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ABSTRACT

Although quality assurance and quality control procedures are routinely applied in most air quality networks, outliers can
still occur due to instrument malfunctions, the influence of harsh environments and the limitation of measuring methods. Such
outliers pose challenges for data-powered applications such as data assimilation, statistical analysis of pollution characteristics
and ensemble forecasting. Here, a fully automatic outlier detection method was developed based on the probability of
residuals, which are the discrepancies between the observed and the estimated concentration values. The estimation can be
conducted using filtering—or regressions when appropriate—to discriminate four types of outliers characterized by temporal
and spatial inconsistency, instrument-induced low variances, periodic calibration exceptions, and less PM g than PM, 5 in
concentration observations, respectively. This probabilistic method was applied to detect all four types of outliers in hourly
surface measurements of six pollutants (PM s, PMjg, SOz, NO,, CO and O3) from 1436 stations of the China National
Environmental Monitoring Network during 2014-16. Among the measurements, 0.65%-5.68% are marked as outliers, with
PM;jg and CO more prone to outliers. Our method successfully identifies a trend of decreasing outliers from 2014 to 2016,
which corresponds to known improvements in the quality assurance and quality control procedures of the China National
Environmental Monitoring Network. The outliers can have a significant impact on the annual mean concentrations of PM3 5,
with differences exceeding 10 ug m=3 at 66 sites.
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1. Introduction

Surface pollutant measurements are fundamental in air
quality as they provide crucial information for validating the-
oretical concepts, testing numerical models, and enabling ap-
plications such as data assimilation and ensemble forecast-
ing. However, outliers can occur despite the quality assur-
ance and quality control procedures applied by most air qual-
ity networks, consequently posing a considerable challenge
for the various uses of surface pollutant measurements. Man-
ual inspection (Fiebrich et al., 2010) is an effective choice to
identify these outliers. However, this becomes cumbersome
when facing large amounts of data, which makes it inapplica-
ble to near real-time applications. Another limitation lies in
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the fact that data quality after manual inspection varies from
operator to operator. Here, a probabilistic automatic method
is proposed to detect outliers from China National Environ-
mental Monitoring Center (CNEMC) surface pollutant mea-
surements.

The CNEMC started to monitor the concentrations of six
air pollutants (PMy 5, PMjp, SOz, NO,, CO and O3) from
2012. By March 2017, the China National Environmental
Monitoring Network (CNEMN) had included 1436 monitor-
ing sites from 369 cities. Real-time hourly observations of
the six pollutants at every monitoring site are uploaded to the
CNEMC and released to the public (http://www.cnemc.cn/).
These real-time observations are being assimilated into the
chemical transport model at the CNEMC to improve air qual-
ity forecasts. They are also an important data source for the
Ministry of Environmental Protection of the People’s Re-
public of China to assess urban air quality and establish air
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quality control strategies. The observations are widely used
in many research fields, such as data assimilation (Tang et
al., 2016), model verification (Wang et al., 2016), health im-
pact (Li et al., 2017), satellite product verification (Gu et al.,
2017), and analyzing the formation processes of pollution
episodes (Shan et al., 2009; Zheng et al., 2015).

The quality of ambient air quality datasets is vital for
interpreting results in related research fields. However, in-
strument malfunctions, the influence of harsh environments
and the limitation of measuring methods can cause outliers
in the observed datasets. For example, wearing, insufficient
air tightness and excess axial resistance of the pump of the
monitoring instrument will interfere with the measured val-
ues (Luo, 2016). A blockage of the filter core or a breakage
or running out of filter tapes can lead to significant errors
in the monitoring of particulate matter. After rainstorms, ob-
served concentrations of particulate matter might be negative
if the mass of particulate matter accumulated is less than the
water evaporated. Malfunction of the cooling system or the
photomultiplier tube will cause NO; outliers, while instable
infrared sources will cause CO outliers (Guan, 2016).

