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ABSTRACT

Large biases exist in real-time ENSO prediction, which can be attributed to uncertainties in initial conditions and model
parameters. Previously, a 4D variational (4D-Var) data assimilation system was developed for an intermediate coupled model
(ICM) and used to improve ENSO modeling through optimized initial conditions. In this paper, this system is further applied
to optimize model parameters. In the ICM used, one important process for ENSO is related to the anomalous temperature of
subsurface water entrained into the mixed layer (Te), which is empirically and explicitly related to sea level (SL) variation.
The strength of the thermocline effect on SST (referred to simply as “the thermocline effect”) is represented by an introduced
parameter, αTe. A numerical procedure is developed to optimize this model parameter through the 4D-Var assimilation of
SST data in a twin experiment context with an idealized setting. Experiments having their initial condition optimized only,
and having their initial condition plus this additional model parameter optimized, are compared. It is shown that ENSO
evolution can be more effectively recovered by including the additional optimization of this parameter in ENSO modeling.
The demonstrated feasibility of optimizing model parameters and initial conditions together through the 4D-Var method
provides a modeling platform for ENSO studies. Further applications of the 4D-Var data assimilation system implemented in
the ICM are also discussed.
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1. Introduction
The El Niño–Southern Oscillation (ENSO) is the

strongest interannual signal of the climate system (Bjerk-
nes, 1966), which has significant impacts on the weather and
climate worldwide through atmospheric teleconnection (e.g.,
Huang et al., 2001; Xie et al., 2010). At present, the ENSO
phenomenon is recognized as comprising of the most pre-
dictable short-term climate anomalies thanks to successful
development of air–sea coupled models (e.g., Chen et al.,
2004; Zhang et al., 2013), including intermediate coupled
models (ICMs; e.g., Zebiak and Cane, 1987; Zhang et al.,
2003). Currently, various coupled models enable us to make
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six-month and longer real-time ENSO predictions in advance
with reasonable success. For example, we developed an im-
proved ICM at the Institute of Oceanology, Chinese Academy
of Sciences (IOCAS), named the IOCAS ICM (Zhang and
Gao, 2016a). The model has been routinely used to predict
SST evolution in the tropical Pacific (for a summary of the
model’s ENSO forecasts, see the International Research In-
stitute for Climate and Society website at http://iri.columbia.
edu/climate/ENSO/currentinfo/update.html). Nevertheless,
IOCAS ICM still has systematic biases with large uncertain-
ties in ENSO prediction (Zhang and Gao, 2016b).

Various methods have been developed to improve the
quality of ENSO forecasts, which are affected by many fac-
tors, including the model itself and the initial conditions that
are used to make predictions (Mu et al., 2002). To improve the
ENSO prediction skill, one effective way is to calibrate the
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model prediction of ENSO by designing model-dependent
statistical correction methods (Ren et al., 2014; Liu and Ren,
2017). Also, one of the sources for ENSO prediction errors is
the initial ocean conditions, because the initial error can grow
and amplify through ocean dynamics and air–sea interac-
tions. As observations are still sparse in the ocean, limited ob-
servational data need to be combined with models in a smart
way to provide coherent initial conditions that are consistent
with model dynamics (Wang et al., 2000). Recently, data as-
similation methods have been successfully used to optimize
the initial conditions for ocean model initialization, which
can significantly improve ENSO simulation and prediction.
Various data assimilation methods are currently available, in-
cluding the Ensemble Kalman Filter (EnKF) and variational
data assimilation methods (Dommenget and Stammer, 2004;
Zhang et al., 2005b; Zheng et al., 2006, 2009; Wu et al.,
2016).

Another major source for ENSO prediction errors comes
from model errors, including uncertainties in model param-
eters (Mu et al., 2010). Physically, model parameters are in-
troduced to represent processes and quantify the relationships
between related fields. Inevitably, approximations are often
made in estimating parameters to represent real physics. Ob-
servations can be used to tune model parameters in a sim-
ple and straightforward way (Wu et al., 2012). Often, pa-
rameters are estimated in an empirical and subjective way,
and such an a priori estimate of parameters may not be con-
sistent with model dynamics. It is desirable to estimate pa-
rameters in an optimal way, in the sense that the best pos-
sible simulations can be produced for a given model (Liu et
al., 2014). Furthermore, model error characteristics could be
taken into account, and it is thus preferable to be able to au-
tomatically consider the feedback of model dynamics to pa-
rameter estimates. The 4D variational (4D-Var) data assim-
ilation approach offers such an objective and comprehensive
way to optimize model parameters for improving model sim-
ulations. Indeed, the variational data assimilation method
has been widely applied to parameter estimation in ocean
models. For example, Lu and Hsieh (1998) implemented an
adjoint assimilation method into a simple equatorial air–sea
coupled model to investigate the optimization of initial con-
ditions and model parameters. Zhang et al. (2005b) exam-
ined the ability of the 4D-Var method to optimize the uncer-
tainty of model parameters. Peng and Xie (2006) and Peng
et al. (2013) developed a 4D-Var algorithm to correct the
initial condition and wind stress drag coefficient for storm
surge forecasting. Zhang et al. (2015) assimilated SST data
in a two-equation turbulence model by 4D-Var data assimi-
lation to estimate the wave-affected parameters. These stud-
ies clearly indicate that the combination of optimizing ini-
tial conditions and optimizing model parameters through data
assimilation can effectively improve model simulation and
prediction.

