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ABSTRACT

The ensemble Kalman filter (EnKF) is a distinguished data assimilation method that is widely used and studied in various
fields including methodology and oceanography. However, due to the limited sample size or imprecise dynamics model, it is
usually easy for the forecast error variance to be underestimated, which further leads to the phenomenon of filter divergence.
Additionally, the assimilation results of the initial stage are poor if the initial condition settings differ greatly from the true
initial state. To address these problems, the variance inflation procedure is usually adopted. In this paper, we propose a new
method based on the constraints of a confidence region constructed by the observations, called EnCR, to estimate the inflation
parameter of the forecast error variance of the EnKF method. In the new method, the state estimate is more robust to both the
inaccurate forecast models and initial condition settings. The new method is compared with other adaptive data assimilation
methods in the Lorenz-63 and Lorenz-96 models under various model parameter settings. The simulation results show that
the new method performs better than the competing methods.

Key words: data assimilation, ensemble Kalman filter, error variance inflation, confidence region，Lorenz model

Citation: Li. Y., S. M. Li, Y. Sheng, and L. H. Wang, 2018: Data assimilation method based on the constraints of confidence
region. Adv. Atmos. Sci., 35(3), 334–345, https://doi.org/10.1007/s00376-017-7045-y.

1. Introduction
The Kalman filter (Kalman, 1960) is a procedure that

aims to obtain an optimal estimate of state based on the model
evolution and observation information, and it is widely used
in various fields, such as tracking, robot localization and
satellite navigation (Chan et al., 1979; Welch and Bishop,
1995; Linderoth et al., 2011). However, the Kalman filter
is limited to the linear Gaussian assumption and cannot be
executed when the model error variance is unknown. To
address these problems, Evensen (1994) and Burgers et al.
(1998) proposed the ensemble Kalman filter (EnKF), which
uses ensemble members to represent the distribution of the
state. The EnKF method is widely used in various fields
including, but not limited to, oil reservoir simulation, car-
bon assimilation, meteorology and oceanography (van Loon
et al., 2000; Houtekamer and Mitchell, 2001; Lorenc, 2003;
Evensen, 2009; Zheng et al., 2015).

However, due to the limited sample size and imprecise
dynamics model evolution function, it may be easy for the
forecast variance to be underestimated (Anderson and An-
derson, 1999; Evensen, 2009). Therefore, over time, the ob-
servations may have a small impact on the estimation pro-
cess, and further lead to the phenomenon of filter divergence.

∗ Corresponding author: Luheng WANG
Email: wangluheng@mail.bnu.edu.cn

Therefore, dealing with the problem of forecast error variance
underestimation becomes a necessary way to prevent filter di-
vergence in this case, and the variance inflation technique is
an effective procedure to address this problem.

In early research, the variance inflation parameter was de-
termined by repeated experiments or prior knowledge (An-
derson and Anderson, 1999). Wang and Bishop (2003) pro-
posed an online estimation of the inflation parameter by a
sequence of innovation statistics. Based on their work, Li et
al. (2009) further developed an algorithm that can simulta-
neously estimate the inflation parameter and observation er-
rors. Wu et al. (2013) proposed a method to estimate the in-
flation parameter with a second-order least-squares method.
Although these methods can effectively address the phe-
nomenon of forecast variance underestimation, sometimes
the distance between the actual observation and its estimate
given the analysis state of the above methods may be too
large. In this situation, the estimate of the state cannot be
regarded as a reasonable output of the corresponding assimi-
lation method (Anderson and Anderson, 1999). Besides, the
true initial condition is usually unknown in most practical ap-
plications, and a data assimilation method is frequently ini-
tialized by guessing or prior experience, and thus the esti-
mation process may take a long time to become stable if the
initial state is settled far away from the true value. Hence,
reducing this time is also very important in practical appli-
cations, particularly when the estimate is needed as soon as
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possible (Linderoth et al., 2011; Wang et al., 2014).
To relieve the phenomenon of filter degeneracy and re-

duce the convergence time, here we judge the output of the
data assimilation method in real time based on a confidence
region constructed with the observation information. This
idea is quite similar to the quality control method. Qual-
ity control is an online procedure to monitor and control an
ongoing production process (MacGregor and Kourti, 1995;
Montgomery, 2007). If the outputs of the process fall outside
a pre-specified limit, the process is regarded as out of control
and an adjustment measure should be taken. Based on this
idea, we propose a method using the idea of quality control
to address the issues of EnKF stated above, and we call this
method EnCR, in which “CR” stands for “Confidence Re-
gion”. In the new method, the filter process is regarded as
a production process and should be adjusted when the pre-
dicted observation given the analysis value falls outside of
the pre-specified limits around the actual observation. This is
the basic idea of the EnCR method. In this way, the predicted
observation given the analysis state will not differ too much
from the actual observation, and thus the estimate (output)
will be more reasonable.

The rest of this paper is organized as follows: In section
2, we summarize the popular EnKF method and give a brief
description of the phenomenon of forecast error variance un-
derestimation. In section 3, we propose a new method to
address the problem of inflation parameter estimation in the
EnKF method. Various simulation results in the Lorenz-63
and Lorenz-96 models are presented in section 4. A sum-
mary of the new method is detailed in section 5. The techni-
cal proofs are given in the Appendix.

2. EnKF
In this section, the basic procedure of the EnKF and phe-

nomenon of forecast error variance underestimation are pre-
sented.