Outlier detection involves separating inconsistent obser-
vations from regular ones, based on statistical or physical
criteria that characterize the regular or inconsistent observa-
tions (Aggarwal, 2016). Outlier detection has been widely ap-
plied to a diverse range of environmental data. In meteorol-
ogy, outliers can be detected for those observations that are
inconsistent in space and time (You et al., 2008; Steinacker
et al., 2011; Liao et al., 2014), or against the characteristics
of observed variables such as surface wind, precipitation and
snowfall (Golz et al., 2005; Durre et al., 2010; Jiménez et al.,
2010). There are also some detailed studies about outlier de-
tection for variables in oceanography (e.g., temperature and
salinity profiles) and soil science (e.g., temperature and mois-
ture) (Ingleby and Huddleston, 2007; Fiebrich et al., 2010;
Dorigo et al., 2013).

Outliers in air quality are difficult to detect, because pol-
lutants show particularly rich patterns of variations in space
and time on multiple scales. These variations are driven by
complex processes of chemical reactions, atmospheric trans-
port, emissions and depositions, and thus cannot be easily
represented by either statistical models or chemistry trans-
port models. Recent outlier detection studies in air quality
mainly probe the inconsistency in space and time in pollutant
concentration observations from clusters of stations. For in-
stance, Kracht et al. (2014) identified outliers as daily PMq
measurements that manifest extreme values compared with
the smoothed values—the weighted averages from neighbor-
ing background stations in the European air quality database
AirBase; whereas, Bobbia et al. (2015) compared hourly
PM o measurements with the weighted median from nearest-
neighbor stations or with geostatistical spatial predictions
using classical kriging techniques. Araki et al. (2017) per-
formed leave-one-out predictions of daily mean PM, 5 and
NO; in Japan using ordinary kriging of residuals from a
land use regression model, and identified observations with
large kriging errors as outliers. Interestingly, Campulovi et
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al. (2015) proposed an automatic procedure to mark out po-
tential outliers from two urban stations measuring hourly
PM concentrations by checking whether observations lie
in a plausible interval obtained by analyzing residuals of data
smoothing.

The main challenge for outlier detection in air quality is
that the true spatiotemporal variations of pollutants can only
be estimated to serve as detection criteria to separate outliers
from signals, while all estimations have limitations. For in-
stance, in kriging estimation, a more detailed diurnal covari-
ance structure can be introduced (Wu et al., 2010), but co-
variance modelling in high dimensional space is a very dif-
ficult issue (Bickel and Levina, 2008). In practice, manual
inspection (Fiebrich et al., 2010) is still an effective choice to
identify outliers. A majority (80%) of outliers were identi-
fied by manual inspection at four sites in Shanghai in China
from 2014 to 2016 (Guan, 2016). In this paper, outliers are
classified into four types based on their characteristics. Then,
an automatic outlier detection framework is proposed based
on the probability of residuals between the observations and
their estimation discriminating the known characteristics of
different types of outliers. Our hope is that this probabilis-
tic outlier detection method will help in routinely identifying
outliers in pollutant observations from the CNMEC in an au-
tomatic manner such that cuambersome real-time manual in-
spections can be avoided. Subsequently, better datasets could
be constructed to support various research aims related to the
severe air pollution problem that is currently a national con-
cern in China.

2. Methods

2.1. Outlier classification

Complex sources of errors in observational datasets make
it difficult to identify the cause of errors based on the ob-
served data itself (Sciuto et al., 2013). Therefore, outliers are
classified into four types based on their characteristics:

(1) Spatially and temporally inconsistent outliers (ST-
outliers). Similar to meteorological parameters (Steinacker
et al., 2011), the scale of pollution phenomena exceeds that
resolved by the observational network, and one can expect
the measured concentrations to be smooth both in time and
space. Observations that differ greatly from values observed
at the adjacent time or in neighboring areas are defined as
ST-outliers.

(2) Low variance outliers (LV-outliers). This type of out-
lier has a very low variance in time series compared to neigh-
boring sites. Some LV-outliers do not change over time and
can be observed when the pump of the instruments is stuck
or the filter tape is depleted. Most outliers that change very
slowly come from CO observations measured by the pressure
difference between two chambers. These outliers can be ob-
served when the aging of the light sources in the two cham-
bers is not synchronized (Luo, 2016).

(3) Periodic outliers (P-outliers). This type of outlier usu-
ally appears every 24 h, as shown in Fig. le. For some in-
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struments, the accuracy may decrease with time due to the
ageing of light sources and the changing of the ambient en-
vironment. Regular calibration is required for such instru-
ments. However, the calibration processes may interfere with
the observations, thus inserting abnormal values into the on-
line measurement datasets.

