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ABSTRACT

Soil enthalpy (H) contains the combined effects of both soil moisture (w) and soil temperature (T ) in the land surface
hydrothermal process. In this study, the sensitivities of H to w and T are investigated using the multi-linear regression method.
Results indicate that T generally makes positive contributions to H, while w exhibits different (positive or negative) impacts
due to soil ice effects. For example, w negatively contributes to H if soil contains more ice; however, after soil ice melts,
w exerts positive contributions. In particular, due to lower w interannual variabilities in the deep soil layer (i.e., the fifth
layer), H is more sensitive to T than to w. Moreover, to compare the potential capabilities of H, w and T in precipitation
(P) prediction, the Huanghe–Huaihe Basin (HHB) and Southeast China (SEC), with similar sensitivities of H to w and T ,
are selected. Analyses show that, despite similar spatial distributions of H–P and T–P correlation coefficients, the former
values are always higher than the latter ones. Furthermore, H provides the most effective signals for P prediction over HHB
and SEC, i.e., a significant leading correlation between May H and early summer (June) P. In summary, H, which integrates
the effects of T and w as an independent variable, has greater capabilities in monitoring land surface heating and improving
seasonal P prediction relative to individual land surface factors (e.g., T and w).

Key words: seasonal precipitation prediction, land surface process, soil enthalpy, soil moisture, soil temperature

Citation: Zhao, C. Y., H. S. Chen, and S. L. Sun, 2018: Evaluating the capabilities of soil enthalpy, soil moisture and soil
temperature in predicting seasonal precipitation. Adv. Atmos. Sci., 35(4), 445–456, https://doi.org/10.1007/s00376-017-
7006-5.

1. Introduction
The importance of land–atmosphere interactions and rel-

evant physical processes has been increasingly recognized in
analyses of land surface factors, such as soil moisture, snow,
vegetation and soil temperature. Similar to sea water, the land
surface also constitutes a significant “memory” component
of the Earth’s climate system. However, the slowly varying
land memory associated with the atmospheric forcing, and
the mechanisms that drive land–atmosphere interactions, re-
main unclear (Wu and Dickinson, 2004; Liu, 2010; Yang and
Zhang, 2016).

Soil acts as a large heat source or sink, and thus can
adjust the amplitude of the surface temperature annual cy-
cle. In general, heat is transferred to deep soil layers and
stored in the warm season, and is then released upward in the
cold season, thereby increasing the surface soil temperature
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(Guo and Sun, 2002; Zhang and Wu, 2014). Usually, land
surface thermal conditions can be described by the soil ther-
mal status, which is largely determined by two soil elements:
soil moisture and soil temperature. Soil moisture, which gen-
erally refers to water contained in the unsaturated soil zone,
acts as a storage for precipitation, controls the partitioning of
net radiation into sensible and latent heat fluxes, and more-
over influences soil heat storage through altering soil ther-
mal properties (e.g., specific heat capacity; Dirmeyer et al.,
2003; Koster et al., 2004; Seneviratne et al., 2010; Zhang
et al., 2011). As the other important component of land sur-
face processes, soil temperature represents the soil energy
status and heat transfer conditions (Tang and Reiter, 1986;
Qian et al., 2011; Yang and Zhang, 2016). Moreover, the sub-
surface temperature has a longer memory and provides more
effective signals of seasonal climate predictions (Mahanama
et al., 2008; Xue et al., 2012; Wang et al., 2013; Wu and
Zhang, 2014). In short, soil moisture and soil temperature
describe different aspects of land surface thermal conditions.
However, land surfaces constitute a complicated system that
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cannot be objectively described by only one factor (e.g., soil
moisture or soil temperature). Therefore, it is critical to find
or establish new variables, which can more comprehensively
represent land surface thermal conditions.

