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ABSTRACT

Atmospheric chemistry models usually perform badly in forecasting wintertime air pollution because of their uncertain-
ties. Generally, such uncertainties can be decreased effectively by techniques such as data assimilation (DA) and model output
statistics (MOS). However, the relative importance and combined effects of the two techniques have not been clarified. Here,
a one-month air quality forecast with the Weather Research and Forecasting-Chemistry (WRF-Chem) model was carried out
in a virtually operational setup focusing on Hebei Province, China. Meanwhile, three-dimensional variational (3DVar) DA
and MOS based on one-dimensional Kalman filtering were implemented separately and simultaneously to investigate their
performance in improving the model forecast. Comparison with observations shows that the chemistry forecast with MOS
outperforms that with 3DVar DA, which could be seen in all the species tested over the whole 72 forecast hours. Combined
use of both techniques does not guarantee a better forecast than MOS only, with the improvements and degradations being
small and appearing rather randomly. Results indicate that the implementation of MOS is more suitable than 3DVar DA in
improving the operational forecasting ability of WRF-Chem.
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1. Introduction
In recent years an unexpected outbreak of severe air pol-

lution events has engulfed China during the autumn and win-
ter months of the year. These air pollution episodes have
aroused deep concern and panic amongst the public and have
subsequently become a top priority to address for the gov-
ernment. For example, the State Council released the Air
Pollution Prevention and Control Action Plan in September
2013, aimed at reducing particulate pollution. In addition,
targets to control sulfur dioxide and nitrogen oxides were
listed in the 11th and 12th Five-Year Plan drawn up by the
National Development and Reform Commission. However,
to control atmospheric pollution efficiently, it is necessary to
achieve more accurate forecasting of atmospheric chemical
constituents.

Since the beginning of the 21st century, air quality fore-
cast systems, such as the Weather Research and Forecasting-
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Chemistry (WRF-Chem) model, have been gradually put into
operation in key cities across China by many organizations
and institutions. However, without any additional measures,
these numerical forecast systems are not accurate enough to
be applied in operational air quality forecasts due to the un-
certainties within their parameterization schemes and input
data (van Loon et al., 2007; Zhang et al., 2016). Accordingly,
scientists have developed multiple pre- or post-processing
techniques for model improvement in the operational pre-
diction of meteorological and chemical fields. For exam-
ple, data assimilation (DA)—a measure applied before the
model run—is an effective approach in improving the model
forecast skill of air pollution via reducing the uncertainty of
chemical initial conditions (CICs) or other parameters. For
instance, Barbu et al. (2009) achieved a better forecast by
assimilating measurements of sulfur dioxide (SO2) and sul-
fate to adjust the emission and conversion rates of SO2 in
the model; and the research of Liu et al. (2011) and Yin et
al. (2016) showed improved aerosol analysis and forecast-
ing by assimilating the MODIS total aerosol optical depth
retrieval products. Different models and observational data
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have been tested and their results show similar conclusions
(Wang et al., 2014; Zhang et al., 2015; Mizzi et al., 2016;
Tang et al., 2016)—readers who are interested should refer
to Bocquet et al. (2015) for more details. Alternatively, the
forecast error can also be corrected effectively by another
approach, called model output statistics (MOS) (Glahn and
Lowry, 1972). MOS works through statistically relating the
historical model output with corresponding observations, and
then applying the relationship to the model forecast. This
approach has been widely used in the post-processing of op-
erational numerical weather prediction, and in doing so most
forecast biases can be corrected (Wilson and Vallée, 2003),
especially for temperature (Taylor and Leslie, 2005; Libonati
et al., 2008) and humidity (Anadranistakis et al., 2004).

Although it has been proven that both DA and MOS are
effective in improving the forecast performance, little atten-
tion has been paid to comparing or combining the two meth-
ods, especially with respect to atmospheric chemistry model-
ing. There are two obstacles that make it difficult to compare
the two methods fairly using the same observational dataset.
First, most early (and even recent) research concerning 3DVar
in atmospheric chemistry models has focused on assimilating
observations from satellite-derived products to generate anal-
yses that are skillful in improving the forecasts of variables
like carbon monoxide (Barret et al., 2008), carbon dioxide,
ozone (O3), nitrogen dioxide (NO2) (Inness et al., 2015; War-
gan et al., 2015), methane (Alexe et al., 2015), and aerosols
(Benedetti et al., 2009; Yumimoto et al., 2016). However,
MOS works only with in-situ observations from surface sta-
tions. Second, unlike numerical weather prediction, MOS
still remains in its infancy in terms of the operational numer-
ical forecasting of atmospheric chemistry variables. Such
works, if any, are usually based on regression approaches
(Denby et al., 2008; Honore et al., 2008; Struzewska et al.,

2016), which are effective in improving the air quality fore-
cast for all analyzed species. However, methods based on
these approaches are usually too dependent on local pollution
conditions, which makes them inconvenient to be applied as
widely as DA approaches.