Consider a nonlinear discrete time state space model be-
low: {

xxxt = MMMt(xxxt−1) +ηηηt ,
yyyt = HHHt xxxt +εεεt ,

(1)

where t is the time index, xxxt ∈ <r is an r-dimensional state
vector at time t, MMMt(·) is a known nonlinear forecast operator
at time t, and ηηηt is a white, Gaussian distribution with mean
0 and variance Qt and is often referred to as the model error.
Moreover, yyyt ∈ <n is an n-dimensional observation vector at
time t, HHHt is a known linear observation operator at time t,
and εεεt is a white, Gaussian distribution with mean 0 and vari-
ance Rt and is often referred to as the observation error. The
error terms are assumed to be statistically independent and
time-uncorrelated.

When the forecast error operator MMMt(·) is linear and Qt is
known, model (1) can be solved by the classical Kalman filter.
Furthermore, when MMMt(·) is nonlinear and Qt is known, the
extend Kalman filter, EnKF or the particle filter (PF) (Gor-
don et al., 1993; Salmond and Gordon, 2005) can be used to

solve this model. However, when MMMt(·) is nonlinear and Qt
is unknown, model (1) can be solved by the EnKF or PF, in
which the forecast ensemble is obtained by the evolution of
dynamic model without involving the error term. Meanwhile,
the corresponding ensemble can be used to estimate the fore-
cast variance. Before proceeding with the EnKF procedure,
we denote the ensemble at time t as {xt,i, i = 1,2, . . . ,m}, where
m represents the sample size. In this paper, we denote the
forecast ensemble with subscript f and the analysis ensemble
with subscript a. Thus, the EnKF procedure can be stated as
follows:

First, the initial distribution is usually assumed to be
known and generated from a Gaussian distribution:

xxx0,i,a ∼ N(µ0,Q0), 1 6 i 6 m ,

where µ0 and Q0 are assumed to be known and usually spec-
ified by experience.

The forecast ensemble and its error variance can be esti-
mated by

xxxt,i,f = MMMt(xxxt−1,i,a), xxxt,f =
1
m

m∑

i=1

xxxt,i,f , (2)

P̂t|t−1 =
1

m−1

m∑

i=1

(xxxt,i,f − xxxt,f)(xxxt,i,f − xxxt,f)′ . (3)

Then, the analysis ensemble can be obtained by

xxxt,i,a = xxxt,i,f + P̂t|t−1HHH′t (HHHtP̂t|t−1HHH′t + Rt)−1(yyyt +γγγt,i−HHHt xxxt,i,f) ,
1 6 i 6 m , (4)

where γγγt,i ∼ N(0,Rt), i = 1,2, . . .m. Here, yyyt + γγγt,i can be
viewed as a perturbed observation of the observation at time
t. Therefore, the analysis state can be estimated by

xxxt,a =
1
m

m∑

i=1

xxxt,i,a . (5)

From the procedure described above, we can ascertain
that the estimated forecast error variance P̂t|t−1 in Eq. (4) is
underestimated because the true forecast error variance can
be represented by

Pt|t−1 = E((xxxt − xxxt,i,f)(xxxt − xxxt,i,f)′)
= lim

m→∞(P̂t|t−1 + E((xxxt − xxxt,f)(xxxt − xxxt,f)′))

= lim
m→∞(P̂t|t−1) + Qt . (6)

Hence, over time, the forecast error variance may be sig-
nificantly underestimated and the phenomenon of filter de-
generacy may occur.

Moreover, even though the model error Qt is known, the
problem of forecast error variance underestimation may also
exist because of the existence of spurious correlations over
long spatial distances or between variables known to be un-
correlated (Evensen, 2009). Hence, the filter may also be-
come degenerated over time, as depicted in the simulation
example of the perfect model case in subsection 4.2.2 or the
explanations of Evensen (2009, Chapter 15) about this issue.



336 DATA ASSIMILATION WITH CONFIDENCE REGION VOLUME 35

Therefore, the forecast error variance is typically multi-
plied by a parameter that is bigger than one to relieve the
problem of forecast error variance underestimation; that is,

Pt|t−1 = λtP̂t|t−1 , (7)

where λt is the adjustment (inflation) parameter. Then, the
inflated forecast error variance λtP̂t|t−1 is used to replace the
original P̂t|t−1 in Eq. (4). The adjustment parameter can be es-
timated by many methods, e.g., the W-B (Wang and Bishop,
2003) or the SLS [Second-order Least Squares, (Wu et al.,
2013)] methods. However, these methods do not consider
whether the forecast observation given the analysis state dif-
fers too much from the newest observation. Next, we present
the estimation of λt with the constraints of confidence region.

3. Inflation parameter estimation by the
EnCR method

One of the main tasks of data assimilation is to obtain an
online estimate of state with the newest observation informa-
tion arriving. At time t, the conditional probability density
distribution (PDF) of state given all the observations until
time t in model (1) can be expressed as

P(xxxt |Yt) =
P(yyyt |xxxt)P(xxxt |Yt−1)

P(yyyt |Yt−1)
, (8)

where Yt = {yyy1,yyy2, . . . ,yyyt}. For more details about the deduc-
tion of Eq. (8), please refer to Gordon et al. (1993) or Ander-
son and Anderson (1999).

From Eq. (8), we can see that if the relative probability
of yyyt given xxxt is too small—that is, the prediction observa-
tion given the analysis state diverges too far from the actual
observation—the final conditional PDF of xxxt will also be very
small. This means that xxxt is unlikely to be the true state (An-
derson and Anderson, 1999)—that is, the analysis state xxxt,a
cannot be regarded as a reasonable estimate if the value of
p(yyyt |xxxt,a) is too small. Therefore, we can evaluate the out-
come using this perspective. From this point of view, we
construct a confidence region based on the observation to cal-
culate the inflation parameter in the EnKF.