In this study, we continue to channel our efforts into im-
proving IOCAS ICM for better ENSO simulation and predic-
tion. One way to improve its performance is through data
assimilation. To this end, a 4D-Var data assimilation method

has been implemented into the ICM to improve state analyses
(Gao et al., 2016), which provides an optimal initial state that
can be used to predict ENSO. However, this previous study
only applied data assimilation to optimizing the ocean initial
state. Because severe biases can be apparently derived from
errors in model parameters, it is desirable to use the 4D-Var
scheme and develop a method to optimize model parameters
in combination with optimizing initial conditions.

Here, we aim to implement a framework for optimizing
model parameters in the ICM through the 4D-Var data assim-
ilation system, and demonstrate the feasibility of constrain-
ing ENSO evolution. As described before (Zhang and Gao,
2016a), one important feature of IOCAS ICM is the way in
which the temperature of the subsurface water entrained into
the mixed layer (Te) is parameterized; the thermocline effect
on SST in the ICM is explicitly represented by the relation-
ship between Te and sea level (SL; an indicator of thermo-
cline fluctuation), written as Te = αTeFTe (SL), in which SL
represents the thermocline variability, FTe is the relationship
between the Te anomaly and SL anomaly derived using em-
pirical statistical methods (such as SVD), and αTe is a scalar
parameter introduced to represent the intensity of subsurface
thermal forcing. Various studies have found that subsurface
thermal effects (such as entrainment and mixing) play an im-
portant role in ENSO evolution (Ballester et al., 2016; Zhang
and Gao, 2016a). Indeed, our previous studies have shown
that ENSO simulations are very sensitive to αTe (e.g., Gao
and Zhang, 2017). Here, this parameter is chosen to demon-
strate a way in which optimal parameter estimation can be
achieved using the 4D-Var method equipped within the ICM.
The effects of optimizing this parameter on the simulation
and prediction of ENSO are examined, with the feasibility
of the approach in recovering the ENSO evolution demon-
strated.

The paper is organized as follows: Section 2 describes the
ICM, the parameter estimation procedure using the 4D-Var
data assimilation method, and the experimental setup. The
effects of the parameter estimation on the simulation and pre-
diction of ENSO are analyzed in sections 3 and 4, respec-
tively. Finally, a conclusion and discussion are presented in
section 5.

2. Methodology

In this paper, we examine the feasibility and effective-
ness of optimizing a model parameter in improving ENSO
simulation and prediction using the 4D-Var data assimilation
method implemented in the ICM. In this section, we briefly
introduce the methodology used to optimize the model pa-
rameter based on the 4D-Var method. First, a short descrip-
tion of the ICM is presented. Second, the 4D-Var data assim-
ilation scheme and optimal parameter estimation method are
introduced. Finally, results from a twin experiment are used
to demonstrate the feasibility of the approach, and the effects
of optimal initialization and parameter estimation on ENSO
evolution are compared.
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2.1. Description of the ICM

The ICM used is an anomaly model consisting of an in-
termediate ocean model (IOM) and an empirical wind stress
model (Fig. 1). One crucial aspect of the ocean component
is the way in which the subsurface entrainment temperature
in the surface mixed layer (Te) is explicitly parameterized in
terms of the thermocline variability (as represented by the
SL), written as Te = αTeFTe (SL), in which FTe is the rela-
tionship between the anomalies of Te and SL derived using
statistical methods from historical data. A parameter, αTe, is
introduced in the ICM to represent the intensity of thermal
forcing associated with subsurface anomalies (Zhang et al.,
2005a).

The model has already been successfully used for ENSO
simulations and predictions; see Zhang and Gao (2016a) for
more details. Various model parameters exist within the ICM;
here, we pay special attention to the parameter αTe, since it
represents the intensity of the thermocline feedback, an im-
portant parameter to ENSO.

2.2. Optimal parameter estimation based on the 4D-Var
data assimilation system

Previously, we successfully implemented the 4D-Var
method into the ICM and demonstrated that optimal initial-
ization of the ocean state can improve ENSO simulation
and prediction skill (Gao et al., 2016). However, the impor-
tance of variational estimation for major model parameters to
ENSO in the ICM has not been demonstrated. Here, we aim
to develop a modeling framework for optimizing model pa-
rameters using the 4D-Var method, which can be used further
for improving real-time ENSO prediction.