This study compares the potential of the two approaches
in improving the atmospheric chemistry forecasts of the
WRF-Chem modeling system in an operational context. To
overcome the problems mentioned above, we firstly adapted
a 3DVar DA system based on Li et al. (2013) (L13 hence-
forth) and Jiang et al. (2013) to the assimilation of observa-
tional data from surface stations. Then, we modified a MOS
scheme from Galanis and Anadranistakis (2002) (hereafter
G02) for use in adjusting the meteorological forecast, to en-
able it to correct the chemistry output from the atmospheric
model. Following this introduction, the model, setup and ex-
perimental design are described in section 2. Section 3 eval-
uates the model improvement with the two methods. A sum-
mary and conclusion are given in section 4.

2. Method and data
2.1. Model setup

The WRF-Chem model is an online 3D, Eulerian chemi-
cal transport model that considers the complex physical and
chemical processes in the troposphere (Grell et al., 2005).
It has been applied in various research settings, especially
those concerning feedbacks of air pollution to meteorolog-
ical and chemical DA (Saide et al., 2012, 2015; Makar et
al., 2015; Mizzi et al., 2016). In this study, version 3.7.1
of WRF-Chem was used to simulate the air quality in Hebei
Province, China. Two nested domains were set, as shown
in Fig. 1. The outer domain covered East Asia with a hori-

Fig. 1. The nested domains of the WRF-Chem model: D01 (blue frame) is the
outer domain, which covers most of East Asia; D02 (black frame) is the inner
domain, in which Hebei Province (red boundary) is located.
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zontal resolution of 75 km × 75 km and 106 (lon) × 81 (lat)
grids, while the inner domain covered Hebei Province with
a horizontal resolution of 15 km × 15 km and 76 (lon) ×
81 (lat) grids. The vertical resolution of the model was 24
vertical levels (about 6 levels below 1 km and 20 levels be-
low 10 km), with 100 hPa as the model top. The 0.5◦ × 0.5◦
data from the NCEP’s Global Forecast System were used
to provide the meteorological initial conditions and lateral
boundary meteorological conditions every 12 hours. Atmo-
spheric gaseous chemistry and aerosols were simulated us-
ing the Second Generation Regional Acid Deposition Model
(RADM2) with the Modal Aerosol Dynamics Model for Eu-
rope (MADE) and the Secondary Organic Aerosol Model
(SORGAM) (Stockwell et al., 1990; Ackermann et al., 1998;
Schell et al., 2001) scheme. The anthropogenic emissions
inventory was the Multi-resolution Emissions Inventory for
China in 2012 (http://www.meicmodel.org). The configura-
tion of WRF-Chem is detailed in Table 1.

2.2. MOS method
What MOS does is to find statistic relationships from

training samples that can then be applied in model forecast
outputs. By doing so, the expectation is that model errors
will be corrected and a forecast generated that will better fit
the observation. In this study, a one-dimensional Kalman fil-
ter was chosen as the algorithm to realize the MOS process.
The algorithm was formulated in a way that generally resem-
bled G02; the only modifications were as follows:

Firstly, in this work, the measurement y(t), as well as the
real value x(t), could both be the difference and ratio between
the forecast and observation, whereas in Eqs. (1) and (2) of
G02 they only denoted the difference. Furthermore, hourly
concentrations of five species from the three-day model out-
put were split into 3×5×24 independent daily concentration
series. Lastly, given Kalman filtering can only predict one
time-step ahead (one day ahead, in this context), the correc-
tion could only work during forecast hours 0–24 (24-h fore-
cast hereafter), while leaving forecast hours 24–48 and 48–72
(48-h and 72-h forecast hereafter) uncorrected. Therefore, to
extend the algorithm further, the corrected results from the
24-h (48-h) forecast was used as a proxy or substitute obser-
vation at the corresponding time to correct the 48-h (72-h)
model output. Appendix A describes the steps in more detail.

Table 1. Configuration of the physical and chemical schemes of
WRF-Chem.

Parameter Scheme

Cloud microphysics WSM 5-Class
Longwave radiation RRTM
Shortwave radiation Goddard
Urban canopy Off

Surface layer Modified MM5 Monin–Obukhov
Land surface Unified Noah
Planetary boundary layer Yonsei University
Cumulus parameterization Grell–Devenyi
Chemistry RADM2/MADE/SORGAM
Photolysis Madronich F-TUV

2.3. DA configuration
In this study, 3DVar DA was implemented to optimize the

CICs for the inner model domain. The DA system and for-
mulation used were based on L13 with the following modifi-
cations:

In addition to the fine particulate matter (PM2.5) assimi-
lated in L13, particulate matter with diameters between 2.5
µm and 10 µm (PM2.5–PM10) was also assimilated and the
analysis increment was added to the corresponding model
variables following L13. Gaseous species, including SO2,
NO2 and O3, were also assimilated to decrease the uncer-
tainty of their concentrations in the model CICs.