3.1. EnCR method
Based on the descriptions above, we introduce a confi-

dence region to testify the feasibility of the analysis state.
This idea is similar to the quality control method. Qual-
ity control is a method that aims at monitoring the extent to
which products meet specifications. By monitoring the qual-
ity characteristics, the abnormality of a production procedure
can be detected quickly and a measure can be taken in time to
guarantee that the process is under control (MacGregor and
Kourti, 1995; Montgomery, 2007). Statistical principles are
widely used in quality control and, here, we briefly introduce
its procedure based on the χ2 statistic.

Suppose the quality characteristic is xxx, Σ̂ is the corre-
sponding estimated in-control covariance, and µµµ is a pre-

specified value. The control region can be stated as

DL = {xxx : (xxx−µµµ)′Σ−1(xxx−µµµ) < χ2
α} ,

where χα is the α quantile of the χ2 distribution. If xxx falls
in the region DL, the production process is considered to be
normal; otherwise, the process is regarded as out of control
and some adjustment procedure needs to be taken. Usually,
α is set as 0.99; that is

P((xxx−µµµ)′Σ−1(xxx−µµµ) 6 L) = 0.99 .

Similarly, we can view the EnKF method with an un-
known adjustment parameter as a production process, and the
analysis state can be viewed as the corresponding product of
the process. Hence, we can determine the parameter based on
the idea of quality control and construct the corresponding
control region as follows: First, the product (analysis state)
xxxt,a can be expressed as

xxxt,a(λt) = xxxt,f +λtP̂t|t−1HHH′t (λtHHHtP̂t|t−1HHH′t + Rt)−1(yyyt −HHHt xxxt,f) ,
(9)

which is controlled by parameter λt, and xxxt,f represents the
prior forecast of the state. The observation can be viewed as
the pre-specified value, and the control statistic can be con-
structed by

ut(λt) = (yyyt −HHHt xxxt,a(λt))′V−1
t (yyyt −HHHt xxxt,a(λt)) , (10)

where Vt is the in-control covariance matrix that can be cal-
culated by

Vt = E((yyyt −HHHt xxxt,a(λt))(yyyt −HHHt xxxt,a(λt))′) .

The parameter λt needs to be adjusted when xxxt,a falls outside
the control region (confidence region):

D = {λt : ut(λt) < L} , (11)

where L is the α quantile of the χ2(n) distribution and is usu-
ally set between 0.90 and 0.99, and n is the dimension of yyyt.

Theorem 3.1: Under assumption (7), we have

Vt = Rt(λtHHHtP̂t|t−1HHH′t + Rt)−1Rt (12)

Theorem 3.2: Under assumption (7), the analysis state
variance of EnCR can be expressed as

E((xxxt − xxxt,i,a)(xxxt − xxxt,i,a)′) = (λ−1
t P̂−1

t|t−1 + HHH′tR
−1
t HHHt)−1 . (13)

Theorem 3.3: The control statistic can be expressed as

ut(λt) = (yyyt −HHHt xxxt,f)′(λtHHHP̂t|t−1HHH′+ R)−1(yyyt −HHHt xxxt,f) , (14)

Based on the results of theorem 3.3, we can ascertain that
λt is a monotonically decreasing function of ut(λt); therefore,
the adjustment parameter can be constructed by Eqs. (11) and
(14). That is, if the initial value λt < D, we increase λt until
it falls in the region D. In this paper, the parameter λt that
first falls in region D is used as its estimate. We also note that
the calculation of λt in Eq. (14) only involves the dimension
of the observation, which is time-saving, especially in some
high-dimensional situations, if the dimension of the observa-
tion is much smaller than the state.

Next, the algorithm procedure of the EnCR is presented.
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3.2. EnCR procedure
Based on the descriptions stated above, the EnCR proce-

dure can be expressed as follows:
(1) Set the initial values xxx0 and Q0; and define L to be the

α quantile of χ2(n). Here, we set α = 0.99 in the simulation
examples.

(2) Generate the initial ensemble xxx0,1,a, xxx0,2,a, · · · , xxx0,m,a
from N(uuu0,Q0) and set t = 1.

(3) Set the initial parameter λt = 1 and calculate the fore-
cast state and its variance by

xxxt,i,f = MMMt(xxxt−1,i,a) , xxxt,f =
1
m

m∑

i=1

xxxt,i,f ,

P̂t|t−1 =
1

m−1

m∑

i=1

(xxxt,i,f − xxxt,f)(xxxt,i,f − xxxt,f)′ .

(4) If the inequality below holds, go to step (5); otherwise,
go to step (6):

(yyyt −HHHt xxxt,f)′(λtHHHP̂t|t−1HHH′+ R)−1(yyyt −HHHt xxxt,f) > L ,

(5) If λt < K, we increase the value until it enters the fea-
sible region of step (4), where K represents the upper bound,
and we set it to 100 in the simulations; then go to step (4).

(6) Generate the observation samples γ1,γ2, . . . ,γm from
N(0,Rt) and evaluate the analysis ensemble, analysis state
and its variance by

xxxt,i,a = xxxt,f +λtP̂t|t−1HHH′t (λtHHHtP̂t|t−1HHH′t + Rt)−1(yyyt +γγγi−HHHt xxxt,i,f) ,
1 6 i 6 m ,

xxxt,a =
1
m

m∑

i=1

xxxt,i,a .

