details of the CNOP approach are introduced.
The CNOPs derived from the ICM are described in section 4,
followed by the CNOP-induced error evolutions in section 5.
Section 6 compares the CNOPs with those of the ZC model
and discusses the implications. And lastly, a conclusion and
further discussion are provided in section 7.

2. Model description and prediction errors

The following is a brief introduction to the ICM devel-
oped by Zhang et al. (2003), which consists of a statistical at-
mospheric model, an intermediate dynamic ocean model, and
an SST anomaly model embedded with an empirical model
for the temperature of subsurface waters entrained into the
mixed layer (T,). The statistical atmospheric model is con-
structed from an SVD analysis, in which the covariance ma-
trix is calculated from a time series of monthly mean SST and
wind stress (Tau) fields. The observational SST data are from
Reynolds et al. (2002), and the Tau data are from the ensem-
ble mean of 24-member ECHAM4.5 simulations, forced by
the observed SSTA during the period 1950-99.

The intermediate dynamic ocean model, established by
Keenlyside and Kleeman (2002), is mathematically divided
into linear and nonlinear components. The linear compo-
nent is taken from McCreary’s (1981) baroclinic model, but
with an extension to have a horizontally varying background
stratification. The nonlinear component is a highly simplified
model described by residual nonlinear momentum equations;
this component is concerned with corrections to the solution,
which is broken down by the linear assumption.

A fully nonlinear SSTA model, which is embedded into
the dynamic ocean model, represents thermodynamic ocean
processes over the surface mixed layer. The model equation
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where T’ and T are the anomalies of SST and 7., and the
overbar of each variable denotes the seasonally varying mean
of each parameter [detailed meanings of the variables can be
found in Keenlyside (2001)]. Note that the parameterization
of T, is the key factor representing the thermocline feedback.
An empirical T, model is constructed to insert into the SST
anomaly model. Two steps are included in deriving the em-
pirical T. model: first, an inverse modeling of 7. is used
to determine the historical T using an SST anomaly model
when given the other terms, such as the observed SST and ve-
locity field; and second, a relationship between sea level (SL)
and T is established by an SVD from the historical 7 and SL
data. When given an SL anomaly (SLA), T. anomalies can
be optimally determined to calculate the SSTA. The model
region only covers the tropical Pacific, covering (33.5°S—
33.5°N, 124°-30°E). It has a 2° zonal grid spacing and a
meridional grid stretching from 0.5° within 10° of the equa-
tor to 3° at the meridional northern and southern boundaries.
Readers can find more details on the ICM in Zhang et al.
(2005a).

The ICM can successfully depict a dominant four-year
oscillation period of SST variability, and has been used to
make retrospective ENSO predictions. Correlation analysis
between observed and simulated SSTAs at 12-month lead
times during 1984-2004 was performed to demonstrate the
prediction skill of the ICM. The result is displayed in Fig. 1.1t
can be seen that the high prediction skill is located in the cen-
tral and eastern equatorial Pacific (e.g., the maximum value
of correlation is larger than 0.6 between 180°W and 150°W),
even at the 12-month lead time. The forecasting skill drops
rapidly off the equator and near the western Pacific. Web-
ster and Yang (1992) suggested that ENSO predictability is
greatly limited by the SPB. As with other ENSO models,
the SPB is strong in the ICM (Zhang et al., 2005b). Figure
2a displays anomaly correlations between the observed and
predicted monthly Nifio3.4 SSTA during the period 1984-
2004. A rapid decrease in correlation coefficients can be seen,
from 0.9 to 0.6, across April. Accompanied by the SPB phe-
nomenon, an obviously strong growth tendency of prediction
errors occurs in early spring (April and May) and summer
(July, August and September). Mu et al. (2007a) attributed
the SPB to the combined effects of the annual cycle of the
mean state, the structure of El Nifio, and the pattern of the ini-
tial errors by using the CNOP method in the ZC model. Thus,
the following question arises: Can the SPB phenomenon be
explained by CNOP-type errors in the ICM, regardless of
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Fig. 1. Horizontal distribution of anomaly correlations between the observed
and predicted monthly SSTA at 12-month lead times during 1984-2004. Re-
gions with an index of more than 0.3 are shaded in 0.1 intervals.
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Fig. 2. (a) Anomaly correlations between the observed and predicted monthly Nifio3.4 SSTA during the period
1984-2004, and (b) the growth tendency of prediction errors for the Nifio3.4 index, as a function of start month
and lead time. The contour interval is 0.1 for (a) and 0.2 for (b). The correlations more then 0.7 are shaded in
(a) and the growth tendencies more than 0.1 are shaded in (b).

the uncertainties of the numerical model and stochastic wind
forcing (Zhang et al., 2008)? Next, we report our application
of the CNOP approach in the ICM and attempt to identify its
OIE structures, as well as its sensitive areas.