Following L13, the National Meteorological Center
(NMC) method (Parrish and Derber, 1992) was adopted to
estimate the background root-mean-square error (RMSE) and
the three Kronecker product members of the background er-
ror correlation matrix. The NMC method utilized the differ-
ence between the 12- and 24-h WRF-Chem forecasts valid
at the same time of 1200 UTC for a whole month. No cross
correlation between different species was assigned for back-
ground error. The domain-average RMSEs for five species
are shown in Fig. 2. The vertical distributions of RMSE for
all species display a relatively rapid decrease with height—
except for O3, which peaks at around 4 km above the ground.
The vertical correlation matrices are displayed in Fig. 3.
The correlation between different height levels experiences
a jump at the top of the boundary layer, which seems to be a
common feature for all species. In addition, the band of high
correlation along the diagonal seems wider in the middle tro-
posphere than the upper or lower troposphere.

Considering that all the stations were built and main-
tained under the same standards, no difference in the mea-
surement and representativeness error between different sta-
tions was assumed. In addition, cross correlation between
different species and stations was set to zero because of the
lack of information. Therefore, observation error consisted

0 10 20 30 40
0

2000

4000

6000

8000

10000

Mean standard deviation (µg m
−3

 or ppb)

H
e

ig
h

t 
(m

)

PM
2.5

PM
2.5

−PM
10

SO
2

NO
2

O
3

Fig. 2. Vertical distribution of the root-mean-square of the back-
ground errors, in mass concentration for particulate matter and
ppb for gaseous species.
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Fig. 3. Vertical correlations of the background errors for PM2.5, SO2, NO2, and O3. The plot for PM2.5–PM10 is very
similar to that of PM2.5 and so is not shown here. Both the x- and y-axis are limited within 10 km, though the real
model top is higher.

merely of five values—one for each species. The measure-
ment error was assigned as 1.0 µg m−3, 1.0 µg m−3, 1.0 ppb,
1.0 ppb and 1.0 ppb for PM2.5, PM2.5–PM10, SO2, NO2 and
O3, respectively. Representativeness error was estimated fol-
lowing Elbern et al. (2007) and Schwartz et al. (2012) using
the formula

εr = γε0

√
∆x
L
, (1)

where ε0 and εr are the measurement error and representa-
tiveness error, γ is an adjustable parameter that accounts for
the lifetime of the species (0.5 for PM2.5, PM2.5–PM10 and
O3; 1 for SO2 and 2 for NO2), ∆x is the grid spacing (here, 15
km), and L is the radius of influence determined according to
the location of stations (here, 4.0 km for suburban stations—
assumed for all sites). If the total observation error is de-
fined as the sum of measurement error and representative-
ness error, the standard deviation of observation error is 2.0
µg m−3, 2.0 µg m−3, 3.0 ppb, 4.9 ppb and 2.0 ppb for PM2.5,
PM2.5–PM10, SO2, NO2 and O3, respectively. Though the
observation error was determined fairly arbitrarily and em-
pirically here, the uncertainty relating to it should not have a
significant influence on the conclusion. That is because the
results are usually not very sensitive to the specification of

error (Geer et al., 2006), and similar analysis fields were ob-
tained from our experiments when the observation error was
increased or reduced by a factor of two or three.

2.4. Experimental design
To compare the relative importance of MOS and DA,

four parallel experiments were designed: Sim base, Sim DA,
Sim MOS and Sim DM. Sim base worked as the base simu-
lation without applying DA or MOS; Sim DA was an experi-
ment with only DA employed to optimize the model CICs;
Sim MOS was the same as Sim base but with the model
output corrected by one-dimensional Kalman filtering; and
Sim DM used both the DA and MOS methods.

To simulate the operational forecast scenes, as Fig. 4
shows, all experiments initiated a new WRF-Chem forecast
at 1200 UTC, every day, between 30 November 2014 and 31
December 2014. Each forecast was integrated for 84 h to
generate 72-h forecasts for each day, with the earliest 12 h
discarded as spin-up time. The CICs for each initiation came
from the 24-h forecasts of the previous cycle, which would
be the background fields to be assimilated with valid obser-
vations for experiments with DA before initializing WRF-
Chem. The first CICs at 1200 UTC 30 November 2014 came
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Fig. 4. Time settings of the model in the four experiments. In each forecast cycle, the model was integrated 84
h in advance, with the first 12 h discarded (black dashed arrow) and the remaining 72 h divided into three parts:
24-h forecast (black solid arrow), 48-h forecast (blue solid arrow) and 72-h forecast (red solid arrow). The blue
thick arrows mean using CICs directly for experiments without DA, while for others as the background fields
of the 3DVar DA.

from a two-days’ spin-up of the climatological background
chemistry profile. For all experiments, the chemical bound-
ary conditions came from the default climatological chem-
istry profile for the outer domain and the interpolation of the
outer domain for the inner domain.