Pt,a = (λ−1
t P̂−1

t|t−1 + HHH′tR
−1
t HHHt)−1 .

(7) If t reaches the last time point, stop the algorithm;
otherwise, go to step (3).

Then, the analysis state of all the observation time can be
obtained.

4. Experiments on Lorenz models
In this section, we evaluate the finite sample performance

of the EnCR method with the Lorenz-63 and Lorenz-96 mod-
els. Both these models have chaotic behavior and are very
sensitive to the initial condition settings. In these experi-
ments, some of the model settings are adapted from the work
of Evensen (2009) and Wu et al. (2013). To illustrate the
performance of the EnCR method, we compare the assimila-
tion results of EnCR with the EnKF, W-B (Wang and Bishop,
2003) and SLS methods (Wu et al., 2013).

4.1. Simulation results of the Lorenz-63 model
The Lorenz-63 model is a set of nonlinear differential

equations with three variables (Lorenz, 1963). The solution
of this model has chaotic behavior and is very sensitive to

the initial condition settings. Moreover, this model has been
examined by various data assimilation methods for their po-
tential applications with other strongly nonlinear and chaotic
models, such as oceanic and atmospheric models (Palmer,
1993; Anderson and Anderson, 1999; Evensen, 2009; Sheng
and Li, 2015).

4.1.1. Forecast model

First, the Lorenz-63 model can be expressed as

M(x) =



dx1

dt
= ax2−ax1

dx2

dt
= (b− x3)x1− x2

dx3

dt
= x1x2− cx3

, (15)

where x = (x1, x2, x3) is the state and a,b,c is the model pa-
rameter. Here, we adopt the parameter settings of Evensen
(2009) and set a = 10, b = 28, c = 8/3.

We use a forecast model with a model error added on
model (15):

xxxt = MMM(xxxt−1) +ηηηt , (16)

where {ηηηt} is a sequence of independent and identical random
variables that obey a normal distribution of N(0,Qt).

4.1.2. Observation model

Here, we consider an observation operator whose dimen-
sion is less than three:

yyyt = HHHt xxxt +εεεt , (17)

where {εεεt} is a sequence of independent and identical random
variables that obey a normal distribution of N(0,Rt). The ob-
servation matrix H is set as

Ht =

(
1 2 3
1 1 1

)
,

which is independent of time.

4.1.3. Description of the setup

In this simulation experiment, we set the time step as
0.05 and solve the Lorenz model (15) with a fourth-order
Runge–Kutta integration scheme, and the observations are
obtained every four time steps. The initial condition is given
by xxx0 = (1,2,3)′, and the true state series are generated by Eq.
(16) and denoted by xxx0, xxx0.2, xxx0.4, · · · , xxx30.

The observations are generated by Eq. (17) and denoted
by yyy0.2,yyy0.4, · · · ,yyy30. We repeat this procedure 200 times and
at each time we can obtain an estimate sequence. Hence, the
root-mean-square error (RMSE) of the state in the kth dimen-
sion of state at time t can be calculated by

RMSEk(t) =

√√
1
n

n∑

i=1

(xk,t − xk,t,i,f)2 , (18)

wherexk,t is the kth dimension of state at time t; andxk,t,i,f is its
ith forecast ensample estimate, where i = 1, . . . ,200. For sim-
plicity, we denote RMSEk(t) simply as “RMSE”. It is obvious
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that a smaller RMSE usually indicates a better performance
of the corresponding assimilation method. Moreover, we also
use the time-averaged RMSE value as a criterion to compare
the performance of different assimilation methods.

4.1.4. Initial condition settings

Since in practical situations the true initial distribution is
usually not available, we set an inaccurate initial condition for
all the assimilation methods in the simulation experiments to
study the robustness of the new method. That is, in the nu-
merical experiments of subsection 4.1.5 and subsection 4.1.6,
the mean value of the initial distribution used to estimate the
state diverges a distance of 10 from the true initial value used
to generate the state. The initial distribution is set with a nor-
mal distribution with mean (11,12,13) and variance 0.52I3.
The ensemble size is 30 in all cases. Additionally, in subsec-
tion 4.1.7, the influence of different initial condition settings
is further studied via numerical experiments.

4.1.5. Assimilation results of one case

First, we compare the performance of EnCR with the W-
B and SLS methods in a situation when the model error vari-
ance Qt = 0.012I3 and the observation error variance Rt = I2.

Figure 1 displays the results of the RMSE of the three
dimensions of the state based on the W-B, SLS and EnCR
methods, separately. From this figure, we can see that the
convergence rate of the EnCR method is slightly faster than
that of the other two methods, and the RMSE values of the
SLS and EnCR methods are clearly smaller than that of the

W-B method. To further compare the performances of the
EnCR and SLS methods, we remove the RMSE line of the
W-B method and obtain Fig. 2. From this figure, it is clear
that the EnCR method obtains the smallest RMSE overall.

Moreover, Table 1 demonstrates the time-averaged
RMSE values of the EnKF, W-B, SLS and EnCR methods.
This table indicates that the W-B, SLS and EnCR methods
significantly reduce the time-averaged RMSE of the EnKF
method, and the EnCR method achieves the smallest time-
averaged RMSE of all the methods. Furthermore, to study
the implications of different variance settings, the four meth-
ods are compared under various variance settings in the next
subsection.