Variational methods (3D-Var and 4D-Var), as a sophis-
ticated branch of data assimilation, convert the problem of
seeking the optimal initial state to that of minimizing a
cost function under the constraint of model dynamics. More
specifically, optimal control theories are applied to ocean–
atmosphere models, which act as a constraint in the mini-
mization of the cost function representing the misfits between
model simulation and observation (Courtier et al., 1994). For

example, the 4D-Var data assimilation method utilizes obser-
vational data within a data insertion time window, seeking
optimal values of model variables and parameters by mini-
mizing the cost function under dynamical constraint. As the
control variables are adjusted, the misfits are reduced accord-
ingly between the model solution and observation.

Generally, an adjoint model is an efficient solution for
evaluating the gradient of the cost function with respect to
high-dimensional control variables in the 4D-Var data as-
similation method. The adjoint model of the ICM is written
coding-by-coding. First, the tangent linear model of the ICM
is obtained by linearization. Then, the adjoint model of the
ICM is achieved by transposing the tangent linear model; i.e.,
it features the reverse of the temporal and spatial integration
and other characteristics. In fact, the tangent linear model
does not directly participate in the 4D-Var assimilation sys-
tem. It is only used to validate the correctness of the adjoint
model of the ICM. More details can be seen in Gao et al.
(2016).

Optimal parameter estimation is realized through the 4D-
Var assimilation of observational data under the constraint
of model dynamics. Previously, a 4D-Var data assimilation
system has already been successfully constructed in the ICM
(Gao et al., 2016); model parameters can then be optimized.
Specifically, the governing equations of the ICM can be ex-
pressed as follows (Kalnay, 2003):

∂XXX
∂t

= F(XXX,PPP)

XXX|t0 = XXX0 (1)
PPP|t0 = PPP0 ,

where t is time and t0 is the initial time; XXX is the vector of
control variables in the ICM; PPP = [p1, p2, . . . , pq] represents
the model parameters to be optimized, in which q is the total
number; XXX0 is the initial value of XXX; PPP0 is the initial value of
PPP; and F is the nonlinear forward operator.

For the parameter estimation in the 4D-Var data assimila-
tion context, the cost function can be formulated as (Kalnay,

τ  model

IOM T
e

model
Te=αTe FTe (SL)

SSTA  model
τ=α

τ
F
τ
(SST)

Fig. 1. Schematic diagram showing the components of IOCAS ICM, consisting
of an IOM and various anomaly models for wind stress (τ), SST and Te. See
the main text for more details.
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2003)

J(XXX0,PPP0) =
1
2

[XXX(t0)−XXXb]TBBB−1[XXX(t0)−XXXb] +

1
2

N∑

i=1

{HHH[XXX(PPP(ti), ti)]−

YYYo(ti)}TRRR−1{HHH[XXX(PPP(ti), ti)]−YYYo(ti)} , (2)

where the first term on the right-hand side is the background
error term and the second is the observation error term. The
superscript “T” represents the transpose of a matrix and the
subscripts “b” and “o” represent the background field and ob-
servation, respectively; N indicates the number of integra-
tions in the minimization time window; YYYo represents the ob-
servation; and BBB, RRR and HHH represent the background error co-
variance matrix, the observation error covariance matrix and
the observation operator, respectively. In this study, BBB and
RRR are simply set as diagonal matrices, which are the identity
matrix multiplied by the standard deviation of the observa-
tion. The parameters PPP are implicitly expressed in the cost
function, which are regarded as independent variables of XXX,
and the gradient of the cost function with respect to XXX0 and PPP0
is calculated by the adjoint model of the ICM. Essentially, the
process of parameter estimation based on the 4D-Var method
is the same as the optimal initialization process for obtaining
the initial conditions, which is detailed in Gao et al. (2016).

Figure 2 illustrates the procedure involved with the 4D-
Var algorithm in obtaining the optimized initial condition and
parameters in the ICM. The specific steps are as follows:
First, for a given initial guess XXX0 (model solution), model pa-
rameter PPP0 and observation YYY , the ICM is integrated forward
to obtain the cost function J (a misfit between the model so-
lution and observation). Second, the ICM is integrated back-
ward with the adjoint model to obtain the gradient of J with
respect to XXX0 and PPP0, J(XXX0) and J(PPP0). Third, a minimization
process is performed to obtain optimal analysis solutions of
the initial condition and model parameters; here, the Limited-
Memory Broyden–Fletcher–Glodfarb–Shanno (L-BFGS) al-
gorithm (Liu and Nocedal, 1989) is adopted to minimize
the cost function to reduce the misfit and obtain the optimal
analysis field. When the gradient calculation converges to a
value that satisfies a certain level of precision, the iteration is
stopped and an optimal XXX0 field and PPP0 value are obtained;
otherwise, the resultant XXX0 and PPP0 are used as a new estimate
and the steps outline above are repeated.