2.5. Observational data
Hourly concentrations of SO2, NO2, PM10, O3 and PM2.5

at surface level from 207 sites were provided by the Min-
istry of Environmental Protection of China. Data covered the
whole month of December 2014 and had been subjected to
routine quality control. As shown in Fig. 5, only 155 stations
were selected (randomly) from the 207 stations to be assim-
ilated, and the data of the remaining 52 were used to verify
the assimilation process. Because all stations were located at
surface level, the adjustment of the CICs from the 3DVar DA
was limited within several layers near the surface according
to the vertical background error covariance. Furthermore, it
should be noted that only those 155 sites that provided their
data for the 3DVar DA participated in the MOS process.

3. Results
3.1. Model evaluation

Table 2 presents the mean bias (MB), relative bias (RB),
RMSE and correlation coefficient (Corr) for the 24-h, 48-h
and 72-h forecast of Sim base. In general, the base model
simulation provides a fairly good result—especially for NO2,
whose bias is small and correlation high. In terms of particu-
late matter and SO2, the model tends to systematically under-
estimate the concentration of SO2 as well as that of PM2.5 and
PM10. Even so, the model reproduces the temporal variations
of particulate matter well, with Corr values higher than 0.47
for PM10 and 0.54 for PM2.5. For O3, the model encounters
a problem—the surface O3 simulated concentrations (5–45
µg m−3 from observation) are seriously overestimated by the

Fig. 5. The terrain height of the Hebei Province, with monitor-
ing sites plotted as filled dots. Red dots are sites that partici-
pated in the 3DVar and MOS process, while the blue ones are
those used only in the validation of the DA effect.

model (20–80 µg m−3 from simulation), which leads to pos-
itive bias (∼ 40 µg m−3) and lower Corr (0.44) than for other
species. Fortunately, when viewing the RMSE of O3 from the
aspect of MB, it is apparent that MB contributes the largest
portion of RMSE, and therefore the model is still able to re-
produce the variation of O3. The biases mentioned above can
usually be attributed to the uncertainties from the emissions
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Table 2. Site-averaged mean bias (MB), relative bias (RB), root mean square error (RMSE) and correlation coefficient (Corr) for the 24-h,
48-h and 72-h forecasts of five species in Sim base. Statistics were calculated according to the hourly concentration from each of the 207
sites before being averaged. Units are µg m−3 for MB and RMSE.

24-h forecast 48-h forecast 72-h forecast

MB RB (%) RMSE Corr MB RB (%) RMSE Corr MB RB (%) RMSE Corr

SO2 −33.49 −35.2 73.39 0.50 −36.54 −38.4 75.42 0.48 −41.78 −43.9 77.82 0.47
NO2 2.12 3.8 35.45 0.56 0.05 0.1 36.13 0.53 −4.47 −8.1 35.84 0.51
PM10 −136.92 −72.3 173.60 0.52 −140.65 −74.3 177.60 0.50 −145.27 −76.7 182.68 0.47
O3 39.99 160.8 43.47 0.44 40.08 161.2 43.61 0.44 41.34 166.2 44.75 0.43
PM2.5 −72.10 −62.3 104.30 0.60 −74.74 −64.6 107.26 0.57 −78.64 −67.9 111.48 0.54

Table 3. Site-averaged MB, RMSE and Corr for the 24-h, 48-h and 72-h forecasts of five species in Sim MOS. Statistics were calculated
according to the hourly concentration from each of the 207 sites before being averaged. Units are µg m−3 for MB and RMSE.

24-h forecast 48-h forecast 72-h forecast

MB RMSE Corr MB RMSE Corr MB RMSE Corr

SO2 −4.49 80.59 0.42 −11.30 74.87 0.41 −17.15 72.51 0.45
NO2 0.90 35.71 0.51 0.69 35.15 0.50 −0.51 34.44 0.52
PM10 −21.12 142.98 0.30 −38.32 135.62 0.32 −58.14 138.12 0.36
O3 −0.36 18.71 0.52 −0.73 18.21 0.47 1.12 16.71 0.56
PM2.5 −11.76 98.44 0.41 −20.72 94.45 0.39 −32.88 94.16 0.45

inventory, meteorological forecasting (Tang et al., 2011) and
model schemes (Yerramilli et al., 2010). Although the 24-h
forecast performs the best for all species, the 48-h and 72-h
forecasts are also good enough to yield fairly reliable results,
which is critical to the success of MOS in the whole 72 hours’
forecast. In short, the model shows forecast skill that is suf-
ficient to be competent for the success of the DA and MOS
process.

3.2. Validation of MOS
Figure 6 depicts the site-averaged hourly concentration

simulated by Sim MOS, plotted against ground observations.
Note that, although the hourly concentrations were averaged
over 155 stations, the MB and RMSE values in Table 3 were
generated by first calculating the individual errors of the 155
stations, before averaging.

