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ABSTRACT

Previous studies indicate that ENSO predictions are particularly sensitive to the initial conditions in some key areas (so-
called “sensitive areas”). And yet, few studies have quantified improvements in prediction skill in the context of an optimal
observing system. In this study, the impact on prediction skill is explored using an intermediate coupled model in which
errors in initial conditions formed to make ENSO predictions are removed in certain areas. Based on ideal observing system
simulation experiments, the importance of various observational networks on improvement of El Niño prediction skill is
examined. The results indicate that the initial states in the central and eastern equatorial Pacific are important to improve El
Niño prediction skill effectively. When removing the initial condition errors in the central equatorial Pacific, ENSO prediction
errors can be reduced by 25%. Furthermore, combinations of various subregions are considered to demonstrate the efficiency
on ENSO prediction skill. Particularly, seasonally varying observational networks are suggested to improve the prediction
skill more effectively. For example, in addition to observing in the central equatorial Pacific and its north throughout the year,
increasing observations in the eastern equatorial Pacific during April to October is crucially important, which can improve the
prediction accuracy by 62%. These results also demonstrate the effectiveness of the conditional nonlinear optimal perturbation
approach on detecting sensitive areas for target observations.
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1. Introduction
El Niño–Southern Oscillation (ENSO) is an ocean–

atmosphere coupled phenomenon involving anomalous
warming or cooling in the central and eastern tropical Pa-
cific (Philander, 1983). It has been much focused upon by
scientists and the general public because of its effects on
natural disasters around the world (King, 1997). In recent
decades, continued intensive studies of El Niño events have
promoted its simulation and prediction (Zebiak and Cane,
1987; Latif et al., 1993a; Tang, 2002; Tang and Hsieh, 2002;
Zhang et al., 2003, 2005b). However, significant uncertain-
ties still exist in real-time ENSO prediction (Latif et al.,
1993b; Chen and Cane, 2008). Particularly, most ENSO mod-
els tend to be less predictable when predictions are made be-
fore or during the northern spring (Zebiak and Cane, 1987;
Webster, 1995; Flügel and Chang, 1998; Fan et al., 2000;
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Zhang et al., 2005b). Such a seasonally dependent phe-
nomenon is referred to as the “spring predictability barrier”
(SPB), which is considered one of the main factors limiting
ENSO prediction skill.

Observations are fundamental for understanding ENSO-
related dynamics, developing numerical models and improv-
ing prediction skill. Recently, a 10-year international pro-
gram, called TOGA (Tropical Ocean–Global Atmosphere),
was carried out to monitor the tropical ocean in real time.
The program yielded many great successes. Particularly, an
ENSO observing system has been established, including
the Tropical Atmosphere Ocean (TAO)/Triangle Trans-Ocean
Buoy Network (TRITON) array, which has been a major part
of the Global Ocean Observing System (McPhaden et al.,
1998). Further, with the implementation of the Argo (Ar-
ray for Real-time Geostrophic Oceanography) plan (Feder,
2000), a growing number of international organizations have
released Argo floats into the global ocean. Thus, real-time
observations of temperature, salinity, density and currents in
the global upper ocean are available. So far, these observ-
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ing systems have been able to offer large quantities of ob-
servational data (especially subsurface ocean data), which
have greatly promoted our understanding of the ocean, at-
mosphere, and their interactions. However, the spatiotempo-
ral sampling frequencies of present observational strategies
are obviously insufficient. Meanwhile, ENSO processes are
known to be strongly regionally dependent. As a result, ini-
tial states in some areas can be more important than others
in terms of ENSO predictions. Such areas are the so-called
“sensitive areas” or “key areas” (Mu et al., 2015). Making
use of observations in sensitive areas can have larger effects
on prediction performance than other areas. It can be noted
that as more and more buoys of the TAO/TRITON array have
collapsed in recent years, it is quite urgent to redesign a new
and reasonable observation network, particularly regarding
high-impact ocean–atmosphere environmental events (such
as ENSO). Additionally, considering the high cost of ocean
observations, finding sensitive areas to maximize prediction
skill is economically necessary.

Therefore, a key issue is how to identify sensitive areas.
Many mathematical techniques have been developed to de-
termine these regions, including the singular vector (SV) ap-
proach (Palmer et al., 1998), the ensemble transform tech-
nique (Bishop and Toth, 1999), adjoint-derived sensitivity
(Wu et al., 2007), and the ensemble transform Kalman filter
(Bishop et al., 2001). Such a strategy to find sensitive regions
where intensive observations are optimally implemented for
maximizing prediction improvements is the so-called “target
observation” or “adaptive observation” method.

Mu et al. (2003) extended the SV method and pro-
posed the so-called conditional nonlinear optimal perturba-
tion (CNOP) technique, which has also been widely used in
target observations of high-impact climate events (Zhu and
Thorpe, 2006; Mu et al., 2009; Yu et al., 2012; Duan and
Hu, 2016). Based on a theoretical ENSO model (Wang and
Fang, 1996), Mu et al. (2003, 2007a) demonstrated that the
initial error growth induced by CNOPs tends to be larger than
that by the SV approach. Yu et al. (2009) studied the horizon-
tal distributions of CNOPs in the Zebiak–Cane (ZC) model
(Zebiak and Cane, 1987), and identified two types of CNOPs
that can induce the largest uncertainties in El Niño predic-
tion. Duan and Wei (2013) demonstrated the existence of
CNOP-like errors in realistic ENSO predictions, which, to-
gether with the results of Yu et al. (2012), suggests that a
reduction in the CNOP-like error components in initial con-
ditions could provide an effective way to improve ENSO pre-
diction skill. In addition, some studies have revealed that
observations in CNOP-indicated sensitive areas not only can
improve the quality of initial conditions, but also better detect
the early signals of El Niño events (Mu et al., 2014; Hu and
Duan, 2016).