(4) Lower PM ;¢ than PM, 5 outliers (LP-outliers). This
type of outlier involves PM; s concentrations being higher
than PM;y concentrations observed at the same hour and
same site. Most PM, s monitors in the CNEMN network
were installed around a decade after the PM ;¢ monitors, with
more advanced instruments used for PM» 5 monitoring, and
the loss of semi-volatile components of particulate matter is
better handled (see section 2.7 for details). Therefore, PM; 5
data are more reliable than PM;o data, and PM;, data are
marked as LP-outliers if the observed concentration of PM; s
is higher than that of PM.

Figure 1 shows examples of classified outliers. It is im-
portant to note that the four types of outliers are not exclusive.
Some P-outliers are also ST-outliers, and some LP-outliers
are also LV-outliers.

2.2. Probabilistic automatic outlier detection

The most common technique for identifying outliers in
meteorological data is the z-score method (Lanzante, 1996;
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Feng et al., 2004; Durre et al., 2010). This method normalizes
the observed values using their mean and standard deviation,
then removes those values whose z-score exceeds a specified
threshold. The z-score is calculated as follows:

iy SO
o

ey
where f(i) and z(i) are the observed value and z-score at time
i f and o are the mean and standard deviation of the ob-
served values.

The z-score method can identify outliers that are consid-
erably deviated from most observations. The limitation of this
method is the normal distribution assumption made for obser-
vations (Durre et al., 2010), when in fact pollutant concentra-
tions are always positive and their distributions are known to
be closer to lognormal (Leiva et al., 2008). To deal with this
limitation and combine detection methods by probability the-
ory, three modifications are made to the z-score method:

(1) Instead of directly assessing the pollutant concentra-
tion observations, the residuals between the observed and the
estimated concentration values are evaluated:

R(@) = f())-F(@) . @

Here, F(i) is the estimated concentration at time i. Such an
estimation can be conducted using either filters or regression
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Fig. 1. Samples of outliers. (a, b) Spatiotemporal outliers have large differences with neighboring observations
in time and space. (c, d) Low variance outliers either stay the same or change abnormally slowly in time and
differ significantly with observations from nearby sites. (e) Periodic outliers appear periodically, usually every
24 h. (f) PMg < PM, 5 outliers are the PMj( observations that are lower than the PM, 5 observations at the

same time and site.
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models. Observations with large residuals are more prone to
be marked as outlier candidates.

(2) The standard deviation of the residuals is computed
within a sliding window and updated constantly so that the
outlier detection method will be more sensitive to local out-
liers. The standard deviation S of the residuals is calculated
by
Yo, RG+k)?

2n ’
where i —n and i+ n are the start and end of the sliding win-
dow.

Substituting the observed values f and the standard devi-
ation o~ in Eq. (1) by the residual R and its standard deviations
S, it becomes:

S@i)= 3

IR(i) - R|
S@
Generally, the mean of residuals R should be zero, and the

calculation of probability is not affected by the sign of Z. The
numerator |R(i) — R| can then be simplified to R(i); therefore,

Z(i) = “

. _ RO
Z() = —= . 5
() 0 (%)
(3) Instead of the z-score values, the probability of Z is
introduced as a criterion to determine whether or not an ob-
servation is abnormal. The z-values in Eq. (5) are set to be

normally distributed, and its probability is calculated by

(6)

1 12
P(i) = ——e 220"
V2

The normal distribution is chosen because it is a central
distribution appropriate for residuals; plus, among all distri-
butions with a given mean and a given variance, the normal
distribution maximizes the entropy and is thus least informa-
tive. The introduction of the probability provides a frame-
work based on which multiple rules for identifying abnormal
observations can be combined (see sections 2.4.3 and 2.5).
Next, we provide further details on how to use this proba-
bilistic automatic outlier detection (PAOD) method to iden-
tify different types of outliers in surface observations of air
pollutants.