3. The CNOP approach and analysis proce-
dure

3.1. Brief overview of the CNOP approach

The CNOP approach was first formulated by Mu et al.
(2003) and was introduced to study ENSO predictability, tar-
geted observations of high-impact oceanic—atmospheric en-
vironmental events (Mu et al., 2015), and so on. The specific
implementation is as follows:

Each model of the atmosphere or ocean can be symboli-
cally written as an initial-value problem:

9X  FX)=0
ot , 2
X|i=0 = Xo

where X(x,7) = [X1(x,1), X2(x,1), X3(x,1),...] represents state
variables (e.g., ocean current, SL, SST, etc.), F(X) is a non-
linear operator of the numerical model, and X is the initial
state. Thus, after the integration time 7, the solution to Eq.
(1) can be defined as

X(x,T) = M(XoXT) , 3

where M is a propagator governed by the integration time
and initial conditions, which, in the physical sense, denotes
propagation of the initial physical variable to the future time
T. By adding perturbation ug to the initial state, we can ob-
tain a new solution to Eq. (2):

Y(x,T) = M(Xo+uo)T) . “4)

By subtracting from the original solution, the nonlinear
growth of variables induced by the initial perturbations can
be obtained. To measure the magnitude of Y (x,7T) - X(x,T),
an L2 norm square is generally chosen as follows:

(o) = IM(Xo +uo)(T) - M(Xo)(D)II” . &)
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J(up) is called the object function. Note that perturbations
satisfy constraint conditions ||ug|| < 8. We call the pertur-
bation u; CNOPs if, and only if, they satisfy the following
relation:

(6)

J(ugy) = max J(up) .
llupll<o

To obtain uy;, the non-monotone spectral projected gradi-
ent (SPG2) method is employed to search for the optimal so-
lution in the constrained problem, in which the object func-
tion and its gradient with regard to the initial perturbation
up and constraint condition should be provided; an adjoint
model of the original physical model is required to effectively
calculate the gradient of the object function. Details on the
SPG2 method can be found in Birgin et al. (2000). It should
be stressed that, since the high-dimensional control variables
cause large amounts of computation, an adjoint model is one
of the best ways to acquire the first-order variational of J(u).

3.2. Analysis procedure

We used the CNOP approach to identify CNOPs in the
ICM, which could depict ENSO cycles in its extended time
integration. Three typical virtual El Nifio events simulated in
the ICM were selected as reference states for the experiments,
denoted as ENSO-1, ENSO-2 and ENSO-3 respectively. Fig-
ure 3 presents the evolution of the Nifio3.4 index for the cor-
responding El Nifio events. For convenience, the onset phase
of El Nifio is marked as year(0), and the year before and after
the onset phase is marked as year(—1) and year(1), respec-
tively. Likewise, year(1) is the decay phase of El Nifio. For
the purpose of discussing error evolution during the spring,
each idealized prediction experiment was designed to cross
through this season in the onset or decay phase. Therefore,
we made 12-month predictions in numerical experiments, at
monthly intervals, from a start time of July(—1) [i.e., July in
year(—1)] to June(1) [i.e., June in year(1)], by superimpos-
ing the initial errors on three reference states in each initial
calendar month. Thus, 24 X 3 sets of time series of predicted
SSTAs were obtained. To identify the optimal initial pertur-
bations that invoked the largest deviation from the reference
state at the end time of the prediction, the CNOP approach
(section 3.1) was executed. Furthermore, an adjoint model of
the ICM was required to calculate the gradient of the object
function, which has been recently developed and used in 4D-
Var data assimilation (Gao et al., 2016). To discuss the effect
of the combined initial errors of SSTAs and SLAs, we assume
that there were only initial errors in SST and SL at each start
month. That is, the initial error field consists of two com-
ponents: SST and SL, which were computed simultaneously
using the CNOP analysis.