Soil enthalpy is a distinct variable that accounts for vari-
ations in soil temperature, soil moisture and soil texture, and
can directly reflect land surface thermal conditions in terms of
energy. Bohren and Albrecht (1998) indicated that the word
“enthalpy” can often be accurately used in place of “heat con-
tent per unit mass”. Despite that, only a few scientific pub-
lications comprehensively explore the characteristics of soil
enthalpy and its applications in climate studies. Pielke (2003)
recommended a focus on heat storage rather than tempera-
ture for monitoring climate change across the globe. Zhang
et al. (2003) deduced the enthalpy expression for a hetero-
geneous land surface with latent heat assumed to be a func-
tion of temperature. Chen and Kumar (2004) showed that
soil enthalpy variations in the shallow soil zone were dom-
inated by soil moisture, whereas such variations in the deep
soil zone were controlled by soil temperature. Davey et al.
(2006) noted that, compared with air temperature, moist en-
thalpy was more sensitive to vegetation properties and could
more accurately depict surface heating trends. Hu and Feng
(2004) found that persistent negative soil enthalpy anoma-
lies in the northwestern U.S. were related to negative regional
surface temperature changes, which encouraged a northward
position of the lower-troposphere monsoonal ridge and pro-
moted above-average monsoon rainfall in the southwestern
U.S. Notably, Hu and Feng (2004) only considered soil tem-
perature variability by setting the heat capacity as a constant
when calculating soil enthalpy. Amenu et al. (2005) indicated
that soil enthalpy variability was governed by variations in
both soil moisture and soil temperature, whereas heat capac-
ity was a function of soil moisture. As a result, it is necessary
and required to comprehensively assess the capability of soil
enthalpy as a metric in monitoring land surface heating and
its impact on climate.

In the present study, we aim to (1) assess soil moisture
and soil temperature contributions to soil enthalpy; and (2)
select areas with similar sensitivities to soil moisture and
soil temperature, and then discuss whether soil enthalpy pro-
vides a better representation of the land thermal variability.
The paper is organized as follows: The data and methods
are described in section 2; the main results are presented
in section 3; and discussion and conclusions are provided in
section 4.

2. Data and methods
2.1. Data

For the soil medium, the total enthalpy can be expressed
as the summarized enthalpies of soil particles, soil water and
soil air (Murray, 2002). Considering the difficulties in mea-
suring soil air and its smaller content, we ignore its impacts
on soil enthalpy in this study. Therefore, the equation of soil
enthalpy per unit volume (H; J m−3) can be represented as

follows (Sun, 2005):

H = (ciλi + clλl + cdλd)(T −Tf)−Li,lρiλi , (1)

where ci and cl are the volumetric heat capacities of soil ice
(1.942× 106 J m−3 K−1) and soil liquid water (4.188× 106

J m−3 K−1), respectively; Tf is the freezing temperature
(273.16 K); Li,l is the latent heat of fusion (3.337 × 105 J
kg−1) and ρi is the density of ice (917 kg m−3); cd and λd
represent the volumetric heat capacity and the volume per-
cent of soil solids, respectively, which can be calculated with
the soil organic matter density and the percentage of sand and
clay from the 1◦×1◦ monthly global soil texture dataset pro-
vided by the IGBP (Bonan et al., 2002; Lawrence and Slater,
2008); λi and λl denote the volume percentages (m3 m−3) of
soil ice and soil liquid water, respectively; and T represents
soil temperature (K).

Due to a lack of comprehensive global observational data,
soil moisture (including soil ice and soil liquid water) and soil
temperature are obtained from offline simulations by CLM4.0
(Oleson et al., 2010), which is the land component of CESM.
Compared with the previous version (i.e., CLM3.5), CLM4.0
features a number of parameterization improvements and
functional/structural advancements, such as the inclusion of
a carbon–nitrogen biogeochemical model, the addition of an
urban canopy model, and the introduction of transient land
cover/land-use change capabilities (Lawrence et al., 2011;
Hua et al., 2013; Zhu et al., 2013). The number of ground
layers has been extended from 10 layers in CLM3.5 to 15 in
CLM4.0, of which the top 10 and bottom 5 layers are hydro-
logically active (i.e., “soil” layers) and inactive, respectively.
The global near-surface meteorological forcing dataset for
running this model was developed by the Land Surface Hy-
drology Research Group at Princeton University (Sheffield et
al., 2006) for the period 1948–2006, with a temporal resolu-
tion of three hours and horizontal resolution of 1◦ × 1◦, and
includes humidity, longwave radiation, precipitation, short-
wave radiation, surface air temperature, surface pressure, and
surface winds. CLM4.0 is spun up for 18 years to ensure that
the simulated variables reach a long-term equilibrium. Fi-
nally, the model outputs of soil ice, soil liquid water and soil
temperature are used to calculate the soil enthalpy.