2.3. Detection of outliers with large errors

The first detection involves identifying and removing out-
liers with large observational errors. These outliers might
increase the residuals of normal observations and decrease
the residuals of outliers. They make it more difficult to iden-
tify outliers with small observational errors, and should be re-
moved before other detections. The detection and removal of
outliers with large errors consists of the following two steps:

(1) Firstly, outliers exceeding the measurable range of the
instrument are removed. The measurable range of the instru-
ment for the six pollutants are specified by China National
Standards (HJ653-2013, HJ654-2013), as listed in Table 1.

(2) In the second step, the PAOD method described in
section 2.2 is applied to further identify outliers with large
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Table 1. Measurement ranges of the monitors used in the CNEMC’s
air quality monitoring network.

Pollutant Measurement Range

PM; 5 0-1000 pg m~3 or 0-10000 pug m3
PM ;o 0-1000 pg m~> or 0-10000 pug m~3
SO, 0-1428 pg m=3

NO, 0-1026 pg m=>

Cco 0-62.5 mg m™>

O3 0-1071 pg m=3

Note: The ranges are specified by environmental protection standards

(HJ653-2013, HJ654-2013). There are two ranges for the measurement of
particulate matter, because both the BAM and TEOM measurement methods
can be applied.

observational errors. Here, the estimated values are calcu-
lated by a median filter [Eq. (7)], which is less likely to be
affected by the outliers:

Fn() = M(f(i+k)), kel[-n,n] (N
where Fy, is the value estimated by the median filter at time
i; M is the median function; i —n and i + n represent the start
and end of the sliding window. The length of the sliding win-
dow, 2n + 1, is set to one month.

The residual Ry, is obtained by substituting F, into Eq.
(2). The standard deviation of the residual S, is calculated
using the median absolute deviation (MAD), as follows:

Sm@) = 14826 M(IRn(i + k)), ke [—n,n] ®)

Compared with the conventional method described by Eq.
(3), obtaining the standard deviation by MAD is more robust
to outliers (Dunn et al., 2012). The probability Py, can be cal-
culated through using the regression residual Ry, its standard
deviation S, and Egs. (5) and (6). The probability threshold
is set to 10713 after several sensitivity tests, and the data with
probability Py, less than the threshold value are marked as
outliers and removed from the datasets.

2.4. Detection of ST-outliers

After removing the outliers with large observational er-
rors, spatiotemporal outlier detection is implemented to re-
move the ST-outliers described in section 2.1. To better iden-
tify these outliers, both the observed data of the target site at
adjacent times and the data at neighboring sites are simultane-
ously used. The spatial and temporal residuals are assumed to
follow the bivariate normal distribution, which makes it con-
venient to combine the estimations from both temporal and
spatial estimation models.

24.1.

The estimation of pollutant series of temporal consistency
is carried out using a low-pass filter:

Temporal consistency estimation

15
Fi)= ) fli—kho),

k=-15

C))
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Table 2. Filter coefficients and the time shift for the low-pass filter used in the temporal consistency estimation.

Time shift Filter coefficient Time shift Filter coefficient Time shift Filter coefficient Time shift Filter coefficient

(k) (h) (k) () (k) () (k) ()

-15 —0.00053 -7 0.015445 1 0.130196 9 -0.00270
-14 -0.00139 -6 0.031918 2 0.117345 10 —0.00546
-13 -0.00275 -5 0.052580 3 0.098184 11 —0.00560
-12 —0.00436 -4 0.075568 4 0.075568 12 —0.00436
-11 —0.00560 -3 0.098184 5 0.052580 13 -0.00275
-10 —-0.00546 -2 0.117345 6 0.031918 14 -0.00139
-9 —-0.00270 -1 0.130196 7 0.015445 15 —0.00053

-8 0.003967 0 0.134722 8 0.003967

where F(i) is the estimated value at time i, f is the observed
value at the target site, and h(k) represents the low-pass fil-
ter coefficient (listed in Table 2). The filter coefficients are
calculated following the algorithm designed by Karam and
McClellan (1995), and the passband and stopband frequency
is set to 1/8 and 1/24 h, respectively. The low-pass filter tends
to preserve the low-frequency signals of normal variations
from atmospheric chemistry and restrain the abnormal high-
frequency signals accompanied by outliers. Compared with
a moving average, it makes the residuals of normal observa-
tions smaller through giving higher weights to the data closer
to the checkpoint.