Since the model grid was uneven (mentioned in section
2), an area-weighted function was artificially embedded into
the constraint and object function. Afterwards, we defined
the constraints

Y wi j[Esst (i, /)1?
ij

b= |-
2 Wi ’
ij

(N
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Fig. 3. Temporal evolution of the Nifio3.4 index for three ref-
erence ENSO events (referred to as ENSO-1, ENSO-2, ENSO-
3) modeled by the ICM. The colored curves denote the corre-
sponding ENSO (refer to the legend in the top-right corner of
the figure), which are chosen to be “true” states as comparisons
with prediction experiments. The notation (—1) denotes the year
before the ENSO event, (0) denotes the year of the ENSO onset
phase, and (1) represents the following year. The spring season,
when there is a sharp drop-off in the correlation between pre-
dictions and observations associated with ENSO, is represented
by yellow bars. The times between the black points are the start
months of predictions over the period from July (-1) to June
(1), with a one-month interval.

and
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in which Esgst o(i, j) represents the initial errors of the SST at
different grid points (i, j), which is the model grid point in the
tropical Pacific (31°S-31°N, 124°E-80°W), and Esi o(i, j)
denotes that of SL; w;; is an area-weighted function of the
grid point [e.g., if grid (31, 11) has the resolution 2° x 0.5°
(latxlon), then w3131 = 2% 0.5]. Then, the constraint radius
(61 and 6,) represents the maximal initial error per unit area.
To measure the initial-error-induced uncertainty of thermo-
dynamics, the object function was defined by

J=)" wijlEsst j D), ©)
i.J

where

Esst(i, j,1) = Asstm(i, j,1) — Asst,r (i, . 1) , (10)

in which Agsst (i, j,1) is the reference SSTA at + month and
Asstm(i, j,t) is the modeled SSTA when adding initial errors.
Then Esst(i, j,t) denotes the initial-error-induced SST per-
turbation for a #-month lead-time prediction. Note that the
spatial patterns of CNOPs are the same except for the magni-
tude in the context of various constraint radiuses (Mu et al.,
2003; Xu, 2006). Large values of constraints lead to unre-
alistic initial errors that are considerably larger than practi-
cal observational errors. Likewise, undersized initial errors
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fail to develop large enough errors to influence the predic-
tion skill. Experientially, the presented results follow the con-
straints 6; = 0.16°C and 6, = 0.9 cm.

4. Horizontal distribution of seasonal CNOPs

As mentioned above (section 3), 24 x 3 CNOPs were ob-
tained with different start times among the three reference
El Nifio events for SSTAs and SLAs. By investigating their
spatial structures obtained using the CNOPs from the vari-
ous initial times, we found the CNOPs derived from the same
start season to be quite similar. That is, the CNOPs are highly
sensitive to the season, rather than the phase of the reference
ENSO. With the aim being to identify seasonal OIEs that
could induce the largest prediction uncertainties, a composite

(a) CNOPs component: SSTA
Summer (JAS)

20°N

0° ke

20°S

—_ N

100°W

140°W

180°W

140°E

Autumn (OND)

140°E 180°W 140°W 100°W

W|nter (JFM)

20°N
00.

20°S

140°E 180°W 140°W 100°W

Spring (AMJ)

140°W 100°W

180°W

140°E

OPTIMAL INITIAL ERRORS IN ENSO PREDICTIONS

VOLUME 34

analysis was implemented among each season for the SSTA
and SLA CNOPs. The composites of CNOPs for SSTAs and
SLAs derived from various seasons are shown in Fig. 4. Al-
though they look somewhat similar, obvious differences exist
between different seasonal CNOPs, especially for the SSTA
component. The details are presented in the following two
subsections.