Due to the varying complexity of models, sensitive areas
identified for ENSO predictions may appear somewhat differ-
ent. For example, based on a relatively complicated model,
the Community Earth System Model (CESM), Duan and Hu
(2016), in addition to the eastern Pacific, further emphasized
the role of the subsurface state. Based on CMIP5 model out-

puts, Zhang et al. (2015) suggested that sensitive areas are
located in the central-eastern equatorial surface region and
eastern tropical subsurface region. Conversely, Kumar et al.
(2014) showed that observing in the central Pacific is more
important than in the eastern Pacific because the former re-
gion is of foremost importance in preserving the “memory”
of ENSO evolution. Penland and Matrosova (1994) also sug-
gested that the central equatorial Pacific, close to the date
line, is of great importance in El Niño evolution.

Previously, Zhang et al. (2003) developed a relatively new
intermediate coupled model (ICM). The ICM (IOCAS ICM,
named after the Institute of Oceanology, Chinese Academy
of Sciences) is an ENSO model that has been routinely used
for real-time predictions and whose results are collected at
the International Research Institute for Climate and Soci-
ety, Columbia University. An obvious high prediction skill
is found in the central equatorial Pacific [e.g., the correla-
tion coefficient is about 0.7 with a six-month lead time; re-
fer to Zhang et al. (2005b, see their Fig. 12)], so the ICM
can predict the SST anomalies in the Niño3.4 area well. In
addition, this ICM has been widely used for ENSO mod-
eling (Zhang et al., 2005a, 2008, 2013; Gao and Zhang,
2017; Gao et al., 2017). Recently, Gao et al. (2016) imple-
mented a four-dimensional variational (4DVar) data assimi-
lation method into the ICM, which provides optimized ini-
tial conditions so that the prediction skill of ENSO events
is improved efficiently. Besides, the 4DVar-related adjoint
component of the ICM provides technical support to exploit
the CNOP method. Tao et al. (2017) performed CNOP-based
analyses using the ICM and identified the CNOP-type initial
errors in the SST and sea level (SL) that can induce the largest
error growth in El Niño predictions. It was found that the
identified CNOPs are significantly dependent on the initial
times. Furthermore, the CNOP-induced error evolutions are
strongly season-dependent, which is known as the SPB phe-
nomenon. Therefore, Tao et al. (2017) suggested that season-
ally varying target observations (particularly, deploying ob-
servations in the central and eastern equatorial Pacific) could
profoundly weaken the SPB phenomenon and thus signifi-
cantly improve the ENSO prediction skill. However, Tao et
al. (2017) did not explore the extent to which removing initial
condition errors in the CNOP-determined sensitive areas can
have an effect on the prediction skill. Also, it is not known
whether CNOP-related target observations are advantageous
to reducing the SPB phenomenon in prediction experiments.

Accordingly, in the present study, ideal observing sys-
tem simulation experiments (OSSEs) are performed using the
ICM to demonstrate the extent to which El Niño predictions
can be improved by removing initial condition errors in var-
ious target areas. First, a simulated ENSO event is chosen
as the “true” event. Then, control prediction experiments are
performed in which errors are added into the “true” initial
states in the tropical Pacific. Finally, target observation exper-
iments are performed in which the initial condition errors are
removed in a certain area. Such experiments serve to iden-
tify the sensitive areas for ENSO predictions. In addition,
various target observation experiments with combinations of
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these subregions are further performed to verify whether the
CNOP-determined areas are important for ENSO predictions.

Following this introduction, the ICM and the idealized
OSSEs are described in section 2. Then, the results from the
control prediction experiments are reported in section 3, fol-
lowed by discussion in section 4 on the importance of ob-
serving in different areas in the tropical Pacific. In section 5,
the results from the CNOP-related target observation exper-
iments are presented. And finally, the study’s main conclu-
sions and some further discussion are provided in section 6
and section 7, respectively.

2. Experimental design

This section briefly reviews the ENSO model used and the
prediction experiments in terms of the OSSE strategy. These
methods and numerical model are used to explore the extent
to which ENSO prediction skill can be improved by remov-
ing initial condition errors in some sensitive areas, which are
identified by the CNOP approach.

2.1. Model description

As illustrated in Fig. 1, the ICM, developed by Zhang et
al. (2003), includes a statistical atmosphere submodel (i.e., τ
model), an intermediate dynamic ocean model (IOM), and an
SST anomaly submodel embedded with an empirical Te sub-
model for representing the temperature of subsurface water
entrained into the mixed layer (Te).

The dynamical ocean part of the ICM was established by
Keenlyside and Kleeman (2002), and includes linear and non-
linear dynamical components. The linear component is de-
rived from the baroclinic model of McCreary (1981), but was
extended to have a horizontally varying background stratifi-
cation. The first 10 baroclinic modes are retained in the ver-
tical layers, while two surface layers determined by Ekman
dynamics include the combined effect of higher baroclinic
modes from 11 to 30. The nonlinear component is added into
the two surface layers as a correction to the linear component
so that the neglected nonlinearity is considered. As a result,
the IOM can simulate the ocean currents well. Further details

regarding the IOM can be found in Keenlyside and Kleeman
(2002).

A fully nonlinear SST anomaly submodel is implemented
into the dynamic ocean model to describe the thermodynam-
ics for the surface mixed layer. The tendency of the SST
anomaly is determined by horizontal and vertical advection,
thermal diffusion and thermal dissipation. Note that dynamic
processes play a pivotal role in regulating the SST in the cold
tongue region of the tropical Pacific. Therefore, the processes
associated with subsurface water entrained into the surface
(i.e., Te) should be dealt with carefully. Extensive studies
have shown that there is a strong correlation between SL and
Te variability (Zhang et al., 2004; Kumar et al., 2014). Thus,
an empirical Te submodel is constructed based on the SVD
method (Zhang et al., 2005b). The Te submodel is deter-
mined involving two steps: first, an inverse modeling of Te
is used to determine the optimized historical Te when provid-
ing the other terms of the SST equation, such as the observed
SST and velocity fields; and second, a relationship between
SL and Te is determined by the SVD analysis from the his-
torical Te and SL data. Then, a Te anomaly can be obtained
from a given SL anomaly, which is used for the SST anomaly
equation.