2.3. Experimental setup
Our previous studies have shown that initial conditions

can be optimized in the ICM through the 4D-Var assimila-
tion of SST data to effectively improve ENSO simulation and
prediction (Gao et al., 2016). Based on this, in this paper, a
new application is demonstrated using the ICM-based 4D-
Var system for optimal parameter estimation. As mentioned

 1 

Initial state and 

parameters: X0, P0 

Forward integration 

Observation: Y 

Cost function: J 

Backward integration using the adjoint model to obtain 

the gradient of J: J(X0) and J(P0) 

L-BFGS for minimizing J 

Satisfying preset 

precision for J 

Yes 
Stop: optimized X0 and P0 

No 

New initial state and 

parameters 

Fig. 2. Schematic diagram illustrating the procedure to optimize the ocean initial state (XXX0) and model parameters (PPP0)
using the 4D-Var data assimilation system.
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above, αTe is an empirically introduced scalar parameter rep-
resenting the intensity of the subsurface thermal effect on
SST, which has an important influence on ENSO evolution.
Thus, as an example, αTe is chosen to demonstrate the feasi-
bility and effectiveness of the 4D-Var-based optimization of
parameter estimation in improving ENSO modeling.

A twin-experiment strategy is adopted. Two basic exper-
iments are performed first. A control run is conducted us-
ing the ICM with its standard parameters, including the cou-
pling coefficient between interannual anomalies of SST and
wind stress (τ), ατ = 1.03; vertical diffusivity coefficient,
Kv = 1.0×10−3; thermal damping coefficient for SST anoma-
lies, λ= 1/(100×86400); and the coefficient between anoma-
lies of Te and SL, αTe = 1.0. As shown in Gao et al. (2016),
the control run simulates ENSO very well. A “biased” run
is then conducted, in which some modifications are made to
these model parameters, as follows: ατ = 1.03× 1.01; Kv =

1.0×10−3×0.95; λ = 1/(100×86400)×1.01; and αTe = 1.1.
Here, the ICM with these modified parameters is referred
to as the “biased” model, considering a situation in which
model errors are erroneously produced by the changes in
these model parameters. Here, the changes in these param-
eters (ατ, Kv, λ) are quite subtle, to guarantee the periodic
oscillation of ENSO. If the changes in the parameters are ex-
cessive, it may break the balance of the dynamical processes,
and the oscillation will not be maintained. Note that αTe is
set to have its change a little bigger for testing how well the
parameter optimization using the 4D-Var method will work.

Next, we examine the extent to which the ENSO evo-
lution simulated using the “biased” model can be recovered
through the 4D-Var assimilation of the SST data, which are
taken from the control run. We refer to the control run as
Expt. 1, which is integrated for 20 years using the “truth”
model (with the default model parameters and “truth” initial
condition) to generate the “truth” or “observed” data. The
daily “observed” SST field is sampled from the “truth” model
simulation with a Gaussian noise added to mimic the “obser-
vation” error. The mean and standard deviation of “obser-
vational” SST error are set to be zero and 0.2◦C. The con-
structed “observation” of SST data from Expt. 1 is used for
assimilation into the “biased” model. Note that the type of
observational error approximated in this way is rather simple,
and it is not the basic question to be focused on here; instead,
a key focus is to demonstrate the effectiveness of parameter
optimization using the 4D-Var method.

Based on these basic runs, two optimizing experiments
using the “biased” model are designed as follows (Table 1):
Expt. 2 uses the “biased” model in which the initial condi-
tions are optimized by assimilation of the “observed” SST
data from Expt. 1. Expt. 3 is a combined optimizing exper-
iment, in which the initial condition and model parameter
(αTe) are simultaneously optimized through assimilating the
“observed” SST data from Expt. 1. Note that daily “observed”
SST data are assimilated into the “biased” model in Expt. 2
and Expt. 3 only at the first time-step of every month. The
length of the assimilation window is set to be one month in
consideration of the computational efficiency. The period of
the experiments is 20 years, from model time 2060/01/01 to
2079/12/31. Comparisons of the ENSO evolution between
these experiments (Expt. 1, Expt. 2 and Expt. 3) are made
to show how the optimization works and its effect on the
recovery of ENSO features. Furthermore, a series of one-
year hindcast experiments are performed using the “biased”
model, in which the optimized analyses (initial state and/or
model parameter) are taken on the first day of each month
when making hindcasts; the hindcast periods are from model
time 2062/01/01 to 2079/12/01 after a 2-year spin-up period
in the optimizing experiments.

3. Effect on ENSO simulation
The main purpose is to see how ENSO evolution in the

“biased” model can be recovered using the 4D-Var assimila-
tion of “observed” SST data sampled from the truth model.
To this end, in this section, we examine how well the param-
eter αTe is optimized, which can lead to a recovery of ENSO
evolution. Also, we compare the effects on ENSO simula-
tions between experiments having only the initial condition
optimized, and having both the initial condition plus this ad-
ditional model parameter optimized. Based on these results,
an effective way to recover the ENSO evolution is demon-
strated through additionally optimizing this model parameter.