The 1◦ × 1◦ monthly gridded precipitation (P) data are
from the CN05.1 dataset for the period 1961–2012, which
was constructed by an “anomaly approach” during the in-
terpolation and included a considerable number of station
observations (∼ 2400) in China (Xu et al., 2009; Wu and
Gao, 2013). The monthly sensible heat flux, latent heat flux,
air temperature and horizontal winds are from ERA-Interim,
with a horizontal resolution of 1◦ × 1◦ available after 1979
(Dee et al., 2011). In addition, all datasets are confined to the
period 1979–2006. Seasons are specified as: March–April–
May (MAM), June–July–August (JJA), September–October–
November (SON), and December–January–February (DJF).
Notably, soil enthalpy sensitivities to soil moisture (or soil
temperature) at the first (0.7 cm; surface soil layer) and the
fifth (21.22 cm; middle soil layer) soil level are calculated for
describing their changes with soil depth.
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2.2. Methods
Because soil enthalpy is an integrated indicator of soil

moisture and soil temperature, a multi-linear regression
(MLR) approach is employed to separate the respective ef-
fects of these factors on soil enthalpy. As a result, soil en-
thalpy (H) can be represented as a linear function of soil
moisture (w; sum of soil liquid water and soil ice) and soil
temperature (T ) as follows:

H(x,y, t)=a(x,y)w(x,y, t)+b(x,y)T (x,y, t)+σ(x,y)+ε(x,y, t) ,
(2)

where w(x,y, t), T (x,y, t) and ε(x,y, t) represent soil moisture,
soil temperature and the residual error at location (x,y) at time

t, respectively; a(x,y) and b(x,y) are the partial regression
coefficients; and σ(x,y) represents the intercept. Because of
the different units between a(x,y) and b(x,y), i.e., (MJ m−3)
(mm3 mm3)−1 versus (MJ m−3)◦C−1, it is difficult to directly
compare w and T impacts on H. Therefore, Eq. (2) is non-
dimensionalized as follows:

H(x,y, t)−H(x,y)
S H(x,y)

=
a(x,y)S w(x,y)

S H(x,y)
w(x,y, t)−w(x,y)

S w(x,y)

+
b(x,y)S T (x,y)

S H(x,y)
T (x,y, t)−T (x,y)

S T (x,y)

+
ε(x,y, t)−0

S H(x,y)
,

Fig. 1. The MLR coefficients of H on w [a∗; (a) spring; (b) summer; (c) autumn; (d) winter] and T [b∗; (e)
spring; (f) summer; (g) autumn; (h) winter] at the first soil level. Black dots denote the coefficients are statisti-
cally significant (p < 0.05) after pre-whitening.
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where S H(x,y), S w(x,y) and S T (x,y) are the standard devi-
ation variances of H(x,y, t), w(x,y, t) and T (x,y, t), respec-
tively, and H(x,y), w(x,y) and T (x,y) are time averages. Fi-
nally, Eq. (2) can be rewritten as:

H∗(x,y, t) = a∗(x,y)w∗(x,y, t) + b∗(x,y)T ∗(x,y, t) +
ε(x,y, t)
S H(x,y)

,

(3)
where H∗(x,y, t), w∗(x,y, t) and T ∗(x,y, t) are the standardized
formations of H(x,y, t), w(x,y, t) and T (x,y, t), respectively.
Through the non-dimensionalization procedure, a∗(x,y) =

[a(x,y)S w(x,y)]/[S H(x,y)] and b∗(x,y) = [b(x,y)S T (x,y)]/
[S H(x,y)] are dimensionless, and thus can be used to com-
pare the H sensitivities to w and T .