2.4.2. Spatial consistency estimation

The pollutant series of spatial consistency is estimated by
spatial regression:

Fy(i) = Z fr(Dar@)c;

G (10

r

where F(i) is the estimated value at the checkpoint i; f, is
the observed value from neighboring site r; a, and ¢, are the

o
(-

cr=y 1 (1dY _
2\d.

where d is the distance between the target and a neighboring
site, and d, is the characteristic length of localization.

2.4.3. Combining temporal and spatial consistency estima-

tions

After obtaining the estimated values F; in Eq. (9) and
Fy in Eq. (10) using the observed data at adjacent times and
the data at neighboring sites respectively, the corresponding
residuals at the checkpoints can be calculated using Eq. (2).
Then, the residuals are normalized to Z; and Z; using Egs. (3)
and (5). The spatial and temporal consistency are evaluated
simultaneously under our PAOD framework, and compute the
probability of Z; and Zg by a bivariate normal distribution:

index of agreement and localization coefficient between the
target and a neighboring site.

Following the method of Legates and McCabe (1999), the
index of agreement is defined as

Do i+ k) = f(A+h)

ai)=1- AR A m—
oGk = Fl+ G+ 0= Al

(In

where f; is the observed value at neighboring sites, and f, is
the time-average of f, within the sliding window. The length
of the sliding window, 2n + 1, is also set to one month.

The index of agreement is often employed to evaluate the
simulated results of models, and has been used in quality as-
surance as well (Durre et al., 2010). It provides a measure for
both the covariation and the absolute difference between the
data of two time-series. Compared with the correlation coef-
ficient, it is less affected by outliers, but still affected by sam-
pling errors. To deal with this problem, this paper borrows
the idea of localization from data assimilation and adopts a
localization method introduced by Gaspari and Cohn (1999).
The method reduces the influence from remote sites, and the
localization coefficient is calculated as follows:

2
—) +1, 0<|d <d,
2
d| 2(d, , (12)
51— —=|—=, d.<|d|<2d
) (d) 3(|d|) e <l < 2de
2d, < |d|
1 . . . .
Py = 1 e(—mlzl<z>2+zs(z>2—zzt(z>zs<z>J)’ 13

27 [T=pli)2

where Pg(i) is the joint probability at time i, and p is the cor-
relation coefficient between Z; and Z;:

S [Zi+k) - Z0[Zs(i+ k) - Z]

VSl 2+ 0~ TR (24 - TP

p(i) = - (14

Here, Z; and Z, are the means of Z and Z, respectively,
within the sliding window; i —n and i + n are the start and end
of the sliding window. Observations with low probability at
the checkpoint are identified as outliers.
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Figure 2 displays the outliers detected in two ways. One
uses the joint probability of Z; and Z;, and the other only
employs the probability of Z; (only considering the temporal
consistency). When only the temporal consistency is consid-
ered, the method identifies the outliers at checkpoint Nos. 1
and 2, but misses the outlier at No. 3 and misrecognizes the
normal observations at Nos. 4 and 5 as outliers. After us-
ing the joint probability, the method deals with the above de-
fects properly. This suggests that the detection method using
the joint probability of the residuals improves the accuracy
of the detection method. The two detection methods are ap-
plied to the raw data described in section 3. For PM; 5, PM g,
SO,, NO,, CO and O3 observations, 37%—83% of the data
marked with spatiotemporal inconsistency are also marked
with temporal inconsistency. For some outliers with mod-
erate temporal inconsistency but strong spatial inconsistency
(such as observation 3 in Fig. 2), it can only be identified by
the detection using spatiotemporal consistency. Among the
data marked with spatiotemporal inconsistency, 46% of them
are not marked by the detection using temporal inconsistency.
For normal observations with strong spatial consistency but
week temporal consistency (such as observations 1 and 2 in
Fig. 2), it might be misidentified by the detection using tem-
poral inconsistency. Among the data marked with temporal
inconsistency, 54% of the them are not marked by the detec-
tion using spatiotemporal consistency.