Similar to the Te submodel, an atmosphere submodel is
also constructed based on the SVD analysis, which is used
to only represent the wind stress (τ) interannual anomaly.
The relationship between the historical τ anomaly and SST
anomaly is determined by SVD analysis, which is used to de-
termine the τ anomaly from the SST anomaly. The various
datasets used in the ICM are detailed in Zhang et al. (2005b).

These three submodels constitute a coupled model that
includes wind-driven ocean dynamics and thermodynamics
in the upper ocean. As shown in Fig. 2, the ICM can suc-
cessfully simulate the dominant four-year oscillation period
of interannual variability and phase locking associated with
ENSO cycles.

2.2. Idealized OSSEs
OSSEs have been widely used to evaluate the impor-

tance of different observational networks for climate/weather
predictions (Lord et al., 1997; Morss and Battisti, 2004a,

Fig. 1. Schematic illustration of the ICM, consisting of a dynamical ocean
model, statistical atmosphere model, and SST anomaly model with an empirical
Te parameterization.
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Fig. 2. Time series of Niño3.4 indices (units: ◦C) simulated by
the ICM. Note that since stochastic processes are excluded in
the ICM, the depicted ENSO is regular with a four-year period;
see the plotted Nino3.4 index, which is partly displayed in the
embedded panel. One simulated ENSO cycle (red line), also
framed by the dashed border, is chosen as a “true” state, which
is used as a reference when making prediction experiments with
various target observation strategies. The months marked by the
black points during the periods from Jul(−1) to Jun(0) are the
start months from which predictions are made.

2004b; Lee et al., 2016). In the context of classical OSSEs, a
long free model run is first used to generate the “truth” evolu-
tion of the climate system (denoted as the “true” run). Then,
realistic errors are artificially added into the “true” run fields
as observations for all observing systems. Finally, a predic-
tive model that derives from the “true” run model but with in-
troduced model errors is used to perform predictions based on
a range of observing system and data assimilation techniques,
and compared with the “true” run to identify the optimal ob-
serving system and also quantify its improvements. More de-
tails on OSSEs can be found in Masutani et al. (2010). Be-
cause the observations formed in the OSSEs are identified
from a numerical model in which initial conditions and the
evolution of ENSO can be determined, various observational
networks can be redesigned optionally. Therefore, OSSEs
become an effective method for target observation.

In the present study, OSSEs are adopted in an idealized
situation. In the idealized OSSEs, the initial condition er-
rors are directly removed instead of performing complicated
data assimilations in the observing regions, and the model er-
rors are ignored (i.e., the predictive model is identical to the
“true” model run). In additional to the “true” El Niño event
run from the ICM, the idealized OSSEs include two predic-
tion experiments (or runs): one serves as a control predic-
tion experiment in which predictions are made using the ini-
tial conditions from the “true” ENSO case, with errors being
added in the whole tropical Pacific; and the other, called the
target observation experiment, involves the initial condition
errors that formed in the control prediction experiment being
removed in the observing region. The idealized OSSEs can

fully demonstrate the potential of target observations to im-
prove the ENSO prediction skill. In some cases, the idealized
OSSEs are similar to the so-called “identical twin” experi-
ments.

2.2.1. A “true” event

The ICM is used to generate a “true” SST anomaly evo-
lution of ENSO events. As shown in Fig. 2, the ICM can
simulate a quasi-four-year oscillation period of ENSO cycles.
One ENSO event simulated by the ICM is then selected as the
“true” state. For convenience, the onset phase of El Niño is
marked as year(0), and the year before and after the onset
phases is marked as year(−1) and year(1), respectively.

2.2.2. Control prediction experiments

Next, we perform control prediction experiments in
which predictions are made using the initial conditions de-
rived from the “true” state with added errors. Accordingly,
the predicted SST anomaly is deviated from the “true” ENSO
event. Note that the prediction models can be generally ini-
tialized by data assimilations or taken from reanalysis data;
therefore, the initial errors tend to have a certain structure
rather than a simple random distribution in the realistic pre-
diction. A key issue, then, is how to construct the initial con-
dition errors.

Based on hindcast experiments, Duan et al. (2009) re-
cently proposed an ensemble-based algorithm to construct
the initial condition errors and explored the SPB-related ini-
tial condition errors using the ZC model. Later, Duan and
Hu (2016) implemented the ensemble-based algorithm to in-
vestigate the SPB-related initial errors with a relatively com-
plicated model (namely, CESM). Such ensemble-determined
error fields are highly responsible for many ergodic initial er-
rors with certain structures. In this study, we use the same
method to construct the error fields using the ICM. The main
configurations are as follows:

For consistency with Tao et al. (2017), the initial errors
consist of two components: the SST and SL anomaly fields.
The initial error fields are then generated by taking the differ-
ences between the SST/SL anomalies of the “true” El Niño
state in the start month and that in each month of the four
years preceding the start month. For example, when mak-
ing predictions from January(0), the first member of initial
errors in the SST/SL anomalies are obtained by subtracting
the SST/SL in December(−1) from that in January(0); when
taking the differences in SST/SL between November(−1) and
January(0), we can obtain the second member of errors in the
initial conditions, and so on. Considering the effect of a large
SPB on onset-phase prediction (Tao et al., 2017), we focus
on the start time from July(−1) to June(1). Then, 48×12 er-
ror fields can be obtained for 12 start months, each having
48 types of errors that will be added into the corresponding
initial “true” state to perform a 12-month prediction. Conse-
quently, 48 kinds of time series for the predicted SST anoma-
lies are obtained at each start month. Note that the numeri-
cal models are supposed to be perfect. Thus, the ICM used
to perform prediction experiments for the El Niño event has
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the same configuration (such as the model parameters) as the
“true” run.