From Fig. 6 it can be concluded that the forecast from
Sim MOS fits the observation fairly closely—especially for
SO2, NO2 and O3. However, when it comes to PM2.5 and
PM10, the points locate within a wider space, and those ex-
tremely high observations are hard for MOS to forecast. Even
so, when comparing Table 3 with Table 2, PM2.5 and PM10,
together with the other three species, demonstrate that a clear
correction can be obtained for all forecast times. Excluding
the 48-h forecast of NO2, MOS can reduce the MB to a large
extent, meaning this method can remove the majority of the
model systematic bias. Because of the reduction in MB, the
RMSE also decreases for all cases except the 24-h forecast of
SO2. In addition, the effect on reducing the error is unlikely
to become poorer as the forecast time advances. For the 72-h
and 48-h forecasts, the effect MOS has on the former may
rival or even exceed that on the latter, e.g., the RMSE reduc-
tion of PM2.5 is even larger for the 72-h than 48-h forecast.

For the 48-h and 24-h forecasts, the same effect can be found.
Among all five species, O3 seems to benefit the most from the
MOS process. This is because O3 usually follows a very reg-
ular daily variation, which makes the hourly-split but daily-
linked concentration series almost perfect for the assumptions
of one-dimensional Kalman filtering.

Admittedly, MOS degrades the forecast in a few cases
(e.g., the 48-h forecast of NO2 and 24-h forecast of SO2, as
mentioned above). Such increases in error, however, will usu-
ally not be of concern to users, and may well be accepted, as
they are extremely small and only appear at times when the
model outputs to be corrected are already fairly close to the
observation. Nonetheless, when viewed from the correlation
perspective, such degradation becomes more obvious. Except
for NO2 and O3, the correlations all experience a reduction
by 0.1–0.2. Thus, the MOS approach tends to reduce the bias
and error at the expense of correlation.

3.3. Validation of DA
Figures 7 and 8 show the change in RMSE and Corr over

the integration time from −12 h (right after the DA) to 10
h (already integrated for 22 h), respectively, for experiments
Sim base and Sim DA. To keep the verification independent
from the observations assimilated, the RMSE and Corr were
only averaged over the 52 stations that did not provide their
observational data in the 3DVar DA process.

From the −12 h forecast of Fig. 7 and Fig. 8, DA leads
to better initial conditions for the simulation—especially for
NO2, PM10, PM2.5 and O3, whose RMSEs decrease substan-
tially at almost all sites. For example, PM10 and PM2.5 shown
an RMSE reduction of about 50–100 µg m−3, which is about
half the RMSE of Sim base. Such results are as good as those
obtained by L13 and Jiang et al. (2013), who also worked on
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Fig. 6. Hourly concentrations simulated by Sim MOS, plotted against ground station observations (obs) averaged over 155 stations.

Fig. 7. RMSE change over the integration time from the −12 h forecast (right after the DA) to the 10 h forecast (already inte-
grated for 22 h) for the five species. All RMSE values were averaged over the 52 stations that did not provide observations in
the DA.

assimilating ground observations using 3DVar. For SO2, the
reduction in RMSE is less apparent (although the change in
RMSE is still negative when 52 sites are averaged), but the
correlation after DA is still obviously larger than before. The
marginal RMSE reduction for SO2 may be acceptable con-
sidering the increase in correlation is rather obvious and the
data representativeness of some stations is dubious (Zhang et
al., 2016).

However, as expected, the effect of DA slowly diminishes
as the integration continues, which has also been observed in
other works (Jiang et al., 2013; Li et al., 2013). After the
model has been integrated for more than 14 h, the RMSE af-
ter DA minus that before DA (RMSE change henceforth) is
still negative, but their absolute values are apparently smaller
when compared to the earlier ones. The effect of DA remains
for longer in the case of O3, PM10 and PM2.5 (RMSE change
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Fig. 8. Similar to Fig. 7 but for Corr.

remains negative for the 14 h), benefiting mainly from their
relatively long lifetimes. For example, PM2.5 and PM10 still
maintain an RMSE reduction of about 10–20 µg m−3, which
is even better than the results reported by L13 and Jiang et al.
(2013). However, for NO2, whose lifetime is short, the two
experiments show almost no difference in RMSE after four
hours’ integration. Because the initial improvement from DA
is relatively small, the forecast of SO2 soon loses its im-
provement from DA and shows little RMSE change almost
immediately after the run of the model. For SO2 and NO2,
the RMSE change is positive in some cases, but the increase
in RMSE is usually very small compared with the original
RMSE, and therefore unlikely to be a problem. Conclusions
from the viewpoint of correlation are similar to those from
the RMSE, except the effect of DA seems more obvious and
long-lasting.

Overall, for most cases, DA successfully produces better
CICs for the model and may help to improve the forecast skill
in the following half to one day.