2.5. Detection of LV-outliers

To deal with the LV-outliers that stay the same or change
slowly, the low variance periods are first detected by check-
ing the first and second derivatives of the observed values
over time. As some low variance observations will be nor-
mal observations when the ambient air is clean or stable, the
spatial consistency is combined to decide whether the data in
those periods should be mark as outliers. The residual of a
low variance period is an average of the residuals of the spa-
tial consistency estimation in this period:

SR

Y(e-b+ 1)’ (15)
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where Rg(i) is the residual of the spatial consistency estima-
tion, as in section 2.4.2, and b and e are the beginning and
end of this period. The standard deviation of Ry is calculated
according to the standard error of the mean for samples that
are normally distributed:

3,80
YU e=b+D)\e=b+1)

where S (i) is the standard deviation of the residuals of the
spatial consistency estimation in section 2.4.2. Using Egs.
(5) and (6), the normalized residual Z, and its probability P,
for the whole period can be obtained. If Py is smaller than
a predefined value (107 in this study), the data within the
whole period are identified as LV-outliers.

(16)

2.6. Detection of P-outliers

P-outliers are mainly caused by the daily self-calibration
of the instrument and appear every 24 h. According to this
characteristic, the time series of the observed data within 11
days are firstly processed into diurnal-variation data:

S5 fli+24k)

11 ’
where f is the hourly observed concentrations and f, is the
data after processing. Then, a median filter is applied:

Fp(i) = M(fp(i + k),

where F(i) is the estimated value and M is the median func-
tion.

Instead of Eq. (3), the standard deviation S (i) of the
residuals is calculated using the following method:

Sp(D) = g(Rp(i+k)),

where R, is the residual and g is a function that finds the
93.75th percentiles. The advantage of using the 93.75th per-
centiles of the residuals is that the obtained standard devia-
tion is the second largest residual in one day, and only the
observation with the largest residual in a day might be identi-
fied as the P-outliers. Using Eqgs. (5) and (6), the probability

Jo() = a7

ke[-1,1] (18)

ke[-72,72] (19)
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Fig. 2. Comparison of outlier detections based on temporal consistency and spatiotem-
poral consistency. The detection based on spatiotemporal consistency can detect outliers
1, 2 and 3 while preserving valid observations 4 and 5.
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Py, of the residual can be obtained. If P, is smaller than a
predefined value (10 in our check), the corresponding ob-
servation will be identified as the P-outliers. Figure 3 gives
an example of the P-outliers that shows a peak concentration
of ozone at 0400 LST (LST=UTC+8) every day. It should
be noted that most of the P-outliers present large differences
from their neighboring observations and can be identified by
the detection of ST-outliers in section 2.4. However, there are
also some P-outliers that have a relatively small difference
from the neighboring observations and need to be identified
by the P-outlier detection.

2.7. Detection of LP-outliers

The last detection is to mark the outliers with an observed
concentration of PMj s higher than that of PM; at the same
hour and same site. This step is very simple but very im-
portant for the observed datasets from the China Nationwide
Air Quality Monitoring Network. The PM; 5 and PM ¢ are
mainly measured by the beta attenuation monitoring method
(BAM) or tapered element oscillating microbalance method
(TEOM). Both methods use heaters to reduce the humidity of
the sampled air to prevent fogging and inhibit particle growth
under high humidity. However, the heating process may lead
to the volatilization of semi-volatile organic compounds of
particulate matter. To deal with this problem, most new mon-
itors adopt a filter dynamic measurement system to measure
the volatile portion of the sample air when the concentrations
are measured by TEOM. Also, a smart heater is implemented
when the concentrations are measured by BAM, to keep the
relative humidity at around 35% instead of keeping the tem-
perature at around 50°C. The PM; s monitoring started from
2013, about a decade later than the PM o monitoring. A filter
dynamic measurement system or a smart heater is mandatory
for the PM; 5 measuring instruments, while they are optional
for the PM o measuring instruments. Also, neither of them is
implemented for most PM( measuring instruments that were
established before 2013 (Pan et al., 2014). As a result, the
PM, 5 data are more reliable than the PM( data, and the LP-
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outliers are more likely to occur at nighttime and on foggy
days when the relative humidity is higher (Niu, 2017).