2.2.3. Target observation experiments

To find the most effective areas where the observations
have a dominant role in El Nino predictions, we perform
target observation experiments, which are the main part of
OSSEs. The tropical Pacific (30◦N–30◦S, 120◦E–80◦W) is
equally divided into 12 subregions (Fig. 3; each subregion is
referred to as S1, S2, etc.) as target areas. To represent ob-
serving in one certain area (i.e., one subregion), we remove
the initial condition errors (which are formed from the con-
trol prediction experiments) in the corresponding target area
when initializing the prediction. Then, we can evaluate the
extent to which the maximum effect can influence the pre-
diction skill by comparing the results from the control pre-
diction experiments and the target observation experiments.
Based on these 12 subregions, 12 prediction experiments are
carried out with the initial errors in the corresponding tar-
get areas being removed. For example, the S1 target obser-
vation experiments are considered to investigate the effects
induced by target area S1 when the initial condition errors
are removed in the S1 area, and the model is then integrated
over 12 months from the start time of July(−1) to June(0).
Then, 12 sets of idealized prediction experiments (hereafter
referred to as target observation experiments S1–12) are per-
formed with corrected initial conditions in the target areas.
Through comparison with the predicted results from the con-
trol prediction experiments, we can evaluate the efficiency of
the initial conditions through the target observation strategy
for El Niño predictions.

Experiments indicate that simply removing initial condi-
tion errors in one target area may worsen the prediction due
to the opposite effects of initial errors in other regions (Yu et
al., 2012), which may also be due to the imbalance of initial
fields. Thus, we perform the target observation experiments
by combining multiple areas together. That is, target obser-
vation experiments are conducted simultaneously in multiple
areas. Various combinations of target observation experi-
ments are conducted in advance. Then, several effective ob-
servational networks are identified in terms of their effects on
El Niño predictions. More details on the target observation
experiments are provided in Table 1. The results are given
based on the TA26, TA68, TA268, TA1256 and TA5678 ob-
servational networks. Taking the TA26 observational network

Fig. 3. Horizontal distribution of the identified CNOPs for SST
(shaded; units: ◦C) and SL (blue contours), and the distribution
of the divided target areas for experiments (referred to as S1,
S2· · · ). Each area is a 40◦(lon)×20◦(lat) rectangle.

Table 1. Description of the control prediction experiments and
target observation experiments based on the idealized OSSEs.
The CNOP-related (multi-area) target observation experiments are
marked in bold.

OSSE Description

True state An El Niño event modeled by the ICM
Control Control prediction experiments with initial condi-

tion errors
S1–12 Target observation experiments with initial condi-

tion errors removed for areas S1 to S12 separately
(corresponding locations are shown in Fig. 4)

TA26 Initial condition errors in areas S2 and S6 removed
TA68 Initial condition errors in areas S6 and S8 removed
TA268 As in TA68 but including S2 an extra area
TA1256 As in TA26 but including areas S1 and S5
TA5678 Initial condition errors in the equatorial Pacific (ar-

eas S5–S8) removed

as an example, the prediction model is initialized by remov-
ing the initial condition errors in both the S2 and S6 ar-
eas. Note that Tao et al. (2017) showed that sensitive ar-
eas for ENSO predictions in the ICM are located in the cen-
tral and eastern Pacific (Tao et al., 2017, Fig. 4). Those ob-
servational networks (i.e., multi-area observation strategies,
such as TA26, TA68, etc.) are closely related to the CNOP-
determined areas (a replica of CNOP is shown in Fig. 3).
Thus, such observation experiments are renamed as CNOP-
related target observation experiments for convenience.

In short, the target observation experiments are designed
in two parts: one to identify the most effective subregion (sen-
sitive area) by observing various single target regions; and
another to further investigate the effect of multi-area obser-
vation on ENSO prediction. The latter experiments can eval-
uate the effectiveness of removing initial condition errors in
the CNOP-related areas on El Niño prediction.

3. Results from the control prediction experi-
ments

In this section, we present in detail the results from the
control prediction experiments. These results are used to
measure the effectiveness of the target observations on ENSO
predictions.

Note that the predicted El Niño evolution can be deviated
from the “true” ENSO event when errors in initial conditions
of SST and SL components are superimposed. By subtract-
ing SST anomalies in the “true” state from those in the con-
trol prediction experiments, the error evolutions induced by
added initial SST and SL errors are calculated as follows:

ESST(i, j, t) = ASST,f(i, j, t)−ASST,true(i, j, t), (1)

in which ASST,true(i, j, t) is the “true” SST anomaly at month t
and ocean model grid (i, j); and ASST,f(i, j, t) is the predicted
SST anomaly with initial condition errors. Then, ESST(i, j, t)
represents the initial-error-induced SST error growth for a t-
month lead-time prediction. In terms of error growth, the
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Fig. 4. Error growth rate and RMSE (units: ◦C) of the SST in the Niño3.4 area, which are obtained from different start
months in the control prediction experiments: (a) July(−1); (b) October(−1); (c) January(0); (d) April(0). The vertical
axes denote 48 samples of initial condition errors.

SST error growth induced by the initial error is strongly sea-
sonally dependent, which is known as the SPB phenomenon.
To demonstrate the seasonal evolution of the error growth, the
error growth rate in the Niño3.4 area is defined as follows:

τt1 ≈
√∑

Ω[ESST(i, j, t2)]2−
√∑

Ω[ESST(i, j, t1)]2

t2− t1
, (2)

where Ω is the Niño3.4 area. Additionally, the root-mean-
square error (RMSE) of the Niño3.4 SST anomalies is de-
fined as

RMSE =

√√√
1

12

12∑

t=1

[Xf(t)−Xtruth(t)]2 , (3)

where Xf(t) and Xtruth(t) denote the predicted and “truth”
Niño3.4 index at month t, respectively.