4.1. CNOP-type errors of SSTA

Generally, negative anomaly signals can be clearly seen
near the dateline in the equatorial Pacific among the four sea-
sonal SSTA CNOPs (Fig. 4a). However, the structures off the
equator are totally different. The summer-type SSTA CNOPs
show large-scale negative values near the dateline in the cen-
tral Pacific, almost covering the Nifo3 and Nifio4 areas. In

(b) CNOPs component: SLA
Summer (JAS)

onk S
20°NE :

00 b oS e
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Fig. 4. Horizontal distribution of CNOP-type initial errors for (a) SSTA and (b) SLA. It is found that the CNOPs derived
from the ICM are significantly season-dependent, but independent of ENSO variability and its phase. The mean of the
CNOPs in each season is shown from the top row to the bottom row. The contour interval is 0.1°C for the SSTA and 1

cm for the SLA.
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contrast, the autumn type shows a dipole pattern near the
dateline, with negative values in the north tropical and equa-
torial Pacific and positive values in the south tropical Pacific.
In winter, the optimal SSTA errors are similar to the summer
pattern but much more localized in the central Pacific. The
spring SSTA CNOPs exhibit a dipole-like pattern, as with the
autumn one, but the signal is located in the north of the west-
ern equatorial Pacific with positive anomalies and the south
of the central equatorial Pacific with negative anomalies.

4.2. CNOP-type errors of SLA

The SL represents the subsurface signal and thermal ca-
pacity in the tropical Pacific in some ways. Likewise, the
CNOP-type errors of the SLA can further explain the effect
of the subsurface signal on prediction skill. As shown in Fig.
4, the optimal initial perturbations of the SLA are relatively
less sensitive to the season, as compared with the CNOP-type
errors of SSTA. The four SLA CNOP types have the same
characteristic pattern along 10°N, sharing a kind of seesaw-
like structure, with a positive value in the west and a negative
value in the east. Additionally, the distinction is located in the
eastern equatorial Pacific: a weak positive signal is present in
summer, while a strong positive signal is found for the other
seasonal SLA CNOPs.

These patterns for SSTAs and SLAs represent errors in
the initial conditions that will most likely produce the largest
error growth in the prediction. Note that combinations of ini-
tial error fields can induce large prediction uncertainties in a
nonlinear way at a 12-month lead time. Although there are
similarities among the four seasonal SSTA or SLA CNOPs,
the combination of the two is significantly dependent on the
season, separately referred to as the summer, autumn, winter
and spring CNOPs.

5. Error evolution

Having displayed the spatial structure of the seasonally
varying CNOPs that cause the largest error growth, we next
illustrate the temporal evolutions of the CNOP-induced errors
within a prediction period.

We adopted the three initial reference states and per-
formed a series of 12-month predictions from a start time of
July(—1) to June(1) by integrating the ICM for 12 months
(Fig. 3) with the corresponding seasonal CNOPs added. For
example, when the initial forecast time was July(—1), the
summer CNOPs were superimposed on the initial reference
state to form the initial conditions for the following predic-
tions. Through subtraction of the corresponding reference
state from the prediction fields, the initial-error-induced evo-
lution was determined, including that of the SSTA, SLA, T,
and Tau.

Figure 5 displays the object function at the end of the
prediction as a function of start month according to the three
reference ENSO states. As we can see, the error characteris-
tics at the end time prediction induced by the various seasonal
CNOPs are quite different. The winter CNOP-induced error
growth is largest among the four seasonal CNOPs. Such a
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Fig. 5. Values of the object function at the end of the predic-
tion as a function of the start month when adding the respec-
tive CNOP-type errors in the initial conditions. The results for
the three reference ENSO states are shown: line with dots for
ENSO-1; line with circles for ENSO-2; line with asterisks for
ENSO-3.

difference can be easily understood because ENSO tends to
peak in winter. Besides, it also implies that the stability of the
predicted SSTA is sensitive to the season, which is accompa-
nied by the so-called SPB phenomenon. In order to study
the time-dependent evolution of the CNOPs, the error growth
tendencies were calculated and defined as follows:

\/%]wi,j[ESST(i,j,tz)]z— \/%wi,j[ESST(i»jafl)]z
Ttl ~ >

h—1

(1D
where Esst(i, j,t1) denotes the monthly errors after a leading
t1-month prediction, and Q denotes the Nifo3.4 area. The re-
sults are shown in Fig. 6. A strongly season-dependent error
growth tendency arises, and this is also similar to the realis-
tic prediction (Fig. 2b) with the largest error growth tenden-
cies appearing during the prediction from May to September.
Thus, we consider that the SPB is likely induced by the initial
errors of specific structures (i.e., CNOP-type errors). In addi-
tion, compared with onset-phase prediction, a relatively weak
SPB induced by CNOP-type errors is found during decay-
phase prediction, which is accompanied by a relatively weak
object function (Fig. 5). This may well explain the fact that
the ICM possesses high skill in predicting El Nifio during the