4.1.6. Implications of the model and observation error vari-
ance settings

In this subsection, we study the estimated accuracy and
stability of the EnCR method under different error variance
settings.

Table 1. Time-averaged RMSE values of different methods.

RMSE

Method x1 x2 x3

EnKF 5.75 6.89 6.36
W-B 0.88 1.38 1.25
SLS 0.38 0.70 0.73

EnCR 0.22 0.46 0.55

Fig. 1. RMSE of the W–B, SLS and EnCR methods.
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Fig. 2. RMSE of the SLS and EnCR methods.

First, the observation error variance is set as Rt = 0.12I3,
and the value of model error variance is set as Qt = σ2

1I3,
where σ1 is a varying parameter. The results are demon-
strated in Table 2. From this table, we can see that as σ1 in-
creases, the estimated precision of all the methods decreases,
which is consistent with our intuition. When Qt 6 0.12I2,
the time-averaged RMSEs of the SLS and EnCR methods
are quite close; and when Qt > 0.12I2, the EnCR method ob-
tains the smallest time-averaged RMSE. Moreover, when the
model error variance is large, i.e. the last several columns of
Table 2, the time-averaged RMSE of the W-B, SLS and EnCR

Table 2. Time-averaged RMSE values of three states in the Lorenz-
63 model with a variation of σ1, where Rt = 0.12I3 and Qt = σ2

1I2.

σ1 0.01 0.05 0.1 0.2 0.5 1 1.5

x1 EnKF 8.96 8.74 8.81 9.48 9.43 9.95 10.31
W-B 0.35 0.37 0.37 0.71 2.16 4.76 2.78
SLS 0.08 0.12 0.16 0.29 0.62 2.66 2.77

EnCR 0.09 0.13 0.16 0.28 0.57 1.48 2.08
x2 EnKF 10.96 10.87 10.98 11.47 11.63 12.22 12.09

W-B 0.69 0.71 0.65 1.05 3.72 13.03 4.26
SLS 0.24 0.28 0.32 0.46 0.91 5.54 3.88

EnCR 0.25 0.31 0.33 0.45 0.91 2.02 2.99
x3 EnKF 10.24 10.76 10.38 10.69 10.58 11.32 10.36

W-B 0.80 0.74 0.65 1.12 5.07 15.90 5.11
SLS 0.31 0.35 0.39 0.53 1.01 6.59 5.03

EnCR 0.31 0.36 0.39 0.52 0.92 1.91 3.28

methods are much smaller than that of the EnKF method,
and the EnCR method maintains the smallest time-averaged
RMSE value, which suggests that the estimated accuracy of
the EnCR method is better than that of the other methods.

Using the information provided in Table 3, we study the
influence of the observation error variance when the model
error variance is fixed. That is, we set the model error vari-
ance Qt = 0.12I3 and the observation error variance Rt =σ2

2I3
with different σ2 values. From this table, we can see that,
overall, the estimated precision of the EnCR method is better
than that of the other methods. Moreover, it is also notable
that, even when the observation variance is relatively large,
the new method performs better than the other three meth-
ods. Overall, Table 3 shows that the performance of the new
method is significantly superior to the other three methods.

Based on the above results, the estimation results of the
EnCR method are superior to the other three methods, partic-
ularly when the model error variance is large. Furthermore,
as the error variance increases, the estimation precision of all
the methods decreases. In short, the simulation results indi-
cate that the new method has a higher estimation precision
and is more stable than the other methods.

4.1.7. Implications of the initial condition settings

In this section, the implications of the initial condition
settings are examined for different assimilation methods.
Here, we set the model error variance Qt to 0.012I3 and the
observation error variance to Rt = I2. For description simplic-
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ity, the variance of the initial condition is set to 0.5I3, and we
set the same deviation for the simulation initial value of the
three state components to the true initial value and denote it
by Diff—that is, Diff = x̂0,i− x0,i, i = 1,2,3, where x̂0,i and x0,i
are the simulation initial state and the true state of x0 in the
ith component, respectively.

Table 4 gives the estimation results of all the methods
under different deviation Diff settings. The time-averaged
RMSE of the EnKF method increases significantly as the
deviation increases. However, the time-averaged RMSE of
the W-B, SLS and EnCR methods grows very slowly as the
bias of the model initial condition increases, which indicates
that the three methods are not extremely sensitive to the ini-
tial condition settings. The estimated precision of the EnCR
method is evidently superior to the other methods in this ex-
periment.

It is also interesting to study the estimated inflation values
of the three methods with different initial condition settings.
As we know, the initial state is biased and the variance in-
flation technique should be adopted in the first several steps.
Here, we consider the mean value of the inflation parameter
estimation in the first six steps. Table 5 gives the mean value
of the inflation parameter with an increase in the bias of the

Table 3. Time-averaged RMSE values of three states in the Lorenz-
63 model with a variation of σ2, where Rt = σ2

2I3 and Qt = 0.12I2.

σ2 0.01 0.05 0.1 0.2 0.5 1 1.5

x1 EnKF 5.44 7.77 8.97 8.59 5.44 5.68 4.32
W-B 0.82 0.46 0.39 0.39 0.54 0.84 1.18
SLS 0.17 0.15 0.16 0.18 0.25 0.44 0.67

EnCR 0.15 0.15 0.16 0.19 0.26 0.33 0.44
x2 EnKF 6.78 9.68 11.09 10.57 6.70 6.95 5.39

W-B 1.91 0.96 0.68 0.67 0.90 1.37 1.86
SLS 0.33 0.30 0.32 0.36 0.48 0.77 1.10

EnCR 0.30 0.30 0.33 0.38 0.50 0.63 0.78
x3 EnKF 6.55 9.28 10.12 9.91 6.40 6.57 5.17

W-B 2.26 0.98 0.67 0.66 0.81 1.19 1.62
SLS 0.39 0.38 0.39 0.43 0.54 0.79 1.10

EnCR 0.37 0.37 0.39 0.44 0.55 0.69 0.84

Table 4. Time-averaged values of the RMSE of the three states of
the Lorenz-63 model with different initial settings.