3.1. Optimized estimate of the model parameter

The “truth” value of αTe is 1.0 in the control experiment
(Expt. 1), and αTe is erroneously set to a “biased” value of
1.1 in Expt. 2 and Expt. 3 when using the “biased” model.
The optimizing experiments are designed to see whether the
“truth” αTe value (1.0) can be recovered from the “biased”

Table 1. Twin-experiment design using 4D-Var-based assimilation of SST data. Expt. 1 is a control experiment using the “truth” model, in
which the “observation” of SST data is obtained. Expt. 2 is an optimizing experiment using a “biased” model, in which the initial condition
is optimized through assimilation of “observed” SST data obtained from Expt. 1. Expt. 3 is a combined optimizing experiment using
the “biased” model, in which the initial condition and model parameter are both optimized through assimilation of “observed” SST data
obtained from Expt. 1.

Experiment Name Model Main purpose

Expt. 1 “Truth” model (αTe = 1.0) Generating “truth” fields, which are sampled as “observed” SST
Expt. 2 “Biased” model (αTe = 1.1) Optimizing the initial condition by assimilating “observed” SST data
Expt. 3 “Biased” model (αTe = 1.1) Optimizing the initial condition and model parameter (αTe) simultaneously by as-

similating “observed” SST data
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αTe value in the “biased” model by the optimizing proce-
dure using the 4D-Var assimilation of SST data taken from
the “truth” model. Figure 3 shows the time series of αTe es-
timated from the first eight-year assimilation in Expt. 3. It
is seen that the estimated αTe tends to approach the “truth”
value through the optimization, which keeps a steady state
after the first two-year spin-up period. In particular, the
rescaled view shown for clarity in Fig. 3 indicates that, after a
few years of optimization, the optimized αTe during the five-
to eight-year simulation in Expt. 3 is in a steady state, being
approximately 1.0. These results indicate that the model pa-
rameter can be effectively and reasonably well optimized by
the 4D-Var-based method. The parameter estimation proce-
dure is feasible and can give rise to the expected value.

3.2. Recovery of ENSO evolution
In this subsection, we examine the evolution of various

anomaly fields. As described above, the “biased” model is
used to perform the optimizing experiments, with assimila-
tion of SST data for only the initial condition in Expt. 2,
and the initial condition plus the model parameter in Expt.
3, respectively. Figure 4 shows the longitude–time sections
of SST anomalies along the equator from the simulations in
Expt. 1, Expt. 2 and Expt. 3 during the first 12-year simula-
tion. The similarity indicates the effectiveness of the recov-
ery. It is clearly illustrated that simulations based on Expt. 2
and Expt. 3 can both recover the basic characters of ENSO
events well, including the period, spatial distribution, phase
transition, and so on. For instance, after approximately the
first two-year spin-up simulation period, the SST simulated
in Expt. 2 (Fig. 4b) is recovered to its “truth” field (Fig. 4a)
when the “observed” SST data are assimilated into the “bi-

ased” model. However, because of model parameter error,
several departures still exist compared with the “truth” field.
For example, the amplitude of the SST anomaly in Expt. 2
is much larger than the “truth” field, and the phase transition
time is changed slightly. By contrast, the SST field in Expt.
3 (Fig. 4c) can recover to the “truth” field quickly (Fig. 4a)
after a short spin-up period. Thus, comparing these three ex-
periments clearly indicates that additionally optimizing this
model parameter using the 4D-Var assimilation of SST data
can further improve ENSO simulation.

It is expected that optimizing the model parameter αTe
can have a direct influence on the Te field when assimilating
the “observed” SST data. Figure 5 shows the longitude–time
sections of Te anomalies along the equator for the “truth”
field, Expt. 2 and Expt. 3, during the first 12-year simulations.
For Expt. 2 (Fig. 5b), in which the model parameter αTe is not
optimized, the Te field can be seen to recover through assim-
ilating the “observed” SST data. However, several departures
still exist compared with the “truth” field (Fig. 5a), which
are induced by model parameter biases. It can be seen that
a larger αTe (αTe = 1.1) acts to produce a simulated Te field
that is also larger—consistent with our previous studies indi-
cating that the subsurface thermal effect is stronger when αTe
is chosen to be larger (Zhang and Gao, 2016a). Therefore,
when the subsurface effect on SST is stronger, the SST sim-
ulated in Expt. 2 is larger than that of the “truth” field (Fig.
4b). However, when αTe is optimized in Expt. 3 to the “truth”
model parameter (αTe = 1.0; Fig. 3) by parameter estimation
based on assimilating the “observed” SST data, the simulated
Te of Expt. 3 (Fig. 5c) closely resembles the “truth” field. All
these results indicate that optimizing both model parameters
and the initial state through 4D-Var-based SST assimilation

Fig. 3. Time series of αTe estimated optimally using the 4D-Var method dur-
ing the first eight-year assimilation periods. For clarity, a rescaled (amplified)
view is also embedded in the figure for the αTe estimated during the five- to
eight-year assimilation periods.
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Fig. 4. Longitude–time sections of SST anomalies along the equator for (a) the “truth” field, (b) Expt. 2 and (c) Expt.
3 during the first 12-year simulation period. The contour interval is 0.5◦C.

can recover the ENSO evolution more effectively than just
optimizing the initial state alone.