It should be noted that the MLR residuals usually include
an autocorrelation that causes the overestimations of statis-
tical significance if not previously removed. Therefore, fol-
lowing to Tung and Zhou (2010), we employ a pre-whitening
procedure, which is repeated three times until most of the
grids satisfy the Durbin–Watson test to ensure that the resid-
uals are whitened. The significance level of the regression
coefficients is detected using the two-tailed Student’s t-test
(p = 0.05). For detailed information on the pre-whitening
method, readers are referred to Tung and Zhou (2010).

3. Results
3.1. Soil enthalpy sensitivities to soil moisture and soil

temperature
We evaluate H sensitivities to w and T based on direction

(i.e., positive and negative) and magnitude over the Northeast
Hemisphere (NEH). The signs of a∗ (b∗), which are shown in
Fig. 1, represent whether H sensitivity to w (T ) at the first soil

level is negative or positive. Apparently, except in low lati-
tudes and southern Europe, winter w shows a negative con-
tribution to H over most of the NEH (Fig. 1d). This may be
related to the frozen soil in these regions, where more heat
is required for thawing, and consequently H decreases. As
shown in Figs. 1a and c, the spatial distributions of a∗ are
similar in spring and autumn, and w generally makes positive
contributions to H at low latitudes and negative contributions
at high latitudes. Interestingly, positive a∗ values are detected
for an overwhelming majority of the NEH in summer, which
is likely because liquid water is contained in the first soil level
(Fig. 1b). As expected, T shows positive contributions to H
across the NEH for each season (Figs. 1e–h), particularly for
high latitudes in summer (Fig. 1f) and low latitudes in winter
(Fig. 1h) with a higher a∗.

To quantitatively compare H sensitivities to w and T and
determine the dominant factor, the parameter |a∗/b∗| is esti-
mated and illustrated in Fig. 2. Basically, obvious seasonal
differences are observed in the spatial distribution of |a∗/b∗|.
In detail, the H over most of the NEH is more sensitive
to w in winter (Fig. 2d), especially at high latitudes, with
|a∗/b∗| > 10, whereas smaller |a∗/b∗| (< 0.1) exists in south-
ern Europe, northern Africa, western Asia and southeastern
China, suggesting that H is more sensitive to T . The spa-
tial distributions of |a∗/b∗| are similar in spring (Fig. 2a) and
autumn (Fig. 2c), which generally indicates that w is more
important at high latitudes but T is more important at middle
latitudes. As for summer (Fig. 2b), |a∗/b∗| ≈ 1 suggests w and
T play a comparable role in H over the NEH.

Compared to the first soil level, seasonal differences in the
spatial distribution of a∗ are obviously smaller in the middle
soil layer (Figs. 3a–d). In detail, a∗ is negative in summer at
high latitudes (Fig. 3b) where soil ice still exists. However,

Fig. 2. |a∗/b∗| at the first soil level: (a) spring; (b) summer; (c) autumn; (d) winter.
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Fig. 3. The MLR coefficients of H on w [a∗; (a) spring; (b) summer; (c) autumn; (d) winter] and T [b∗; (e)
spring; (f) summer; (g) autumn; (h) winter] at the fifth soil level. Black dots denote the coefficients are statisti-
cally significant (p < 0.05) after pre-whitening.

due to the disappearance of soil ice in some midlatitude re-
gions, the w contribution to H becomes positive, particularly
in spring (Fig. 3a) and autumn (Fig. 3c). Relative to the re-
sults shown in Fig. 1, the area with a significantly (p < 0.05)
positive T contribution to H apparently increases at high lat-
itudes (Fig. 3). In addition, higher a∗ is identified in climate
transition zones, such as the Sahel and India, where a strong
coupling exists between w and P (Koster et al., 2004). The
analyses above imply that the MLR method can effectively
distinguish the importance of w and Teffects on land surface
thermal conditions.

Relative to H sensitivity in the surface soil layer, H be-
comes more sensitive to T in the fifth soil level with |a∗/b∗| <

0.1 (Fig. 4), and the negative w contribution decreases at high
latitudes, which is related to the more rapid decreases in in-
terannual variabilities of w than those of T (Chen and Kumar,
2004).