3.4. Effect of MOS and DA
From Fig. 9, which plots the RMSE of the four experi-

ments and five species at different forecast hours from −12 h
to 72 h, we can see that the forecast error varies with fore-
cast hours. Considering the RMSE was calculated from the
statistics of one month, Fig. 9 is a good representation of the
general features of the four experiments.

By comparing the experiments using MOS (solid lines)
with those without MOS (dotted lines), it is clear that all
species show a large reduction in the 72 hours forecast span,
and that this reduction is much larger than can be provided by
DA (solid lines are below the dotted lines by a larger distance
than the blue lines are below the red). For example, when
compared to Sim base, the average SO2 RMSE decreases by
4.34 µg m−3 for Sim MOS (average taken over all stations

throughout the whole 72-h forecast), while the decrease is
only 0.48 µg m−3 for Sim DA. Worse still, when the forecast
runs to its second or third day, the effect of DA inevitably di-
minishes (as evidenced by the overlapping red and blue dot-
ted lines after 24 h), while MOS can still work during this
period (solid lines do not overlap the dotted lines, even after
24 h).

The blue dotted lines represent the simulation RMSE cor-
rected only with MOS, while the red dotted lines are the re-
sults processed by both MOS and DA. Overlapping of the
two lines can be seen at almost all times from all species,
meaning the DA of the initial conditions provides little help
to the effect of MOS, although does provide better initial con-
ditions for the model to generate a better forecast. However,
sometimes the two lines do not overlap, and show some dif-
ferences, which is common for all species but most obvious
for NO2 and most unobvious for PM10 and PM2.5. When
DA can still improve the forecast, or the red dotted line is
below the blue dotted line, the red solid line could be ei-
ther above (1-h forecast for SO2) or below (10-h forecast for
O3) the blue line, which means a better forecast from DA
may either improve or degrade the MOS effect. Because in
this work MOS corrects one day’s forecast using the correc-
tion results and forecast from previous days, it is not a sur-
prise that Sim DM and Sim MOS show discrepancies when
Sim DA and Sim base coincide after 24 h. However, as men-
tioned, such a discrepancy could be either an improvement or
degradation.

3.5. Discussion
This section provides additional discussion around two

facts. First, that MOS may improve forecasts far more than
the 3DVar DA of CICs. This is reasonable because MOS
can remain effective throughout the whole forecast period,
whereas the effect of 3DVar via optimized initial conditions



JULY 2018 MA ET AL. 821

Fig. 9. RMSE of the four experiments and five species at different forecast hours from −12 h to 72 h.

usually diminishes after 24 h of model integration. The
loss of benefit from 3DVar DA is unavoidable because atmo-
spheric chemistry is less sensitive to CICs than other driving
factors like meteorological conditions and emissions (Henze
et al., 2009; Semane et al., 2009; Tang et al., 2011). Worse
still, the forecast during the earliest 12 h, which benefits the
most from 3DVar DA, usually makes no sense in a real op-
erational forecasting environment and is excluded from eval-
uation as spin-up. In fact, when compared with Sim base,
Sim DA can account for 43.85% of the O3 RMSE reduction
in the first 12 h after initialization (forecast hour −12 to −1),
closely rivalling the contribution of Sim MOS (55.94%) in its
first 12 h (forecast hour 0 to 11). However, when discussed
within the same forecast period, e.g., 12 h to 24 h, Sim DA
can produce only 3.93% of the O3 RMSE reduction, which is
far less than Sim MOS (61.26%), despite the following hours
during which DA has no effect at all.

The second fact to be explained is that Sim DM does not
always outperform Sim MOS. This result is somehow against
the experience that, when corrected with the same MOS algo-
rithm, better input should lead to better or at least not worse
output. However, for example, assume the difference be-
tween the forecast and observation remains constant before
3DVar is applied. (This condition may never happen in re-
ality, but this does not matter for the purposes of demonstra-
tion). Then, no matter how large the constant is, the MOS
method might work perfectly to eliminate it. However, after
DA is applied, it is possible that the difference may reduce
though no longer remain constant. In this case, although the
forecast becomes better before MOS, it is now more difficult
for MOS to eliminate the error. So, it should be noted that
the error’s temporal consistency, rather than its magnitude,
determines the effects of MOS on the model outputs. When
reducing the magnitude of the error of model outputs, the

3DVar DA process may at the same time violate or increase
its consistency to degrade or improve the effects of MOS from
case to case. Therefore, such a phenomenon is uncorrelated
with the inherent or necessary nature of the model, DA and
MOS processes, and will be changed randomly whenever the
three change their setup. The assumption is supported by the
evidence that the results are very different when the whole
experiment is replicated but with the spatial resolution of the
original anthropogenic emissions changed from 0.1◦×0.1◦ to
0.25◦×0.25◦ [see Fig. 10 (PM2.5 and PM10 not plotted given
the problem for them was not obvious in Fig. 9)]. For ex-
ample, in Fig. 9, SO2 is predicted better by Sim DA than
Sim base at the second forecast hour, but Sim DM is beaten
by Sim MOS. However, in Fig. 10, the same comparison
leads to an inverse result, which shows Sim DM performs
better than Sim MOS. Given the fact that the experiments
cover a period of only 1 month, it is possible that the forecast
ability of Sim MOS is slightly worse than, or almost the same
as, Sim DM, if the experiment is carried out over a longer
time. However, results from short-term experiments, which
contain random error just like everyday forecast, still demon-
strate that using MOS and DA together does not guarantee a
better output than MOS only, which should be carefully con-
sidered by researchers and forecasters working in this field.