decay phase, but weak skill during onset-phase prediction.
By tracing the error evolutions, we find that these sea-
sonal CNOPs tend to evolve into a La Nifia-like mode. That
is, the evolution of each seasonal CNOP has the same dy-
namics as those of ENSO itself. In terms of the forecast, this
indicates that when the initial conditions contain CNOP-like
errors, the model tends to predict a weak El Nifio event, neu-
tral conditions, or a La Nifia event, based on different refer-
ence states and amplitudes of CNOPs. In Fig. 7 we separately
show the evolutions of CNOP-induced SSTAs as examples
for the CNOPs of summer, autumn, winter and spring. It can
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Fig. 6. Growth tendencies of prediction errors when imposing
CNOP-type errors into the initial conditions as a function of
the start month and lead time. The positive tendencies (i.e.
larger than 1) are shaded. The result indicates dependence of
the evolving CNOPs on the calendar month. The growth ten-
dencies more than 1 are shaded and the contour interval is 1.5.

be seen that error signals first emerge in the central Pacific
and then propagate eastwards to the eastern Pacific with en-
hanced amplitude.

Considering that we found each seasonal CNOP-induced
error growth to be different, the next step, naturally, was to
try to understand why. Figure 8 displays the CNOP-induced
error evolutions of the zonal wind stress anomaly (Taux),
T. anomaly, and SLA. In summer, the CNOP-type errors of
SSTA are localized in the central Pacific. An opposite sign of
zonal wind errors across 180° along the equator at the start
time (Fig. 8al) is clearly seen as the response of summer
CNOPs through air-sea coupling. In addition, the anoma-
lous convergence induced downwelling in the eastern Pacific
acts against the SSTA signal. Seasonally, the ocean tends to
be in a stable state during the early autumn and fails to en-
large the error growth at the end of prediction. As a result,
the SSTA signal almost disappears (Fig. 7a, lead 3). Later,
prolonged easterly anomalies trigger uplifted Kelvin waves
in the western Pacific and restore the negative signal near the
dateline. The error signal is then carried to the eastern Pacific
by Kelvin waves. In other words, the summer CNOP-induced
errors undergo a transition from a warm to a cold effect. For
the autumn CNOPs, Kelvin waves are induced quickly when
disturbing the ocean state at the start time. Three months
later, SSTA signals propagate into the central and eastern Pa-
cific (Fig. 7b, lead 3) via Kelvin waves. The easterly wind
anomaly, negative SSTA and lifted thermocline perturbations
over the central and eastern equatorial Pacific establish a
Bjerknes-like positive feedback, which causes large predic-
tion errors at the end time of prediction. Figures 8a3, b3 and
c3 illustrate the error evolutions induced by winter CNOPs.
The dynamics of error growth are the same as those of au-
tumn CNOPs; however, there is stronger positive feedback
and a strong induction of large-scale zonal wind anomalies
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covering the central tropical Pacific after a lead time of five
months (i.e., in late spring). That is, the SST variability is
in an unstable mode during spring and summer, which gives
rise to the SPB phenomenon. However, when adding spring
CNOPs, the error signal moves quickly to the eastern Pa-
cific via wave dynamics. The persistence of negative wind
errors causes water convergence in the western Pacific and
divergence in the eastern Pacific. Additionally, T, signals ap-
pear as byproducts of the strengthened thermocline in both
the eastern and western Pacific (but with opposite signs). Af-
ter a lead time of nine months, the positive feedback process
fails to maintain strong westerly wind anomalies in the west-
ern Pacific. Kelvin waves are then triggered in the western
Pacific, with the potential to erase the signal in the eastern
Pacific.

Although CNOPs are sensitive to the initial month, their
evolution can be explained by the Bjerknes-like positive feed-
back and thermocline feedback. SST variability tends to be
in a stable mode during the transition between summer and
autumn, but an unstable mode during spring and summer,
which generates the seasonal dependence of the error growth.
That is, the SPB phenomenon in the ICM is likely induced by
CNOP-type errors in the initial conditions.