In particular, for areas with |a∗/b∗| ≈ 1, land thermal vari-
ations induced by w and T are generally comparable, imply-
ing that land thermal anomalies cannot be completely cap-
tured by w or T alone. As a result, the H, as an integrated
indicator involving w and T effects, can better represent land
thermal variations, and thus tends to be a more effective pre-
dictand for short-term climate prediction in these identified
areas. In order to further confirm the capability of H in sea-
sonal climate prediction, detailed comparisons of the correla-
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Fig. 4. |a∗/b∗| at the fifth soil level: (a) spring; (b) summer; (c) autumn; (d) winter.

tions of P with antecedent H, w and T are conducted in the
following sections, which can provide some reference for the
application of H in seasonal rainfall prediction.

3.2. Comparisons of the capabilities of H, w and T as pre-
dictands in P forecasting

Although P forecasting remains difficult, several studies
have indicated that antecedent land surface anomalies can be
used to predict P (Koster et al., 2004, 2010; Zhang et al.,
2011; Zhang and Zuo, 2011; van den Hurk et al., 2012; Col-
low et al., 2014; Li et al., 2015). Therefore, we would like
to compare the capabilities of H, w and T as predictands
in P forecasting over two selected regions in China with an-
nual |a∗/b∗| ≈ 1 [i.e., the Huanghe-Huaihe Basin (HHB) and
Southeast China (SEC); Fig. 5]. In order to highlight the ca-
pability of H in P prediction, we analyze the relationship be-
tween H and P at each soil layer based on the pattern cor-
relation (detailed information below), and find that this rela-
tionship is more evident at the fifth soil layer. Therefore, the
following analyses are all performed at the fifth layer.

The pattern correlations between H and P (H–P), T and
P (T–P) and w and P (w–P) are compared separately as a
function of the predictand month and the lags from one to six
months. The color depth (Fig. 6) reflects the intensity of the
linkage between antecedent land surface conditions and P,
i.e., the darker the color, the closer the relationship. Overall,
the pattern correlations of H–P (Figs. 6a and b) are similar to
those of T–P (Figs. 6c and d) over both HHB and SEC, but
the former are always stronger than the latter. For the w–P
correlation (Figs. 6e and f), it is basically weaker, except in
cold months. The findings are expected and indicate that H
is potentially a better local predictand for forecasting P than
w and T . Overall, H has the greatest potential for predict-

ing June P from the perspective of the magnitude and con-
sistency (positive or negative) of the correlations; and more
importantly, this consistent relationship between H and P can
extend to five and six months ahead over HHB and SEC, re-
spectively, which implies that the H anomaly has a longer
memory.

The H–P correlations are statistically significant (p <
0.05) in regions where H anomalies can persist over longer
time. Therefore, taking May–June as an example, we would
like to show detailed information about the spatial distribu-
tions of the time-lagged H–P, T–P and w–P correlations. Ba-
sically, the spatial distributions of the H–P (Fig. 7a) and the
T–P (Fig. 7b) correlations are similar, following with signifi-
cantly (p < 0.05) negative and positive values over HHB and
SEC, respectively, while more areas (51 grids) of the H–P

Fig. 5. Annual |a∗/b∗| at the fifth soil level.
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Fig. 6. Pattern correlation over HHB (left) and SEC (right) at lags from 1 to 6 months: (a, b) H–P; (c, d) T–P; (e, f)
w–P. The x-axis is the predictand’s month and the y-axis is lead time. For example, lead time = 1 at month = 6 is for
the May–June case.

Fig. 7. Temporal correlations between June P and antecedent May (a) H, (b) T and (c) w. Black dots denote regions with
statistically significant (p < 0.05) correlation.

correlations exceed the significance level (p < 0.05) than
those (33 grids) of the T–P correlations. By contrast, the
spatial distribution of the w–P correlations evidently differs

from those of the H–P and T–P correlations, mainly char-
acterized by insignificantly and slightly positive values (Fig.
7c). These findings are consistent with previous studies that
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reported w feedbacks are generally weak over wet areas, since
the surface evaporation is insensitive to w (Zhang et al., 2008;
Zhang and Dong, 2010). To sum up, it appears to be a better
choice to use H as a proxy of land surface thermal conditions
for predicting P over HHB and SEC.