Most outliers or “bad data” in the observed PM data are
LP-outliers before 2016. The percentage of “bad data” can be
higher than 7% (Fig. 4). However, as measuring instruments
and management have been upgraded, the percentage of “bad
data” had reduced to about 1% in 2016, and will hopefully
continue to decrease in the future.

3. Results

The PAOD method was applied to detect outliers in the
raw data of the hourly observations of six pollutants (PM; 5,
PM;p, SO,, NO,, CO and O3) during 2014-16. The raw data
were monitored by the CNEMN network. The network con-
tains 1436 monitoring stations across China, and the mon-
itored data are directly transmitted to the data center at the
CNEMC. The raw data in this paper are hourly observations
directly acquired from the data center at the CNEMC. The
number of outliers identified by the method and their pro-
portions are shown in Table 3. Among the raw data, 0.65%—
5.68% are identified as outliers. There are more outliers in the
PM;¢ and CO observations than other pollutants, accounting
for 5.68% and 1.03% respectively. The NO, and SO, ob-
servations have fewer outliers than the other pollutants, ac-
counting for only 0.65% and 0.73% respectively. For PM; s,
SO,, NO,, CO and O3 observations, the ST-outliers are the
most frequent among the four types of outliers, accounting
for 0.46%-0.77% of the raw data. The LV-outliers rank sec-
ond, accounting for 0.09%—0.19%. The P-outliers are an im-
portant type of outlier for gaseous pollutants, especially CO
and SO,. For PM;( observations, the LP-outliers account for
4.73% of the raw data and are the main source of abnormal
observations (see section 2.7 for why the PM; 5 data are more
reliable than the PM;( data).

Figure 4 shows the removal ratios of the six pollutants
during the three years. The removal ratio is the fraction of
raw data being labeled as outliers. During 2014—15, the PM g
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Fig. 3. Periodic outliers of O3z observations detected for a site in Wuhan, China, be-
tween 22 and 30 August 2014. Some periodic outliers can be detected by spatiotem-
poral consistency, while others have relatively small measurement error compared to
the variation of neighboring observations and can only be identified in the detection of

periodic outliers.



DECEMBER 2018

WU ET AL.

1529

Table 3. Number of hourly observations in China from 2014 to 2016, as well as number and ratio of outliers detected.

Number of raw Number of Ratio of Ratio of Ratio of Ratio of Ratio of
Pollutant records outliers outliers ST-outliers LV-outliers P-outliers LP-outliers
PM o 33124 620 1 879 899 5.68% 0.82% 0.14% 0.01% 4.73%
PM; 5 34105 146 312 121 0.92% 0.74% 0.19% 0.01% 0%
SO, 34 166 889 248 844 0.73% 0.58% 0.09% 0.08% 0%
NO» 34 150 069 222 934 0.65% 0.46% 0.19% 0.03% 0%
CcO 32915111 337 996 1.03% 0.77% 0.19% 0.11% 0%
03 33 988 052 292 208 0.86% 0.68% 0.18% 0.03% 0%
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Fig. 4. Outlier ratio of all sites in China From 2014 to 2016. Outlier ratios decrease
more or less for all the six pollutants from 2014 to 2016. Most of the reduction in the
ratio of PMj( outliers comes from the decrease in PM g < PM, 5 outliers.

observations have a high removal ratio (more than 7%). Most
of the removed data are LP-outliers. However, in 2016, the
removed ratio decreases sharply to about 1%. This might be
related to the implementation of a compensation algorithm
for the loss of semi-volatile materials in the PM;¢ measure-
ments. Interestingly, the removal ratios of the PM; 5, SO,
NO,, CO and O3 observations also decrease. This indicates
that the data quality of the CNEMN has been improved from
2014 to 2016.

To evaluate the impact of the outlier detections on the ob-
served concentrations, Fig. 5a compares the observed annual
PM,; 5 concentrations before and after quality assurance in
Shijiazhuang City during 2014-16. The results show a big
difference of more than 150 ug m™> for estimating the an-
nual mean concentration in 2014, which is mainly caused by
some outliers that exceed the measurement range. Figure 5b
presents the diurnal variations of the observed O3 concentra-
tions before and after quality assurance at a site in Wuhan
in 2015. Due to the P-outliers that occurred at 0400 LST,
the raw data display a false peak at that time. The quality
assurance reduces this false peak, and the data after quality
assurance show more reasonable daily variations of O3 con-
centrations.