Diff 0 2 4 6 8 10

x1 EnKF 0.18 1.60 6.13 6.26 6.33 5.92
W-B 0.80 0.88 0.87 0.88 0.86 0.87
SLS 0.30 0.34 0.36 0.36 0.35 0.40

EnCR 0.17 0.23 0.24 0.24 0.23 0.22
x2 EnKF 0.28 2.03 7.53 7.56 7.75 7.07

W-B 1.16 1.26 1.21 1.29 1.32 1.38
SLS 0.44 0.50 0.51 0.54 0.60 0.73

EnCR 0.27 0.35 0.33 0.38 0.43 0.47
x3 EnKF 0.27 2.05 7.39 7.35 7.63 6.69

W-B 0.92 1.07 1.14 1.20 1.20 1.23
SLS 0.42 0.53 0.63 0.67 0.69 0.76

EnCR 0.26 0.38 0.47 0.52 0.54 0.55

Table 5. Time-averaged values of the RMSE of the three states of
the Lorenz-63 model with different initial settings.

Diff 0 2 4 6 8 10

λ W-B 102.31 93.88 118.58 96.53 93.27 89.50
SLS 1.45 12.84 249.50 111.60 58.46 74.68

EnCR 1.51 5.13 18.51 22.14 27.65 32.00

initial state settings. From this table, we can see that the esti-
mation of the inflation parameter of the new method is more
reasonable than the other two methods. That is, when the de-
viation of the initial state is zero, a smaller inflation should
be adopted, and with an increase in the deviation, the infla-
tion parameter should also increase. The inflation estimation
of the W-B method is always very large, and the variation of
the SLS method is not as reasonable as the new method.

4.2. Simulation results of the Lorenz-96 model
The Lorenz-96 model is a 40-dimension differential equa-

tions model, and it is widely used in various data assimilation
studies. In this section, we use this model to study the perfor-
mance of the EnCR method.

4.2.1. Model description and parameter settings

The Lorenz-96 model can be expressed by

dXk

dt
= (Xk+1−Xk+2)Xk−1−Xk + F , (19)

where k = 1,2, . . . ,K(K = 40) and the boundary conditions
are assumed to be cyclic; that is, X−1 = XK−1, X0 = XK ,
XK+1 = X1. Here, F is the external forcing term and we set it
to F = 8 to generate the true state values in this experiment.
The solution of the Lorenz-96 model has chaotic behavior
and mimics the temporal evolution of a scalar meteorologi-
cal quantity on a circle of latitude, and the three terms of the
right-hand side of Eq. (19) can be viewed as an advection-
like term, a damping term and an external forcing term, re-
spectively (Wu et al., 2013). Besides, similar to the Lorenz63
model, we use the fourth-order Runge–Kutta time integration
scheme to solve the state model (19), and set a time step of
0.05 non-dimensional units to drive the true state. Besides,
assuming the characteristic time scale of the dissipation in the
atmosphere is five days, the time step here is roughly equiva-
lent to six hours in real time (Lorenz, 1996).

In this model, we adopt the parameter settings of Wu et al.
(2013) and set X0,k = F, k , 20, X0.20 = 1.01F, with the time
step set as 0.2. To achieve stationary estimation results, we
obtain the observations every four time steps over a duration
of 100 000.

In this study, the observations are generated by an identi-
cal observation operator with a Gaussian distribution error:

yt = xt +εt, εt ∼ N(0,Rt), (20)

where the observation error variance Rt is spatially correlated
with

Rt(i, j) = σ2
00.5min{|i− j|,40−|i− j|} , (21)
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in which we set σ0 = 1.
In this study, we use the average state estimate error to

compare the performance of different methods, and denote it
as A-RMSE:

A-RMSE(t) =

√√√
1
K

K∑

k=1

(x̂k,t,f − xk,t)2 , (22)

where K is the dimension of state, xk,t is the true state of
the kth dimension at time t, and x̂k,t,f is the corresponding
forecast ensemble estimate. Similar to the RMSE criterion,
a smaller A-RMSE usually indicates a better performance of
the corresponding assimilation method.

4.2.2. Results when F is correctly specified

First, we consider a situation when the forcing term F is
correctly specified—that is, there has no model error when
estimating the state. Here, we use a normal distribution to
generate the initial ensemble:

x0, j = x0 +γ j, γ j ∼ N(0.052I40), 1 6 j 6 30. (23)

Figure 3 shows the results of the A-RMSE value of the
four methods when the sample size is 20. To make the results

clearer, only the A-RMSE results of the first 100 s (500 steps)
are displayed in the figure (the trend of A-RMSE after 100 s
is similar to the trend around the 100 s). When the sample
size is small, the EnCR method obtains the best estimation
results, followed by the W-B method. However, the results of
the SLS and EnKF methods to a certain degree show up the
phenomenon of filter degeneracy in this case.