6. Comparison with CNOPs derived from the
Z.C model

As analyzed above, CNOPs derived from the ICM model
are apparently different from those derived from the ZC
model. Yu et al. (2009) used the CNOP approach to demon-
strate the spatial structure of the OIEs of SST and thermo-
cline depth in the ZC model. Unlike that from the ICM, two
types of CNOPs are obtainable from the ZC model, which
are sensitive to the phase of El Nifio. One type possesses an
SSTA structure that is characterized by a dipole pattern, with
a negative SSTA located in the central equatorial Pacific and
a positive one in the eastern Pacific, and a thermocline depth
anomaly pattern that is characterized by a positive anomaly
along the equator. The other type has a similar pattern but
with opposite signs. The former CNOP-type errors, which
are mostly derived from the start time of the decay phase of El
Nifio, tend to induce an El Nifio-like error evolution, whereas
the latter, which is mostly derived from the onset phase of
El Nifo, tends to induce La Nifia-like error evolution. To
some extent, the SLA is equivalent to the thermocline depth
anomaly, which also represents the heat content in the up-
per ocean. In contrast, the optimal heat content anomalies
are similar between the ZC model and the ICM, whereas the
SSTA patterns are significantly different.

The differences in the derived CNOPs in the ICM and ZC
model are comprehensible. On the one hand, for the ICM
used in this study, the derived CNOPs are dependent on the
season. This can be related to the fact that the statistical rela-
tionship between 7 and the SSTA, built up in the ICM, is sea-
sonally varying; and the relationship between the anomalies
of T, and the thermocline displacement are nonlocal, with the
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largest T, anomalies centered in the central equatorial Pacific.
As a result, the CNOPs in the ICM are sensitive to the start
season and a large signal in the central Pacific can then prop-

140E 180 140W 100W 140E 180 140W 100W
Fig. 8. Longitude—time sections of prediction errors along the equator (5°N-5°S) induced by CNOPs for the (a) zonal wind

stress anomaly, (b) subsurface entrainment temperature anomaly, and (c) sea level anomaly. From the top row to the bottom
row are the cases for summer, autumn, winter and spring CNOPs, respectively, numbered as 1, 2, 3 and 4. The contour interval

is 0.05 dyn cm™2 in (a), 0.3°C in (b), and 2 cm in (c).

agate to the east, causing large error growth in the Nifio3.4
area. Note that, in the ZC model, a local nonlinear parame-
terization scheme is adopted to represent the subsurface en-
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trainment temperature anomaly, with the largest 7. anomalies
centered in the eastern equatorial Pacific; initial error growth
in the ZC model tends to be localized in the east. This is
the reason why the CNOPs of the SSTA in the ZC model
are confined to the eastern Pacific. On the other hand, non-
linearity can be a factor enhancing the asymmetry of ENSO
(An and Jin, 2004; Duan et al., 2009, 2013). Because of the
adoption of a linear statistical atmospheric model and linear
thermocline feedback in the ICM, the modeled ENSO is less
asymmetric. This may cause the OIEs that are almost exactly
the same between the onset phase and decay phase of ENSO.

Given the local distribution of large-value initial-
condition errors as identified by the CNOPs, sensitive ar-
eas exist where the initial errors can cause the prediction of
ENSO to deviate substantially from the real-world situation.
By removing the errors in these sensitive areas, the predic-
tion skill should improve considerably. The eastern Pacific is
a suggested sensitive area in the ZC model. However, noting
that the CNOPs in the ICM are season-dependent, the indi-
cation for this model is that the sensitive areas for targeted
observations in ENSO prediction should be adjusted with the
passing of the seasons. However, the strong signals of differ-
ent seasonal SLA CNOPs and SSTA CNOPs are almost all lo-
cated in the eastern Pacific and central equatorial Pacific, re-
spectively. Thus, we preliminarily deem that the upper layer
of the central equatorial Pacific and subsurface of the east-
ern Pacific are the most sensitive areas for El Nifio prediction
in the ICM. Likewise, data assimilation for SSTAs in the cen-
tral Pacific or data assimilation for SLAs in the eastern Pacific
could effectively improve the ICM prediction skill.

7. Conclusion and discussion

Initial errors and model errors are the main sources of
uncertainties in ENSO prediction. To investigate the opti-
mal errors in initial conditions that cause significant predic-
tion uncertainties in ENSO models, the LSV method has been
widely used in previous studies. Recently, Mu et al. (2003)
extended the LSV method to a nonlinear dynamical system
and proposed the CNOP method. In this study, we used the
CNOP approach to investigate the initial errors of SST and
SL that can induce the largest uncertainties in El Nifio pre-
dictions in an ICM.