Figure 6 displays the differences in annual concentrations
caused by outliers in 2015. For PM; s, the differences are
lower than 1 ug m~2 at most sites. However, there are 66 sites
and 17 sites whose differences are greater than 10 ug m=3 and
50 ug m=3 respectively. For PM, the differences at most
sites are within 1-10 pg m~3, while there are 92 sites and 23
sites with differences greater than 10 ug m=3 and 50 pg m=3

respectively. For CO, big differences of more than 1 mg m™3
can be observed at 80 sites. For O3 and NO,, the differences
are relatively small, and only a few stations (<20) have dif-
ferences of more than 10 pg m™3. For SO,, there are 38 sites
with differences of more than 10 ug m™>. The above results
suggest that outliers might lead to significant biases in the
estimation of annual mean concentrations of these six pollu-
tants. Identifying and removing outliers is a necessary step
before using the online dataset.

4. Conclusions and future work

A POAD method is proposed to detect outliers for hourly
surface concentration observations of six pollutants (PM; s,
PMjp, SOy, NO;, CO and Os3) from the 1436 stations of
the CNEMN during 2014-16. This outlier detection method
takes advantage of the known characteristics of outliers [tem-
poral and spatial inconsistency (ST-outliers), instrument-
induced low variances (LV-outliers), periodic calibration ex-
ceptions (P-outliers), and less PM( than PM; 5 in concentra-
tion observations (LP-outliers)] by computing the probability
of residuals between the observations and the estimations that
discriminate these known characteristics of outliers. The out-
lier detection process is fully automatic; hence, it will help in
avoiding the cumbersome manual inspection of outliers when
seeking to achieve reliable air quality data in the CNEMN
network.

The outliers detected account for 0.65% to 5.68% of the
observations for the six pollutants. PM|o observations have
the most outliers, among which LP-outliers contribute the
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Fig. 5. (a) Annual PM, 5 concentration in Shijiazhuang city before and after quality assurance. (b) Diurnal
cycle of O3 before and after quality assurance for a site in Wuhan, China, 2015.
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Fig. 6. Absolute difference in annual concentrations before and after quality assurance for six pollutants and all
sites in 2015. Quality assurance has a significant effect on the annual concentration for some sites.

most (see section 2.7 for why the PM, 5 data are more re- The impact of outliers is estimated by the difference in annual
liable than the PM ¢ data). The proportions of outliers in the mean concentrations of PM; 5 between the raw data and the
six pollutants all decrease from 2014 to 2016, which suggests  data after outlier detection. The differences are less than 1
an improvement in the data quality of the CNEMN network. pg m™> at most sites, but there are 66 sites whose differences
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are greater than 10 pg m~3. This suggests that outlier detec-
tion is essential before using the monitoring datasets, even for
evaluation of the annual mean concentrations.

The outlier detection method was developed with the help
of the CNEMC, which is also the institute responsible for re-
leasing the real-time air quality data. The method has been
used in the assimilation system of the CNEMC, and is going
to be integrated into the data management system. Hopefully,
outliers in the real-time air quality data will be removed by
our method in the near future.

Although the application of the PAOD method has
brought some positive and interesting results, improvements
can still be made for better performance in further in-depth
studies. First, the outlier detection method is performed sepa-
rately for each species; however, these different pollutants are
closely linked to one another by atmospheric chemistry. Fur-
ther developments of the outlier detection method could take
into consideration information from multiple pollutants at the
same time to account for chemical transformations. Second,
the method does not take into account the specific locations of
the stations in the urban environment. Stations in the proxim-
ity of heavy traffic highways will have much stronger varia-
tions in observations than those in urban green spaces. Devel-
oping different parameters sets for different types of stations
might improve the performance. Third, the outlier detection
method assumes that outliers account for a small proportion
of the raw data. However, at some stations, most of the raw
data on a weekly basis can be bad data, providing little or
no information on reals concentrations. Examination of the
distributions within the raw data might help in such cases.
Finally, this method uses the normal distribution to compute
the probability of residuals. However, when more informa-
tion is available, new distribution types should be tested to
better adapt to the CNEMN dataset.
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