For further understanding the capability of H as a predic-
tand in P prediction, May H impacts on June P are chosen
to explore the possible underlying mechanisms. Firstly, sin-
gular value decomposition (SVD) analysis of H in May (the
left-SVD field) and P in June (the right-SVD field) is con-
ducted within HHB and SEC, with the linear trend of each
variable removed. The first SVD mode (SVD1; Fig. 8) ac-
counts for 63.58% of the total variance, with the correlation
coefficient of its expansion coefficients being 0.7 (p < 0.01).
As seen from Fig. 8a, a spatially homogeneous pattern of the
left SVD1 field exists (variance contribution = 49%), which
strongly coincides with the first empirical orthogonal func-
tion (EOF1; not shown here) mode of H (variance contribu-

tion = 54%). This indicates that a tight correspondence exists
between the main abnormal changes in May H and June P,
i.e., anomalously high H in May corresponds to less P in June
over HHB but more P over SEC, and vice versa.

The spatially inhomogeneous responses of June P to May
H (Fig. 8b) imply that the underlying physical mechanisms
may be complicated. Some studies have pointed out that sum-
mer P can be impacted by the anomalous land surface thermal
conditions through their feedbacks to atmospheric circula-
tions (Zhang and Zuo, 2011; Zhang et al., 2017). Based on
these conclusions, composite analyses are performed to di-
agnose the influence of antecedent H anomalies on the atmo-
spheric conditions. Four positive-anomaly years (1982, 1985,
1994 and 1997) and four negative-anomaly years (1979,
1991, 1993 and 1996) of H are identified based on a threshold
of 1.2 standard deviations of the left-SVD1 field time series.
As depicted in Fig. 9, the positive H anomalies result in more
sensible and latent heat fluxes over HHB and SEC (Fig. 9a),

Fig. 8. Heterogeneous correlation patterns of the first SVD mode between (a) May H (left field)
and (b) June P (right field) and the (c) corresponding time series (red line: left field; blue line:
right field). Black dots denote regions with statistically significant (p < 0.05) correlation.
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Fig. 9. Composite differences of (a) sensible and latent heat
fluxes (units: W m−2) and (b, c) air temperature (units: ◦C)
in May (b) at 2-m height and (c) in the latitude–height (units:
hPa) profile at 115◦E. Black dots and white lines denote regions
with statistically significant (p < 0.05) correlation.

and consequently lead to significant (p < 0.05) warming of
the surface air temperature (Fig. 9b). Notably, the land
surface–induced diabatic heating dissipates with height, and
significant (p < 0.05) warming generally disappears near to

500 hPa (Fig. 9c).
According to the complete form of the vertical vorticity

tendency equation (Wu et al., 1999; Wu, 2001), local vari-
ation of vorticity in a relatively long-term evolution can be
ignored, as well as horizontal and vertical advections due
to their smaller magnitudes; and therefore, local meridional
wind anomalies are mainly determined by the vertical profiles
of the diabatic heating rate. Thus, the equation is expressed
as:

βv ∼ f + ζ

θz

∂Q
∂z

, (4)

where β = ∂ f /∂y represents the geostrophic parameter varia-
tions with latitude; f +ζ is the vertical component of absolute
vorticity and usually positive on the large scale; θz = ∂θ/∂z
is the potential temperature variations with height and typ-
ically positive on the monthly scale; and ∂Q/∂z represents
the diabatic heating variations with height. Therefore, local
northerly (southerly) wind perturbations can be excited by the
negative (positive) ∂Q/∂z. As depicted in Fig. 10a, signifi-
cant northerly wind anomalies indeed exist over the heating
source region (i.e., HHB and SEC), which is indicative of a
weakened summer monsoon in the early summer.

A banding distribution is a distinct feature of summer P
in HHB and SEC, which is mainly controlled by the advance
of the summer monsoon. In June, the rain belt is usually lo-
cated in the Yangtze River Basin, which is referred to as the
Mei-yu. In response to the H-induced anomalous diabatic
heating profile, an anomalous northerly wind tends to appear
in May (Fig. 10a) and persists till June (Fig. 10b), weakening
the summer monsoon and resulting in a southward replace-
ment of the rain belt. Thus, less and more P occurs over
HHB and SEC, respectively.