The error growth rate and RMSE of the Niño3.4 SST
anomaly are shown in Fig. 4. Clearly, large error growth is
generally accompanied by a strong SPB phenomenon. Re-
gardless of the start time when making the prediction, the
largest error growth rate often emerges during spring (April–
May–June) and summer (July–August–September). The pre-
dicted error growth from summer is much more restrained
than that from winter. For example, the RMSE tends to be
lower than 2◦C when predictions are made at the start month

July(−1) (Fig. 4a2), while the RMSE can attain its maximum
(larger than 3◦C) when performing a prediction at the initial
month January(0) (Fig. 4c2). In addition, large error growth
(e.g., RMSE greater than 1.5◦C) is often accompanied by a
prominent SPB phenomenon. It is once again indicated that
the SPB is one of the major factors limiting the prediction
skill.

4. Efficiency of the S1–12 target observations
This section explores the sensitive areas for target obser-

vation in El Niño predictions. As demonstrated in section
2.2, the tropical Pacific is purposely divided into 12 subre-
gions, and the initial condition errors in SST and SL in the
S1–12 areas are removed (this can be achieved, for example,
by adding extra observations in these areas for S1–12 target
observations, respectively). In order to directly reveal the ef-
fectiveness, an efficiency index (EI) is defined as follows:

EITA,st =
RMSEcf,st−RMSETA,st

RMSEcf,st
, (4)

in which RMSEcf,st and RMSETA,st denote the RMSE from
the control prediction experiments and target observation ex-
periments, respectively; the subscript TA represents the target
area for observation (i.e., S1, S2, . . . ), and st is the start time
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when making the prediction. A positive value of EI signi-
fies improvement in prediction skill, while a negative value
means a worsened outcome. The larger the EI, the more ef-
fectively the ENSO prediction is improved when initial errors
are reduced in the corresponding subregion. In other words,
EI is an indicator of the sensitivity to which ENSO predic-
tions can be affected through the initial conditions (i.e., the
closer EI is to 1, the more sensitive the area).

Figures 5 and 6 display a scatterplot of positive EI and
the corresponding boxplot for the S1–12 target observation
experiments, respectively. As clearly shown, removing the
initial condition errors in the south subtropical Pacific (i.e.,
areas S9–12) has no effect on the prediction accuracy of the
El Niño event (EI is close to 0). This implies that ENSO pre-
dictions are insensitive to the initial conditions in the south
subtropical Pacific. However, eliminating the initial errors
in the north of the central equatorial Pacific (i.e., area S2)
can enhance the forecast skill, which is indicated by reduc-
ing the errors by 15%. More sensitive areas are found along
the equatorial Pacific, especially in the central (S6) and east-
ern (S8) Pacific, respectively. When removing initial error
fields in area S6, for example, the prediction error tends to
be reduced by 25% and even reaches 45% (Fig. 6). In par-
ticular, the EI tends to drop quickly as the RMSE from the
control prediction experiments increases. This reveals that
the initial condition errors in other subregions, except for the
current target area, may play a critical role in predictive error
growth. Thus, to limit the error growth, multiple subregions

should be considered simultaneously for target observations.
One more thing that should be noted here is that remov-

ing the initial errors in one target area may worsen the pre-
diction (Yu et al., 2012). The probability distribution for the
improved prediction skill from the S1–12 target observation
experiments is shown in Fig. 7. It is shown that removing the
initial condition errors in the central equatorial Pacific (area
S6) during July(−1) to June(0) is always able to improve the
ENSO prediction skills. Strong uncertainty exists in the en-
hancement of the prediction skill by adding observations in
other subregions (i.e., S5 and S8). That is, deploying obser-
vations only in one subregion during certain seasons may fail
to yield a better prediction result. Compared with the con-
trol prediction experiments, for example, observing in area
S8 tends to yield a worse prediction when making predictions
during autumn and winter, compared with the control predic-
tion experiments (e.g., the probability for improvement is less
than 40%). In this sense, it is evident that adding observations
in the central Pacific is wise for improving the prediction skill
using the ICM. Additionally, it is also revealed that a season-
varying observation strategy can further improve the El Niño
prediction skill with the ICM.

5. CNOP-related observing strategy
Section 4 illustrates the effectiveness of target observa-

tions in different subregions on improving El Niño predic-
tions in the ICM. The S1–12 target observation experiments

Fig. 5. Scatterplots of the EI for the 12 target observation experiments based on the corresponding area described in Fig. 3. Here,
the x-coordinate denotes the RMSE of the Niño3.4 index (referred to as E-Niño3.4) from the control prediction experiments.
The y-coordinate denotes the EI for target observations. Note that negative EI is not shown.
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Fig. 6. Boxplot of the ensemble mean EI for 12 start times in
the S1–12 target observation experiments. The red strigula rep-
resents median efficiency among the El Niño predictions in the
onset year. The maximal and minimal efficiency, along with
upper and lower quartile (blue bar), are also shown to indicate
the uncertainties in improving ENSO prediction. Note that the
negative efficiency indexes are excluded.

Fig. 7. Probability distributions for improved prediction skill in
the 12 target areas as a function of different start times.

indicate that additional observations in the central and eastern
Pacific can improve the prediction skill. In addition, initial
condition errors in some areas (e.g., area S2) are also cru-
cial for inducing prediction error growth in some cases. As
demonstrated in Tao et al. (2017), who identified CNOPs in
the ICM, the ENSO prediction skill is quite sensitive to the
initial states in the central and eastern Pacific. The results de-
rived from the target observation experiments also certify the
sensitive areas determined by the CNOP approach. Besides,
Tao et al. (2017) also showed that the CNOPs derived from
the ICM are strongly dependent on the seasons. For exam-
ple, the CNOPs in winter reveal that the sensitive areas are
located in the central and eastern equatorial Pacific (i.e., the
S6 and S8 subregions), and the CNOPs in summer reveal that
the sensitive areas are located in the central equatorial trop-
ical Pacific and its north (i.e., the S2, and S6 subregions).
Thus, CNOP-related target observation experiments (includ-
ing TA26, TA68, TA268, TA1256 and TA5678) are imple-

mented to explore the effectiveness of multi-subregion obser-
vations on improving prediction skill.