3.3. Quantification in terms of the RMSE
To quantify the effect on ENSO simulation of parame-

ter estimation optimization, the RMSEs for some major vari-
ables are calculated. Here, the RMSE is defined as follows:

RMSE =

√√√
1
G

G∑

i=1

(XXXi−XXXtruth,i)2 , (3)

where XXX is the vector of a model variable; XXXtruth is the cor-
responding “truth” field of XXX, which is simulated from Expt.
1; i is a grid-point number; and G is the total number of grid
points.

Figure 6 shows the RMSE time series for the anomalies of
SST, wind stress, SL and Te calculated over the full model do-
main (30◦N–30◦S, 124◦E–78◦W). Expt. 2 is a case in which
only the initial condition is optimized by assimilating SST
data; whereas, in Expt. 3, both the initial condition and the
model parameter are optimized. The results shown in the left-
hand panels are calculated on the first day of each month in
the first two-year simulation, and those in the right-hand pan-
els are for the 3–12-year simulation for Expt. 2 (blue) and
Expt. 3 (red). It is clearly evident that the RMSEs of both

experiments decline consistently and systematically, reach-
ing a steady state. Nevertheless, compared to Expt. 2 without
parameter estimation, the RMSEs of Expt. 3 decline faster,
being more effective at reaching the steady state (left-hand
panels in Fig. 6). Additionally, the values of the RMSEs are
much smaller in Expt. 3 compared with those in Expt. 2 when
reaching the steady state (right-hand panels in Fig. 6). As
with previous research in which it was shown that optimal
initialization based on the 4D-Var method can effectively re-
duce the RMSEs of some major variables for ENSO simu-
lation (Gao et al., 2016), here, optimal initialization and pa-
rameter estimation combined, based on 4D-Var SST assimila-
tion, work well too. Furthermore, it is also illustrated that pa-
rameter estimation based on assimilating SST data using the
4D-Var method can further improve the recovery of the sim-
ulation of the “truth” field using the “biased” model. Thus,
ENSO simulations can be improved by simultaneously opti-
mizing the initial conditions and model parameters through
the 4D-Var assimilation of SST data.

Next, the spatial distributions of the RMSEs are exam-
ined for some major model variables. Here, the RMSEs for
each grid are calculated as follows:

RMSEi, j =

√√√
1
M

M∑

m=1

(XXXi, j,m−XXXtruth,i, j,m)2 , (4)
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Fig. 5. As in Fig. 4 but for Te anomalies. The contour interval is 1◦C.
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where XXX is the vector of a model variable; XXXtruth is the cor-
responding “truth” field of XXX simulated from Expt. 1; i and j
represent the (i, j)th grid point; m is time; and M is the total
m.

Figure 7 shows the spatial distributions of the RMSEs
for the anomalies of SST, zonal wind stress, meridional wind
stress, SL and Te. Here, the RMSEs are calculated from Eq.

(4) for the first 20-year simulations from Expt. 2 (left-hand
panels) and Expt. 3 (right-hand panels). The results show
that the spatial distributions of the RMSEs for all variables in
Expt. 3 (right-hand panels in Fig. 7) are all smaller than those
in Expt. 2 (left-hand panels in Fig. 7); whereas, the spatial
patterns of the RMSEs are similar to each other in Expt. 2
and Expt. 3. For the SST field, the regions with maximum

Fig. 7. Horizontal distributions of RMSEs for anomalies of (a, f) SST, (b, g) zonal τ, (c, h) meridional τ, (d, i) SL, and (e, j)
Te. Here, the RMSEs are calculated from the first 20-year simulations for Expt. 2 (left-hand panels) and Expt. 3 (right-hand
panels), respectively. The units are ◦C for SST and Te, dyn cm−2 for τ, and cm for SL.
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RMSE for Expt. 2 and Expt. 3 are both centered in the central
and eastern Pacific; the maximum value is 0.25◦C in Expt. 3
(Fig. 7f), which is smaller than that in Expt. 2 at 0.66◦C (Fig.
7a). For the zonal wind stress field, the larger RMSE regions
are located in the central equatorial Pacific, with a maximum
value of 0.1 dyn cm−2 (1 dyn cm−2 = 0.1 N m−2) for Expt. 2
(Fig. 7b) and 0.042 dyn cm−2 Expt. 3 (Fig. 7g). For the merid-
ional wind stress, the RMSEs have the same spatial pattern
in Expt. 2 and Expt. 3, with a maximum value of 0.095 dyn
cm−2 in Expt. 2 (Fig. 7c) and 0.032 dyn cm−2 in Expt. 3 (Fig.
7h). For the SL, the maximum RMSE values are 9 cm and 8
cm, with similar spatial distribution patterns for Expt. 2 (Fig.
7d) and Expt. 3 (Fig. 7i). For the Te field, the maximum re-
gions are both centered in the central equatorial Pacific, with
a maximum value of 2◦C in Expt. 2 (Fig. 7e) and 0.55◦C in
Expt. 3 (Fig. 7j). This represents a reduction in RMSEs by
about 71% in Expt. 3 compared with Expt. 2.