4. Discussion and conclusion
H combines the effects of both T and w on the land sur-

face hydrothermal process, and thus comparisons of the per-
formances of H, w and T in representing the land surface
thermal status are helpful for better understanding the advan-
tage of H as an effective land surface factor in the study of
land–atmosphere interaction. In this study, we investigate the
contributions of w and T to H over the NEH. At high lati-
tudes, the w contribution to H is negative when soil contains
more ice, but becomes positive after soil ice melts. The pos-
itive contribution of T to H is observed throughout the year,
with the most sensitive areas at low latitudes in cold months
and high latitudes in warm months. As soil depth increases,
the T and w contributions to H increases and decreases, re-
spectively. In general, H is more sensitive to w at high lat-
itudes (shallow soil layers), but to T at low latitudes (deep
soil layers). In particular, over more regions with |a∗/b∗| ≈ 1
in summer, land surface thermal conditions can be better cap-
tured by H than w or T alone.

H provides more effective signals for P prediction over
HHB and SEC, where H is sensitive to both w and T . Results
indicate that, despite similar pattern correlations, the H–P
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Fig. 10. Composite differences of 700-hPa meridional wind (units: m s−1) in (a) May and (b) June.
Black dots denote regions with statistically significant (p < 0.05) correlation.

Fig. 11. Temporal correlations between June P and antecedent May (a) H, (b) T and (c) w simulated from GLDAS2.0. Black
dots denote regions with statistically significant (p < 0.05) correlation.

correlations are larger than those of T–P. In addition, rel-
ative to the H–P and T–P correlations, the w–P correlations
are always weaker. H has the greatest potential for predicting
June P from the perspective of the magnitude and consistency
(positive or negative) of the correlations. Comparing the spa-
tial distributions of the H–P, T–P and w–P correlations dur-
ing May–June over HHB and SEC, more grids with signif-
icant (p < 0.05) H–P correlations are detected. Predictions
at monthly or longer time scales imply that H has a longer
memory than T and w. The identification of such character-
istics has important implications for applying H as a metric

in land–atmosphere interaction studies, which are critical for
designing seasonal prediction systems.

However, there are still some uncertainties in our results.
For example, the land surface parameters (i.e., soil ice, soil
liquid water and soil temperature) for calculating H are from
offline simulations by CLM4.0. Even though CLM4.0 has
been applied extensively and validated against various as-
similation datasets globally, findings derived from only one
model may contain uncertainties stemming from the different
structures of the selected model and different initial values.

Due to a lack of soil ice observations and reanalysis prod-
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ucts (e.g., GLDAS2.0), accurate computations of H are diffi-
cult. To reduce the potential uncertainties and then enhance
the robustness of our results, the lagged correlations between
P and antecedent soil liquid water, soil temperature and es-
timated soil enthalpy from CLM4.0 and GLDAS2.0 are val-
idated over the unfrozen regions: H–P, T–P and w–P corre-
lations over HHB and SEC for May–June. Similar to Fig. 7,
the H–P correlation (Fig. 11a) is significantly negative over
HHB and positive over SEC, with more areas (53 grids) ex-
ceeding the significance level (p < 0.05) than those (40 grids)
of the T–P correlation (Fig. 11b), while the w–P correlation
is generally weak (Fig. 11c). Although the validation results
show a high consistency between the results of CLM4.0 and
GLDAS2.0, the potential uncertainties caused by the use of
only one model’s products in the current study should still
be kept in mind. Therefore, more simulations using differ-
ent models and original forcings for developing ensemble
datasets are needed, and a quantitative evaluation of the un-
certainties induced by the model itself and initial values de-
serves further investigation in the future.

Another aspect of uncertainty comes from the use of the
MLR method for what is a complex and nonlinear system
(i.e., the soil system). Particularly, the two explanatory vari-
ables (w and T ) are highly dependent, which does not influ-
ence the establishment of the MLR model but may have in-
troduced uncertainties in separating out their individual con-
tributions. Although w and T are only two of the factors that
control the temporal variability of H, other factors are not in-
cluded in the explanatory variables, such as the soil texture
and soil porosity, which have limited contributions compared
with w and T .
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