4. Conclusion

A comparison between the effect of MOS and DA in im-
proving the forecast skill of an atmospheric chemistry model
was performed in a near real operational context. The evalu-
ation based on observations showed that both 3DVar DA and
MOS based on one-dimensional Kalman filtering are effec-
tive measures to reduce the errors in the model forecast.
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Fig. 10. RMSE of three species at different forecast hours from −12 h to 72 h from the same four experiments with solely
emissions perturbed.

The forecast solely with MOS (Sim MOS) performed
better than that solely with 3DVar DA of CICs (Sim DA).
Such superiority of MOS could also be seen in all five
species. That is, the implementation of MOS rather than
3DVar DA on CICs is more suitable for the aim of improving
the operational forecast ability.

Considering the randomness of the influence of DA on er-
ror consistency, it is not impossible that combined use of both
techniques will sometimes yield a worse forecast than MOS
only. The potential degradation, which is expected to be mit-
igated by long-term averaging, should be considered, but is
unlikely to concern forecasters because of the relatively lim-
ited difference yielded. However, considering the complexity
of the two approaches, the feature of MOS, rather than DA of
CICs, is recommended first when planning to improve your
model forecast.

Given that refinement of the model grid is promising for
additional forecast skill (Elbern et al., 2007), future work will
concentrate on testing finer model grids in the vertical and
horizontal dimensions, as well as different 3DVar observa-
tion error setups, in order to improve the effect of DA on
the forecast. Of particular interest are species like SO2 and
NO2, which are unsatisfactorily forecasted by models with
3DVar. Also, to see if the conclusions will be different, we
intend to try different DA methods, such as 4DVar and in-
verse modeling, which are able to adjust model parameters
and emissions, which work as control parameters in a suc-
cessful forecast (Schmidt and Martin, 2003; Dubovik et al.,
2008). Finally, another line of research would be extending
the experiment time to explore whether any long-term statis-
tical properties exist when using the DA and MOS techniques
together.
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APPENDIX
Assume we have a system x that varies with time t, and x

at time t is almost the same as x at time t−1 expect for a ran-
dom error w. Then, this system can be described by a system
equation such as

x(t) = x(t−1) + w(t) . (A1)

For the system x, assume we have some kind of measurement
y that measures x with a random error v. Then, we can write
the measurement equation as

y(t) = x(t) + v(t) . (A2)

If w and v are both white noise, with their covariance al-
ready known as W and V and independent of each other, then
we can obtain the best estimate of x using the following equa-
tions:

x̃(t) = x̃(t−1) + K(t)[y(t)− x̃(t−1)] , (A3a)

K(t) = P1(t)[P1(t) + V(t)]−1 , (A3b)
P1 = P(t−1) + W(t) , (A3c)

P(t) = P1(t)−K(t)P1(t) . (A3d)

In these equations, x̃(t) stands for the best estimate of the real
system x(t), which is usually unknown; and K(t) and P(t)
are both intermediate variables whose meanings are not im-
portant. To complete a single one-dimensional Kalman filter
iteration, the inputs of the equations are P(t− 1) and x̃(t− 1)
from the previous calculation, as well as a newly obtained
measurement y(t). Then, the equations will yield new P(t)
and x̃(t), which will be saved for the next iteration. A de-
tailed deduction of Eq. (A3) is beyond the scope of this work;
interested readers should instead refer to Kalman (1960).

Here, three sequences of O3 concentrations at 1200 UTC
from three days’ model output will be taken as an example to
show the detailed steps of completing one iteration of MOS.
It is assumed that on day t (here, t represents “today”), the
following variables had been prepared: observation sequence
Oi : i = 1,2, · · · , t from the ground station; model 24-h forecast
sequence and its correction fi,24 : i = 1,2, · · · , t + 1 and f̃i,24 :
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i = 1,2, · · · , t; model 48-h forecast sequence and its correction
fi,48 : i = 1,2, · · · , t + 2 and f̃i,48 : i = 1,2, · · · , t + 1; model 72-
h forecast sequence and its correction fi,72 : i = 1,2, · · · , t + 3
and f̃i,72 : i = 1,2, · · · , t + 2 (model forecast sequence can be
obtained by interpolating the 3D field of the model output to
the position of the site); as well as all the P and x̃ from the
previous iteration. What we want is to generate f̃t+1,24, f̃t+2,48
and f̃t+3,72 from all variables above.