Table 2 shows the statistical mean of the RMSE and the
relevant EI from the CNOP-related target observation experi-
ments. The prediction errors are largely reduced (e.g., the EI
is larger than 0.4). Clearly, the TA5678 observational strat-
egy, which is similar to the TAO array observational network,
is optimal in terms of ENSO predictions. The mean predic-
tion error (about 0.42◦C) is much lower than that from the
control prediction experiments (mean RMSE is 1.57◦C). In
contrast, although the TA1256 observational network (i.e.,
the western and central Pacific) has an approximately equal
size area as TA5678 for observations, the resultant predic-
tion errors are larger. Figure 8 displays the monthly mean
RMSE from the CNOP-related target observation and control
prediction experiments. A strongly season-dependent predic-
tion skill can be found based on the TA1256 observational
network; the prediction errors are greatly reduced (e.g., the
prediction error is less than 0.7◦C) when performing the pre-
diction during winter, whereas the prediction errors tend to
be larger than 1.1◦C when the prediction time begins in sum-
mer. Such seasonality leads to a poor performance. It can
be seen that the TAO array, at least based on those idealized
experiments, is a relatively effective observation strategy.

However, considering the high cost for large-area ob-
servations and maintenance, it is practically impossible to
widely deploy intensive observations, at least for the mo-
ment. Further experiments show that a relatively small-scale
observational network can achieve a similar effect to the
large-scale observational network. Strikingly, the TA26 tar-
get observation experiments, in which observations are car-
ried out only in the central equatorial Pacific and the north
(the S2 and S6 subregions), show a similar prediction ef-
fect to the TA1256 target observation experiments (e.g., the
mean RMSE is 0.92◦C based on the TA26 observational
network, and 0.9◦C based on the TA1256 observational net-
work). Thus, under the situation of the limited capacity,
observations should be preferentially deployed in the central
equatorial Pacific and its north instead of the TA1256 obser-
vational network. Certainly, observing in the eastern Pacific
is equally important. Predictions based on the TA68 observa-
tional network, in which initial condition errors are reduced
in the central and eastern equatorial Pacific, are as skillful as
the TA26 observational network. Nevertheless, the prediction
skill differs among initial seasons. In the TA68 target observa-
tion experiments, the prediction skill is high at the initial time

Table 2. Mean RMSE (units: ◦C) and EI from the CNOP-related
target observations.

Mean RMSE EI

Control 1.57 –
TA26 0.92 0.41
TA68 0.87 0.45
TA268 0.66 0.58
TA1256 0.90 0.43
TA5678 0.42 0.73
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Fig. 8. Monthly mean RMSE (units: ◦C) of Niño3.4 index for
various observing strategies as a function of the initial forecast
month. The CPEs denotes control prediction experiments.

in summer but low in winter (Fig. 8), which is contrary to the
case for TA26. It is confirmed that the sensitive areas for El
Niño predictions are dependent on the initial season. Thus, a
seasonally varying observational strategy is preferable to op-
timally improve the ENSO prediction skill. For example, on
the basis of the TA26 observing strategy, adding observations

in the eastern equatorial Pacific from April to October can ef-
fectively reduce the prediction error to be lower than 0.6◦C
(i.e., EI = (1.57− 0.6)/0.6 ≈ 0.62). Moreover, such season-
dependent observation has advantages over a stationary ob-
servational strategy (e.g., the prediction error is about 0.66◦C
based on the TA268 observational network).

To further demonstrate the efficiency of the CNOP-
related observational strategy on ENSO prediction skill, the
error growth tendency is calculated [using Eq. (2)]. The re-
sults from the TA26, TA68 and TA268 target observation
experiments are shown in Figs. 9–11, respectively. Clearly,
the SPB phenomenon is markedly weakened such that the
RMSEs are lower than those in the control prediction ex-
periments. In addition, each observational network differs
in terms of the weakening of the SPB phenomenon when
making predictions from different initial seasons. For ex-
ample, based on the TA26 observational network, the SPB
phenomenon is remarkably weakened when performing pre-
dictions from winter and spring (Figs. 9c and d), and thus the
error growth is effectively reduced; whereas, a strong SPB
phenomenon still emerges even though initial condition er-
rors in the S2 and S6 subregions are removed in summer
(Fig. 9a). On the contrary, in the TA68 target observation
experiments, the SPB phenomenon is weakened when pre-
dictions are made in summer (Fig. 10a). It is indicated that
it is preferential to deploy the TA68 observational network in

Fig. 9. As in Fig. 4 but for the TA26 target observation experiments. The red line is for the RMSE of Niño3.4 index in
the TA26 target observation experiments, and the blue line is for the control prediction experiments.
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Fig. 10. As in Fig. 4 but for the TA68 target observation experiments. The red line is for the RMSE of Niño3.4 index in
the TA68 target observation experiments, and the blue line is for the control prediction experiments.

summer and the TA26 observational network in winter. Com-
pared with the TA26 target observation experiments, it is in-
teresting to find that TA268 is not conducive to a weakened
SPB phenomenon (as shown in Fig. 11) when predictions are
performed in winter. Clearly, the effects of an oceanic ob-
serving network on a reduction in the SPB phenomenon are
seasonally dependent. This may be related to the fact that
the onset, development and maturation of ENSO events are
strongly seasonally dependent, with the maximum interan-
nual SST anomalies occurring in winter and minimum ones
in spring. Further investigations on these issues are clearly
needed in the future.