Figure 4 presents the results of the A-RMSE value when
the sample size is 80. In this case, the EnKF method re-
lieves the phenomenon of filter degeneracy in the initial stage.
However, over time, the EnKF method begins to degenerate
at approximately 15 s. Overall, the other three methods pre-
vent the filter degeneration phenomenon quite well, and the
estimated accuracy of the SLS and EnCR methods is slightly
better than that of the W-B method.

Additionally, Table 6 provides the results of the time-
averaged A-RMSE over 100 000 time steps for all the meth-
ods under different sample size settings. Overall, the A-
RMSE of the EnCR method is smaller and more stable than
that of the other methods. Moreover, the estimation results of
the EnKF method are the poorest, which is coincident with
our intuition.

Fig. 3. A-RMSE value of the EnKF, W-B, SLS and EnCR methods when the sample size is 20.

Fig. 4. A-RMSE value of the EnKF, W-B, SLS and EnCR methods when the sample size is 80.
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Table 6. Time-averaged value of A-RMSE over 100 000 time steps
of the EnKF, W-B, SLS and EnCR methods under different sample
size settings.

EnKF W-B SLS EnCR

20 4.824 1.846 3.981 1.246
80 4.478 0.713 0.556 0.514

150 4.275 0.728 0.524 0.422

4.2.3. Results when F is incorrectly specified

Since the true model is usually not available, a model
used in practical situations is always an approximation of the
real one. Therefore, studying the estimation performance of
a data assimilation method in the situation when the model
is incorrectly specified is meaningful. Here, we also use the
A-RMSE criterion to examine the estimation robustness of
different models.

We also adopt the model parameter settings in subsection
4.2.2 and set F = 8 to generate the true states; however, we
use different values of F when we estimate the states, such as
F = 4,5, . . . ,12.

Figure 5 shows the results of the time-averaged A-RMSE
over 100 000 time steps of the four methods with differ-
ent forcing term values when the sample size is 20. When
the sample size is small, the time-averaged A-RMSE of the
EnCR method is smallest among all methods. Moreover,
the time-averaged A-RMSE values of the SLS and EnKF
methods are significantly larger than those of the other two
methods. It is also very interesting that the minimum value of
the time-averaged A-RMSE of the SLS and EnKF methods
is not achieved at the point when F = 8, in which the value of
F is same with that of the model when we generate the data.
This is a little inconsistent with our intuition and is possibly

Fig. 5. Time-averaged A-RMSE over 100 000 time steps of the
four methods for different settings of the forcing term F when
the sample size is 20.

because when the sample size is very small, both methods
are degenerated (as shown in Fig. 3), and thus the observa-
tion information contributes very little to the state estimation
process. Next, we verify this conjecture by increasing the
sample size in the following simulations.

Figures 6–7 show the results when the sample size is 80
and 100, respectively. First, we can see that when the sample
size is large, the EnKF and SLS methods achieve their mini-
mum time-averaged A-RMSE when F = 8, which verifies the
above conjecture. When F is around the true value, there has

Fig. 6. Time-averaged A-RMSE over 100 000 time steps of the
four methods for different settings of the forcing term F when
the sample size is 80.

Fig. 7. Time-averaged A-RMSE over 100 000 time steps of the
four methods for different settings of the forcing term F when
the sample size is 100.
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very little difference in estimation among the SLS, W-B and
EnCR methods. However, when F is much smaller than 8, the
W-B method achieves the smallest time-averaged A-RMSE,
but the results of the EnCR and W-B methods are almost in-
distinguishable. When F is much larger than 8, the EnCR
method achieves the best precision among all the methods.
Based on the above results, we can conclude that the EnCR
method demonstrates preferable performance and robust es-
timation results compared with the other methods.

4.3. Summary of the experimental results
From the experiments using the Lorenz-63 model, we can

draw the following conclusions:
(1) Overall, the EnCR method performs best. The SLS

method ranks second and, when the observation error vari-
ance is small, the precision values of the SLS and EnCR
methods are very close. However, when the observation er-
ror variance is large, the performance of the EnCR method is
clearly better than the other methods.

(2) With the model error variance increases, the precision
of the EnCR and SLS methods tends to be similar and better
than that of the W-B and EnKF methods.

(3) The EnCR, W-B and SLS methods are not very sen-
sitive to the initial condition settings, and the estimation re-
sults of the EnCR method are better than those of the other
two methods under different initial deviation settings, which
suggests the new method produces a more robust and highly
precise estimation result.

From the experiments using the Lorenz-96 model, we can
draw the following conclusions:

(1) When the model forcing parameter is correctly speci-
fied and the sample size is small, the EnCR method is better
than the other methods. With the sample size increases, the
precision values of the W-B, SLS and EnCR methods become
very close to one another.

(2) When the model forcing parameter is incorrectly spec-
ified, the EnCR method is better than the other methods when
the sample size is small. When F used in the model is smaller
than the true value and the sample size is large, the W-B
method obtains the best results, and the results of the EnCR
method are very close to the results of the W-B method in
that case. Moreover, when F is larger than the true value, the
EnCR method achieves the best results and is clearly better
than the other methods.