To obtain f̃t+1,24, two different approaches will be applied
simultaneously. In one approach, which is the same as in
G02, x(i) = Oi − fi,24 : i = 1,2, · · · , t and y(i) = Oi − fi,24 : i =

1,2, · · · , t in Eqs. (A2) and (A3), so this approach is called
the “difference approach” hereafter. v(i) in Eq. (A3) is set
to zero to assume no measurement error, which means V in
Eq. (A3b) equals zero and the estimation of W would be un-
necessary here. The calculation of Eq. (A3a) to Eq. (A3b)
gives the x̃(t); then, we assume x̃(t + 1) = x̃(t) and f̃(t+1,24),d =

ft+1,24 + x̃(t + 1). The subscript “d” means the corrected re-

sult from the difference approach. Additionally, we add an-
other approach called the “ratio approach”. In this approach,
all formulas are the same except (i) = Oi/ fi,24 : i = 1,2, · · · , t,
y(i) = Oi/ fi,24 : i = 1,2, · · · , t and f̃(t+1,24),r = ft+1,24 x̃(t + 1),
where the subscript “r” means the ratio approach. The fi-
nal result f̃t+1,24 will be chosen from f̃(t+1,24),d and f̃(t+1,24),r
according to the method described in the final paragraph of
this appendix.

With f̃t+1,24 obtained, it is now possible to calculate
f̃t+2,48. Similar to f̃t+1,24, we still carry out the calculation
via two approaches: the difference and ratio approach. Now,
x(i) = Oi− fi,48 or Oi/ fi,48 : i = 1,2, · · · , t and y(i) = f̃i,24− fi,48
or f̃i,24/ fi,48 : i = 1,2, · · · , t + 1. So, to some extent, f̃i,24 now
works as a “measurement” of the real observation Oi, or a
“proxy” of observation as in section 2.2. At this time, v(i)
cannot be set to zero in Eq. (A3) and the evaluation of V and
W becomes necessary in completing the iteration. The esti-
mation of W and V resembles G02, in which

W(t + 1) =
1

n−1

n−1∑

l=0

(x(t− l)− x(t− l−1))−

∑n−1

m=0[x(t−m)− x(t−m−1)]
n



2

; (A4)

V(t + 1) =
1

n−1

n−1∑

l=0

(y(t− l + 1)− x(t− l + 1))−

∑n−1

m=0[y(t−m + 1)− x(t−m + 1)]
n



2

. (A5)

The variable n in Eqs. (A4) and (A5) is the number of
sequence members participating in the statistics. A value
from 7 to 9 is enough for n to generate a fairly good MOS
effect, which means historical data from the past 7–9 days’
observations and model output works as the virtual train-
ing sample for MOS. After completing the calculation of
Eq. (A3a)–(A3d), x̃(t + 1) will be obtained and then x̃(t + 2)

and f̃(t+2,48),d can be produced by replicating the process
from the paragraph above. Another ratio approach is also
performed to generate f̃(t+2,48),r, and f̃t+2,48 is chosen from
f̃(t+2,48),r and f̃(t+2,48),d in the same way described in the final
paragraph.

From f̃t+2,48 to obtaining f̃t+3,72, what has to be done is
almost the same as from f̃t+1,24 to f̃t+2,48. The differences

Fig. A1. Steps in applying the one-dimensional Kalman filter to correction over
the whole 72 hours forecast period. The circles from left to right stand for val-
ues at the same hour from different days. Black circles are those existing before
today’s calculation, while red ones are those generated from the calculation of
today.
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mainly lie in some of the formulations. Taking the differ-
ence approach as an example, x(i) = Oi − fi,72 : i = 1,2, · · · , t,

y(i) = f̃t+2,48 − fi,72 : i = 1,2, · · · , t + 2 and the estimation of V
and W is changed to

W(t + 2) =
1

n−1

n−1∑

l=0

(x(t− l)− x(t− l−1))−

∑n−1

m=0[x(t−m)− x(t−m−1)]
n



2

; (A6)

V(t + 2) =
1

n−1

n−1∑

l=0

(y(t− l + 2)− x(t− l + 2))−

∑n−1

m=0[y(t−m + 2)− x(t−m + 2)]
n



2

. (A7)

Figure A1 is a schematic diagram showing how the algo-
rithm described above is carried out, step by step.

The final output should be chosen from the difference and
ratio approach according to their reasonability. From our ex-
perience, the difference approach tends to occasionally yield
unreasonably low values, while the ratio approach sometimes
gives results that are too high. Fortunately, the two conditions
never happen simultaneously, and therefore the final output is
from the ratio approach when its result is not too high (lower
than the yearly averaged value of the species, for example).
In cases where the ratio approach appears too high, the dif-
ference approach should be used instead.
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