Note that improved initial conditions in sensitive areas
can weaken the SPB phenomenon, thus enhancing the ENSO
prediction skill. Although some observational strategies can
reduce the prediction errors, the SPB phenomenon may not
be suppressed and may even be strengthened. In addition, it
is demonstrated that a season-varying observation strategy is
quite effective for improving El Niño predictions, and thus
weakening the SPB phenomenon.

6. Conclusion
This study is an extension of Tao et al. (2017), in which

the sensitive areas for ENSO predictions are identified using
the CNOP approach and the ICM developed by Zhang et al.

(2003). As suggested in Tao et al. (2017), a season-based
target observation (in particular, deploying observations in
the central and eastern equatorial Pacific) may greatly im-
prove the ENSO prediction skill and profoundly weaken the
SPB phenomenon. However, Tao et al. (2017) did not ex-
plore the extent to which CNOP-related target observations
can improve the prediction skill of El Niño events.

In this paper, OSSEs are performed to demonstrate the
extent to which ENSO predictions can be improved by re-
moving initial condition errors in some areas of focus (i.e.,
sensitive areas) in the ICM. The idealized OSSEs include two
groups of experiments using the ICM: control prediction ex-
periments and target observation experiments. The former
are implemented with initial condition errors constructed us-
ing an ensemble-based algorithm, while the latter serve as
an idealized target observation system to investigate the effi-
ciency with which the prediction skill can be improved.

The control prediction experiments show that the predic-
tion skill is strongly influenced by the SPB phenomenon in
the ICM. Based on the target observation experiments for ar-
eas S1–S12, we investigate the importance of observing in
these 12 different target areas of the tropical Pacific. The
indication is that the El Niño prediction skill is sensitive to
the initial state in the central and eastern equatorial Pacific,
which are also the CNOP-determined areas. Eliminating the
initial errors in the central equatorial Pacific can successfully



JULY 2018 TAO ET AL. 863

Fig. 11. As in Fig. 4 but for the TA268 target observation experiments. The red line is for the RMSE of Niño3.4 index
in the TA268 target observation experiments, and the blue line is for the control prediction experiments.

reduce the prediction errors by 25%. In addition, large uncer-
tainty exists in the enhancement of prediction skill by adding
observations in one subregion, except in subregion S6 and S7
(i.e., the central equatorial Pacific). All these results imply
the significance of the initial state in the central Pacific for El
Niño prediction. Nevertheless, the initial errors in other areas
cannot be ignored. Note that the prediction skill from the tar-
get observation experiments tends to decline quickly as the
prediction errors become larger from the control prediction
experiments. This reveals that initial condition errors in other
areas play a critical role in prediction error growth. Thus,
multi-subregion observations should be deployed simultane-
ously to limit the error growth. Further, the CNOP-related
target observation experiments show considerable advantages
in improving the ENSO prediction skill. Removing the ini-
tial condition errors in S2 and S6 (i.e., the central equatorial
Pacific and its north) can improve the model prediction skill
by 41% (i.e., EI = 0.41). Observation in the eastern Pacific
is equally important. Based on the TA68 observational net-
work, the prediction of ENSO is as skillful as based on the
TA26 observational network. However, the prediction skill
differs from one season to another. Thus, a time-varying ob-
servational network would be a reasonable approach to im-
proving the prediction skill. For example, in addition to ob-
serving in the central equatorial Pacific and its north all year

round, increasing observations (e.g., ship-board ADCPs) in
the eastern equatorial Pacific during April to October is cru-
cially important, which can increase the forecast accuracy by
62%. Such a season-varying observing strategy can greatly
reduce the SPB phenomenon and then limit the error growth
induced by the initial condition errors. On the other hand, it
is worth noting that additional observations in non-sensitive
areas may not be beneficial in weakening the SPB, and may
even strengthen this phenomenon.

From the target observation perspective, our study ver-
ifies the sensitive areas determined by the CNOP approach
and further assesses the effects of CNOP-related target obser-
vations on El Niño prediction skill. Particularly, deploying
a time-varying observational network is strongly advised, to
markedly improve El Niño prediction. Note that a new in-
ternational program aimed at building an internationally co-
ordinated and sustainable tropical Pacific observing system
(named TPOS) began in 2014 and is expected to be com-
pleted in 2020 (Cravatte et al., 2015). The target observation
experiments or the CNOP approach provide theoretical guid-
ance for designing a reasonable and effective observational
network in the tropical Pacific.

Note that in this study we simply remove the initial con-
dition errors, instead of using assimilation techniques for
prediction initialization. However, previous studies have in-
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dicated that ENSO prediction skill is highly dependent on
the initialization scheme or assimilation approach, as well as
the model itself (Rosati et al., 1997; Toth and Kalnay, 1997;
Chen et al., 1995; Zheng et al., 2006; Zhu et al., 2012). Thus,
the resultant prediction skill may be overestimated in this
work. Additionally, the model errors are ignored in the ex-
periments. Thus, some questions should be addressed further
in future work: What is the effect on prediction skill if an ad-
vanced data assimilation method is introduced into the ICM?
When considering model errors, to what extent can target ob-
servations improve the ENSO prediction skill? It is worth
mentioning that Gao et al. (2016) successfully implemented a
4DVar data assimilation method into the ICM. Such work of-
fers technical support for future studies on ENSO prediction
skill. Thus, in future work, we intend to carry out OSSEs to
estimate the effect of sensitive areas when using 4DVar data
assimilation. Furthermore, model errors will also be consid-
ered in these related modeling studies.

7. Discussion
It has been widely recognized in recent decades that ini-

tial condition errors in the central and eastern tropical Pa-
cific can have significant effects on ENSO prediction. For
example, Mu et al. (2014) stressed that observing in the cen-
tral and eastern tropical Pacific (so-called sensitive areas) not
only can reduce the initial errors, but also capture the signal
of El Niño in advance, so as to effectively improve the pre-
diction of ENSO. However, as mentioned in the introduction,
the sensitive areas identified for ENSO prediction may dif-
fer somewhat. Here, a more detailed discussion is given to
address the uncertainty issues related to the sensitive areas
identified from different studies.