In general, the RMSE differences in the SST, wind stress
and Te fields between Expt. 2 and Expt. 3 are much larger
than those in the SL field. This is because, compared with
Expt. 2, the model parameter αTe is additionally optimized
in Expt. 3, leading to a Te field that is effectively recov-
ered. Since the subsurface thermal effect is very important
to the evolution of SST anomalies, the improved Te field in
Expt. 3 can further affect the simulation of the SST field.
So, the biases in SST between the optimizing experiments
and the “truth” field decrease faster in Expt. 3 than in Expt.
2. Thus, the modeled SST field is more likely to recover
in Expt. 3 compared with Expt. 2. Furthermore, the wind
stress anomaly field is constructed based on the relationship
between the anomalies of SST and wind stress (τ): τ = ατFτ

(SST). Therefore, the optimized SST field further improves
the simulation of the wind stress anomaly. However, the
SL anomaly field needs to be adjusted through dynamic pro-
cesses when assimilating SST data in the ICM. Consequently,
even though the SL field is adjusted to recover to its “truth”
field, the biases between the optimizing experiments and the
“truth” field are still large compared with other fields.

All in all, additionally optimizing the model parameter
αTe using the 4D-Var assimilation of SST data in the ICM
can effectively recover the simulation of major variables, es-
pecially for the Te, SST and wind stress fields. Simulation
errors induced by biases in the model parameter can be effec-
tively reduced by optimizing the parameter estimation using
the 4D-Var method. As such, the optimization procedure can
produce an adequate initial condition and model parameter
that can be used for ENSO predictions.

4. Effect on ENSO prediction
It is clearly illustrated above that optimizing the model

parameter αTe through the 4D-Var assimilation of SST data
can effectively recover the ENSO evolution. It is desirable to
check if optimizing model parameters can also benefit ENSO
forecasting, in combination with optimizing the initial condi-
tion. Here, we perform hindcast experiments using the “bi-

ased” model with optimized initial conditions and/or the op-
timized model parameter, αTe. A series of forecast exper-
iments are conducted using the “biased” model during the
period from model time 2062/01/01 to 2079/12/01. Two ex-
periments are performed—one with only the initial condition
optimized (Expt. 2), and the other with both the model pa-
rameter (αTe) and initial condition optimized (Expt. 3); the
optimized initial condition and model parameter obtained on
the first day of each month are used in Expt. 2 and Expt. 3, re-
spectively. Thus, in these experiments, 18×12 (= 216) hind-
casts are obtained in total for analysis in each experiment.

Figure 8 shows the time series of the Niño3.4 indices for
the “truth” value (green) and hindcasts made at lead times of
three months (Fig. 8a), six months (Fig. 8b) and nine months
(Fig. 8c) using the initial conditions and parameter obtained
from Expt. 2 (blue) and Expt. 3 (red). The hindcast results
indicate that the evolution can be predicted very well. As
the hindcast time extends, the hindcast errors increase. When
optimizing the initial conditions only in Expt. 2, the hindcast
results exhibit some biases compared with the “truth” field.
When optimizing both the initial conditions and the model
parameter in Expt. 3, it is evident that the Niño3.4 indices
produced closely follow the “truth” value. So, additionally
optimizing this model parameter can contribute to further im-
provement in ENSO prediction. Quantitatively, the RMSEs
of the Niño3.4 indices predicted in Expt. 2 and Expt. 3 at the
six-month lead time with the “truth” value reduce from 0.47
to 0.06. As the constructed observation error type is simple
in this idealized configuration context, the Niño3.4 indices in
Expt. 3 are almost the same as the “truth” value.

Thus, optimizing the model parameter using the 4D-Var
assimilation of SST data can effectively improve the ENSO
forecast skill. Although the results are obtained under a twin-
experiment context with idealized settings, the feasibility
of optimizing model parameters using the 4D-Var method
equipped within the ICM is clearly demonstrated. Therefore,
these experiments provide an effective modeling tool that can
be used for real-time ENSO prediction. More experiments
in which this 4D-Var-based model parameter optimization is
applied for real-time ENSO prediction should be performed
in the future.

5. Conclusion and discussion
The IOCAS ICM used in this study still suffers from large

biases in its real-time ENSO prediction. There are many ways
to improve its performance. Previously, we developed a 4D-
Var data assimilation system for the ICM. As an application,
the system was used to optimize the initial conditions for im-
proved ENSO simulation and prediction. Because errors in
model parameters are also important sources of model bi-
ases, in this paper, the 4D-Var system is used to demonstrate
the feasibility of optimizing model parameters for improving
ENSO analyses.