It was found that the CNOPs are significantly season-
dependent. Four seasonal CNOPs of SSTA are demonstrated.
Both the summer and winter types of SSTA CNOPs possess
large-scale negative values near the dateline in the central Pa-
cific. The spring SSTA CNOPs show a dipole pattern, with
positive anomalies in the northwestern tropical Pacific and
negative anomalies in the south tropical Pacific. The OIEs
derived from the autumn season also exhibit a dipole pattern,
with negative values in the north tropical and equatorial Pa-
cific, and positive values in the south tropical Pacific. Mean-
while, for the four seasonal CNOP-type errors of SLA, they
share the same feature of a kind of seesaw structure, with pos-
itive values in the west and negative values in the east along
the line of 10°N. However, there is an evident difference in
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the intensity revealed in the eastern equatorial Pacific: a weak
positive signal is present in summer, while a strong positive
signal is present in other seasons. Note that the combinations
of initial error fields induce large prediction uncertainties at
12-month lead times. Although similarities exist among the
four seasonal CNOPs of SSTA or SLA, the combination of
SSTA and SLA CNOPs, separately referred to as summer,
autumn, winter and spring CNOPs, is significantly season-
dependent.

The combined errors induced by different seasonal
CNOPs are distinct: large prediction uncertainties are in-
voked by winter CNOPs and small error growth is induced
by autumn CNOPs. Moreover, the CNOP-induced error evo-
lution is sensitive to the calendar month, insofar as the largest
error growth tendencies during prediction appear from May
to September. On this point, we conclude that specific types
of initial error (e.g., CNOPs) can cause the SPB phenomenon.
Furthermore, we found that the CNOPs tend to evolve into
La Nifa-like events. This indicates that, when predicting
an El Nifio from initial conditions having CNOP-like errors,
the model will tend to predict a weak El Nifio event. The
evolution of each seasonal CNOP has the same dynamics as
those of ENSO, such as Bjerknes positive feedback and ther-
mocline feedback. Details on the evolution of each season
CNOP were also discussed.

Note that regions with large values of CNOPs were found
to be localized, indicating that the initial errors in these re-
gions (i.e., sensitive areas) play an important role in produc-
ing prediction errors. Given the fact that CNOPs vary with
season, we further suggest that targeted observation strate-
gies should be implemented seasonally. If data assimilation
is implemented in the central Pacific for SSTAs, and in the
eastern Pacific for SLAs, an improved skill in ENSO predic-
tion should be effectively achievable in this ICM. However,
more experiments need to be carried out in future work to
verify this expectation.

It should be emphasized that the purpose of this study was
to examine the effects induced by the initial errors on ENSO
predictions regardless of the uncertainties in model parame-
ters. In fact, despite the good performance of ENSO predic-
tion in the ICM, the imperfections in model physics cannot
be neglected in a realistic forecast (e.g., the low prediction
skill in the western tropical Pacific; Fig. 1). The simulated
ENSO is strongly related to certain model parameters [e.g.,
the relative coupling coefficient (Gao et al., 2016)], meso- and
small-scale processes [e.g., tropical instability waves (Zhang
and Busalacchi, 2008)], and stochastic wind forcing (e.g.,
Zhang et al., 2008). Fliigel and Chang (1996) demonstrated
that the impact of stochastic processes on a coupled ocean—
atmosphere system is considerably larger than the effect of
nonlinear dynamical processes on short lead-time prediction.
Chang et al. (1996) suggested that stochastic forcing plays
two roles in ENSO cycles: break-up phase-locking, and ex-
citing ENSO-like variability in a stable regime. Addition-
ally, Zhou et al. (2008) emphasized the impact of atmo-
spheric nonlinearities on the optimal growth of prediction er-
ror; that is, the nonlinear effect of atmospheric processes be-
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comes more important for a long-lead time prediction. Thus,
the results obtained based on only the initial-condition errors
need to be extended to include the effects of errors in model
physics. In follow-up work, the CNOP approach will also be
used to assess the effects of model parameters and stochastic
forcing on ENSO prediction skill in the ICM. Preliminary re-
sults indicate that data assimilation in the central Pacific for
SSTAs, and in the eastern Pacific for SLAs, can effectively
improve the ICM’s prediction skill.
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