According to the definition of target observation (Snyder,
1996; Mu et al., 2009), to better predict an event at a future
time t1 (verification time) in an area of focus (verification
area), additional observations should be deployed at a future
time t2 (target time, t2 < t1) in certain special areas (sensitive
areas), where additional observations are expected to make a
large contribution to reducing the prediction errors in the ver-
ification area. Consequently, the identified sensitive areas are
logically dependent on the times, including the initial time
and verification time, verification areas, the variables to be
focused upon (i.e., “precursors”), and the model itself.

7.1. Dependence on initial time and verification time
Using a hybrid coupled model, Fan et al. (2000) found

that the role of the western and eastern tropical Pacific relies
critically on the lead time of prediction: The initial signal in
the western Pacific is most significant for the prediction of a
three-month lead time, while the role of the eastern Pacific
becomes dominant for predictions at longer leads. In Tao
et al. (2017), it is clearly shown that the sensitive areas for
ENSO prediction are significantly season-dependent. Some
studies have also shown that the error growth induced by opti-
mal initial errors is seasonally dependent (i.e., an SPB-like er-
ror evolution) and ENSO-phase-dependent (i.e., a larger error

growth occurs for El Niño than La Niña) (Moore and Klee-
man, 1997a, b; Yu et al., 2009).

7.2. Areas to be chosen for verification
Anomalies of SST in eastern tropical Pacific are impor-

tant during the ENSO cycle; therefore, we usually recog-
nize the Niño3.4 area as the verification area for target ob-
servations. However, the prediction of the central Pacific is
equally important, especially for the so-called central Pacific
El Niño. Tang et al. (2006) investigated the optimal initial
SST anomaly patterns using different verification areas (e.g.,
Niño3, Niño4, and the entire basin), suggesting that the sen-
sitive areas can be different as the prediction area differs. For
instance, to predict the SST in the Niño3 area, the uncertain-
ties in initial states in the eastern and central Pacific are most
favored for the error growth. When using the Niño4 area as
the verification area, the function of the initial states in the
western Pacific Ocean becomes prominent.

7.3. Variables to be observed
Identifying the most important precursors and corre-

sponding sensitive areas is also important for target obser-
vations. However, differences exist among different mod-
els. Some studies have found that thermocline information is
much more important than surface information for SST pre-
diction (Moore and Kleeman, 1996; Xue et al., 1997a, b).
When using a different model, Fan et al. (2000) argued that
the initial states of the SST and thermocline field are equally
important for SST prediction. By contrast, Tang et al. (2006)
considered that the uncertainties in SST are much more im-
portant than thermocline perturbations. Such contradictions
may be attributable to the different representations of sub-
surface feedback in models. On the other hand, Wang et al.
(2017) used ocean currents as a precursor, and suggested that
the information on ocean currents near the dateline and the
southern edge of the South Equatorial Current is crucial for
El Niño prediction. In their work, a statistical model based on
the identified precursor (i.e., ocean currents) was developed,
with high ENSO prediction skill.

7.4. Models with various complexities
Lastly, the greatest challenge in identifying sensitive ar-

eas is the model itself. Because a predictive model is gen-
erally an approximation of the earth system, model errors
that can be different from each other often exist, which has
a large influence on the determination of sensitive areas in
the real climate system. As an illustration, Moore and Klee-
man (2001) investigated the differences between optimal per-
turbations using various versions of coupled models, con-
cluding that the nonlinearities in models can have a signif-
icant impact on the structure of the optimal perturbations.
That is, the identified sensitive areas are noticeably depen-
dent on the model. As a result, the sensitive areas are also
influenced by the complexity of models. By calculating the
SV in an intermediate-complexity model introduced by Bat-
tisti (1988), Chen et al. (1997) implied that the predicted SST
anomaly is sensitive to the initial state in the southeastern
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tropical Pacific. A similar result was also found in Thomp-
son (1998). Besides, Fan et al. (2000), using a hybrid coupled
model, stressed the importance of information in the North-
ern Hemisphere ITCZ. Moore et al. (2003) further compared
different versions of a hybrid coupled model, and concluded
that the sensitive areas are located in the central and east-
ern Pacific when using statistical models of the atmosphere,
while they are mainly located in the warm pool when adding
a parameterization for deep atmospheric convection into the
coupled model. For a more complex model (e.g., a CGCM
such as GMAO CGCMv1), Tang et al. (2006), also consid-
ered that the initial SST information in the central and eastern
Pacific is important to accurately predict the SST in the trop-
ical Pacific; whereas, according to the studies of Duan and
Wei (2013) and Duan and Hu (2016), the subsurface signal in
the western and eastern Pacific is crucial for the prediction of
El Niño because this region can afterwards feed back to the
surface via equatorial waves and thermodynamic effects.

Furthermore, a growing number of studies have focused
on the contributions to ENSO prediction of processes in the
extratropical Pacific and beyond the Pacific (Penland and
Sardeshmukh, 1995; Zhang et al., 1998; Newman et al., 2011;
Frauen and Dommenget, 2012; Boschat et al., 2013; Keenly-
side et al., 2013), and its interdecadal dependence (Penland
and Matrosova, 2006; Aiken et al., 2015). Keenlyside et al.
(2013), for example, demonstrated the important role of the
equatorial Atlantic in enhancing El Niño prediction. Also,
Aiken et al. (2015) showed that SST anomalies in the Indian
and South Atlantic oceans become important as the predic-
tion time increases. Hence, identifying the most sensitive
area for ESNO prediction remains a huge challenge. Despite
the above-stated factors limiting the way we can discern these
sensitive areas, CNOP-based studies, like this one, can im-
prove our understanding of ENSO predictability.
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