In this ICM, Te is used explicitly to represent the thermo-
cline effect on SST (referred to simply as “the thermocline
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Fig. 8. Time series of the Niño3.4 indices for the “truth” model (green) and for hindcasts made
using optimized initial conditions in Expt. 2 (blue) and the additionally optimized model pa-
rameter in Expt. 3 (red) at lead times of (a) three months, (b) six months and (c) nine months.
The experiments are performed from model time 2063/01 to 2079/12.

effect”), and a related parameter (αTe) is introduced to indi-
cate the intensity of the thermocline feedback. In this pa-
per, this model parameter, i.e. αTe, is used as an example
to demonstrate the optimization of parameter estimates us-
ing the 4D-Var assimilation of SST data in the ICM. To this

end, a twin-experiment approach is adopted with an idealized
setting.

Results from experiments having only the initial con-
dition optimized and having both the initial condition plus
the additional model parameter optimized are compared.
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As demonstrated before, the simulation and prediction of
ENSO can be improved by optimal initialization using the
4D-Var assimilation of SST data in the ICM. Here, it is
shown that ENSO evolution can be more effectively recov-
ered by including the additional optimization of this parame-
ter. Through optimizing this parameter, the reduction in RM-
SEs for anomalies of SST, wind stress, SL and Te takes place
relatively faster compared with that of SL. This is mainly
because optimizing the model parameter αTe can effectively
improve the simulation of the Te field. As the subsurface
thermal effect is important to SST evolution, the optimized
Te field leads to improved SST depictions. Additionally,
the wind stress field is calculated as a response to the SST
anomaly using its statistical model; thus, the wind stress
anomaly is also improved in the optimized experiment. Since
the SL field needs to be adjusted through dynamic processes
when SST data are assimilated through the 4D-Var method,
this field is less effectively improved. Thus, it is clearly evi-
dent that optimizing the model parameter using the 4D-Var-
based assimilation of SST data can further improve the sim-
ulation and prediction of ENSO. The demonstrated feasibil-
ity of optimizing model parameters and initial conditions to-
gether through 4D-Var assimilation provides a modeling plat-
form for ENSO studies.

Another application of the 4D-Var data assimilation sys-
tem implemented in IOCAS ICM to improve its ENSO mod-
eling by optimizing model parameter estimates in the ICM
is demonstrated in this paper. The results are obtained in the
context of a twin experiment, and these idealized experiments
are intended for demonstration purposes. Although only one
parameter is considered for the optimized experiments under
the idealized setting, it provides a theoretical demonstration
and practical assimilation procedure to optimize model pa-
rameters. Further applications are underway using the 4D-
Var data assimilation technique. For example, the ICM’s
performance is also sensitive to many other model parame-
ters, including the coupling coefficient between interannual
anomalies of SST and wind stress (ατ), the vertical diffusiv-
ity coefficient (Kv), the thermal damping coefficient for SST
anomalies (λ), and so on. Thus, multi-parameter optimiza-
tion procedures should be taken into account. Also, some po-
tential problems may exist when applying this technique for
fitting a model (which is necessarily biased) to real observed
data. In particular, the parameter estimates may not converge
as cleanly as shown in Fig. 3, and the simultaneous estima-
tion of multiple parameters may be difficult because multi-
ple minima may emerge when estimating the cost function.
Also, the spatial structure of the model parameters should be
considered. Clearly, more experiments with respect to multi-
parameter optimization need to be conducted. Additionally,
the subsurface thermal state has considerable influence on the
SST in the tropical Pacific. Thus, it is necessary to assimilate
subsurface thermal fields into the ICM in addition to the SST
data. For example, sea level and horizontal ocean current data
need to be considered in the data assimilation procedure. Ul-
timately, such a combined assimilation of multiple variables
and parameters should be considered when using the ICM.

The resultant insight into this predictive understanding
and the methodology gained from this work will be trans-
ferred to the improvement of real-time ENSO prediction us-
ing the IOCAS ICM (Zhang and Gao, 2016b). Ultimately, all
these efforts are expected to improve ENSO forecasting skill
in IOCAS ICM by using the 4D-Var data assimilation sys-
tem for various data (SST, SL, and others) and various model
parameters (αTe, ατ, and others).

Also, other data assimilation methods are currently avail-
able, including the EnKF method (Wu et al., 2016). It would
be desirable to compare the advantages and disadvantages be-
tween these methods in terms of ENSO simulation and pre-
diction. In addition, the adjoint model of the 4D-Var data
assimilation equipped with IOCAS ICM provides a way to
calculate the gradient of the cost function; the adjoint method
with the 4D-Var data assimilation system will be combined
with the CNOP (conditional nonlinear optimal perturbation)
approach (Mu and Duan, 2003) to identify the error structure
of initial conditions and model parameters (Tao et al., 2017).
More results will be presented in future publications.
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