5. Conclusions
In this paper, we propose a new method to estimate

the forecast error variance inflation parameter in the classi-
cal EnKF method. In the simulation experiments, the new
method significantly improves the accuracy of the EnKF
method and achieves robust estimation results when the ini-
tial settings and model parameters are incorrectly specified.
Moreover, based on our simulation process, when the forecast
model or the initial settings are very poor, the adjustment pa-
rameter estimated by the new method can be very large, and

in this situation the observation information is fully used to
obtain a robust estimate. Therefore, the parameter estimate
of the new method is more flexible than the other methods.
However, although the new method performs quite well in the
simulations, when dealing with high-dimensional problems
the inverse of λtHP̂t|t−1H′ + Rt in the algorithm will be ex-
pensive if the dimension of the observation is also very high.
In this case, our conjecture that some diagonal substitution of
λtHP̂t|t−1H′ + Rt could possibly be adopted to save on com-
putation time if λtHR̂t|t−1H′ + Rt is diagonal dominant. We
intend to consider the situation of a high-dimensional case in
future research.

Using the idea of a confidence region to estimate the pa-
rameter of the EnKF method can also be extended to other
unknown parameter estimation problems within data assimi-
lation methods. In our future studies, the idea of a confidence
region will be further studied in a similar direction.
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APPENDIX

Proof of Theorem 1
From Eq. (9) we can obtain

E((yyyt −HHHt xxxt,a(λ))(yyyt −HHHt xxxt,a(λ))′)
= E(Rt(λtHHHtP̂t|t−1HHH′t + Rt)−1(yyyt −HHHt xxxt,f)(yyyt −HHHt xxxt,f)′

(λtHHHtP̂t|t−1HHH′t + Rt)−1Rt).

Then, from Eqs. (6) and (7),

E(Rt(λtHHHtP̂t|t−1HHH′t + Rt)−1(yyyt −HHHt xxxt,f)
(yyyt −HHHt xxxt,f)′(λtHHHtP̂t|t−1HHH′t + Rt)−1Rt)

= E(Rt(λtHHHtPt|t−1HHH′t + Rt)−1(εεεt + HHHt(xxxt − xxxt,f))
(εεεt + HHHt(xxxt − xxxt,f))′(λtHHHtPt|t−1HHH′t + Rt)−1Rt)

= Rt(λtHHHtPt|t−1HHH′t + Rt)−1(HHHtE((xxxt − xxxt,f))
((xxxt − xxxt,f))′HHH′t + Rt)(λtHHHtPt|t−1HHH′t + Rt)−1Rt

= Rt(λtHHHtPt|t−1HHH′t +Rt)−1(λtHHHtPt|t−1HHH′t +Rt)
(HHHtPt|t−1HHH′t +Rt)−1Rt

= Rt(λtHHHtP̂t|t−1HHH′t + Rt)−1Rt .

This completes the proof.

Proof of Theorem 2
From Eq. (4), xt satisfies the linear regression model be-

low: (
xxxt,i,f
yyyt

)
=

(
III

HHHt

)
xxxt +

(
η̃ηηt
εεεt

)
,
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where η̃ηηt ∼ (0,Pt|t−1), εεεt ∼ (0,Rt), and η̃ηηt is independent of εεεt.
The analysis state xxxt,i,a is the least-squares estimate of this
model, which can be represented in another form:

xxxt,i,a = (P−1
t|t−1 + HHH′tR

−1
t HHHt)−1(P−1

t|t−1xxxt,i,f + HHH′tR
−1
t yyyt) .

Notice that:

xxxt,i,a = (P−1
t|t−1 + HHH′tR

−1
t HHHt)−1(P−1

t|t−1(xxxt + η̃ηηt)+HHH′tR
−1
t (HHHt xxxt +εεεt))

= xxxt + (P−1
t|t−1 + HHH′tR

−1
t HHHt)−1(P−1

t|t−1η̃ηηt + HHH′tR
−1
t εεεt) .

Then, since η̃t and εt are independent, we have

E((xxxt − xxxt,a)(xxxt − xxxt,a)′)
= (P−1

t|t−1 + HHH′tR
−1
t HHHt)−1E((P−1

t|t−1η̃ηηt + HHH′tR
−1
t εεεt)

(P−1
t|t−1η̃ηηt + HHH′tR

−1
t εεεt)′)(P−1

t|t−1 + HHH′tR
−1
t HHHt)−1

= (P−1
t|t−1+HHH′tR

−1
t HHHt)−1(P−1

t|t−1+HHH′tR
−1
t HHHt)(P−1

t|t−1+HHH′tR
−1
t HHHt)−1

= (P−1
t|t−1 + HHH′tR

−1
t HHHt)−1.

The results of Theorem 2 can then be achieved by as-
sumption (7).

Proof of Theorem 3
The innovation yyyt −HHHt xxxt,a(λ) can be represented by

yyyt −HHHt xxxt,a(λt)
= yyyt −HHHt(xxxt,f +λtP̂t|t−1HHH′(λtHHHP̂t|t−1HHH′+ R)−1(yyyt −HHHt xxxt,f))
= (III−λtHHHP̂t|t−1HHH′(λtHHHP̂t|t−1HHH′+ R)−1)(yyyt −HHHt xxxt,f)
= R(λtHHHP̂t|t−1HHH′+ R)−1(yyyt −HHHt xxxt,f)

Then, substituting the above equation into the expression
of the statistic, we obtain

(yyyt−HHHt xxxt,a(λt))′V−1
t (yyyt −HHHt xxxt,a(λt))

= (yyyt−HHHt xxxt,a(λt))′(Rt(λtHHHtP̂t|t−1HHH′t +Rt)−1Rt)−1(yyyt−HHHt xxxt,a(λt))
= (yyyt−HHHt xxxt,f)′(λtHHHP̂t|t−1HHH′+ R)−1(yyyt −HHHt xxxt,f) .

This completes the proof of Theorem 3.
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