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ABSTRACT

This study investigates the potential influences of anthropogenic forcings and natural variability on the risk of summer
extreme temperatures over China. We use three multi-thousand-member ensemble simulations with different forcings (with
or without anthropogenic greenhouse gases and aerosol emissions) to evaluate the human impact, and with sea surface tem-
perature patterns from three different years around the El Niño–Southern Oscillation (ENSO) 2015/16 event (years 2014,
2015 and 2016) to evaluate the impact of natural variability. A generalized extreme value (GEV) distribution is used to fit
the ensemble results. Based on these model results, we find that, during the peak of ENSO (2015), daytime extreme tem-
peratures are smaller over the central China region compared to a normal year (2014). During 2016, the risk of nighttime
extreme temperatures is largely increased over the eastern coastal region. Both anomalies are of the same magnitude as the
anthropogenic influence. Thus, ENSO can amplify or counterbalance (at a regional and annual scale) anthropogenic effects
on extreme summer temperatures over China. Changes are mainly due to changes in the GEV location parameter. Thus,
anomalies are due to a shift in the distributions and not to a change in temperature variability.
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1. Introduction
Change in the risk of extreme temperatures over China

has been a major focus of research (e.g., Ren et al., 2016;
Zhou and Wang, 2016; Chen and Zhai, 2017; Freychet et
al., 2017; Luo and Lau, 2017). The impact of anthropogenic
forcings has been identified in several studies (e.g., Sun et
al., 2016; Yin et al., 2016, 2017; Ma et al., 2017; Peng et al.,
2017; Sun et al., 2017) showing an increase in the risk of high
temperatures due to an increase in greenhouse gases. Mean-
while, aerosol emissions are understood to have reduced this
risk due to their cooling effect (e.g., Li et al., 2016; Mascioli
et al., 2016; Dong et al., 2017), albeit these results are still
largely model-dependent (Kasoar et al., 2016). Natural vari-
ability also affects extreme temperatures. More specifically,
the impact of the El Niño–Southern Oscillation (ENSO) has
been documented in several studies and is the leading mode
of the interannual natural variability (McPhaden et al., 2016).
However, due to the limited period of observations and the
low frequency of these events (about two per decade), it is
difficult to conduct strong statistical analyses on their impact,

∗ Corresponding author: N. FREYCHET
Email: Nicolas.Freychet@ed.ac.uk

especially when investigating the most extreme temperatures.
Moreover, ENSO usually exhibits a stronger signal on sea
surface temperatures (SSTs) during winter, so most studies
have focused on its impact at that time of the year. The in-
fluence of ENSO during summer remains difficult to evaluate,
although Hu et al. (2013) showed a strengthening relationship
between ENSO and extreme temperatures over China during
recent decades.

This study uses ensembles with several thousand mem-
bers to evaluate the risk of summer extreme maximum tem-
peratures over central and eastern China under different con-
ditions. The main objective is to quantify how the most ex-
treme temperatures (during summer) over China are sensi-
tive to different forcings. It is important to evaluate the rel-
ative magnitudes of natural variability and anthropogenic in-
fluences. Such a study is not easy to conduct with observa-
tions only, as ENSO events are limited (about one significant
El Niño event every five years) and annual extreme temper-
atures are rare too. This study aims to contribute to a better
understanding of the impact of natural and human drivers of
Chinese extreme temperatures, and to provide a statistical ap-
proach as a complement to observational-only studies.

Extreme event attribution studies commonly compare en-
sembles of simulations; particularly, to estimate the impact
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of greenhouse gases and aerosols relative to a counter-factual
natural world [e.g., Black and Karoly, 2016; Sarojini et al.,
2016; Zhang et al., 2016; Qian et al., 2018 (for recent works);
Otto, 2017 (for a review on attribution techniques)]. This
method has not been commonly used to investigate how
ENSO impacts the risk of extreme temperatures. Black and
Karoly (2016) used such a method to analyze Australian tem-
peratures, but failed to find a clear ENSO signal. In this study,
the relative importance of anthropogenic influences (through
greenhouse gases and aerosol emissions) is compared to nat-
ural variability (i.e., the role of ENSO, using the 2015/16 El
Niño SST signal) using large ensemble simulations. The ex-
tended summer maxima of both daily maximum and mini-
mum temperatures are considered. The former corresponds
to the most extreme temperature during the day; the latter in-
dicates how warm a night can be and is important for human
health as it can lead to exhaustion (Sarofim et al., 2016).

The data and methods are described in section 2 and the

results are presented in section 3. Section 4 provides some
discussion and concluding remarks.

2. Methods
2.1. Model experiment design

The simulations were run as part of the “climatepre-
diction.net weather@home” distributed computing project,
where members of the public donate idle time on their com-
puters to running model simulations. The weather@home
setup consists of the Met Office Hadley Centre Atmospheric
model (including a land/surface component), HadAM3P, run-
ning globally at a horizontal resolution of 1.25◦ (lat) × 1.875◦
(lon). This is one-way-coupled with the Met Office Hadley
Centre Regional Model, HadRM3P, running at a resolution
of 50 km over East Asia (15◦S–55◦N, 70◦–170◦E; Fig. 1a).
Both models have 19 vertical levels. The models include a

Fig. 1. (a) weather@home East Asia 50 km region boundary (red). The shaded area represents the sponge layer in the
regional model. The yellow part is the central China region and the green the East China region, used in the return-
period analysis. (b) OSTIA (Donlon et al., 2012) May–September anomalies of SST (◦C) for three different years,
relative to the 1971–2000 summer climatology. For each year, the long-term change has been removed by subtracting
the difference (year minus climatology) in the tropical band (30◦S–30◦N) averaged SST. (c) OSTIA 2016 anomalies
for the Yellow Sea area only.
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sulfur cycle (Jones et al., 2001) and use the Moses 2 land sur-
face scheme (Essery and Clark, 2003). The weather@home 2
modeling system is described in detail in Guillod et al. (2017)
and has been used previously to study extreme events in many
different regions of the world (e.g., Li et al., 2015; Marthews
et al., 2015; Black et al., 2016; Haustein et al., 2016; Mitchell
et al., 2016; Schaller et al., 2016).

Four ensembles were conducted (Table 1): a 1986–2016
climatology, used for model evaluation (in which each year
was run independently); and three repetitive single-year sim-
ulations forced by estimated natural forcings (NAT), green-
house gases only (GHG), and observed aerosols and green-
house gas emissions (ACT). These three simulations (NAT,
GHG and ACT) repeated the same warm season (April–
September) several thousand times with a small perturbation
to the initial potential temperature field of the atmosphere.
They were conducted for three different years (2014, 2015
and 2016) and were each spun up for 16 months, i.e., starting
on 1 December two years prior to the study year. During this
period, a strong El Niño event occurred, with a peak during
the winter of 2015/16 (Hu and Fedorov, 2017). For this study,
we consider summer 2014 as a reference (before the devel-
opment of ENSO), summer 2015 as an ENSO year (with a
strong signal even during the summer period), and 2016 as a
following ENSO year or La-Niña-like year (Fig. 1b). During
2016, the SST anomaly shows slightly warmer temperatures
over the West Pacific and cooler SST over the central East
Pacific (with magnitudes overall below 1◦C). Thus, 2016 can
also be considered as a weak negative ENSO phase, but these
anomalies are relatively small compared to the 2015 patterns.

As the ACT ensemble corresponds most closely to reality,
ACT-14 (values of ACT in 2014) is used to compare against
other years or cases. Thus, all results are presented as devi-
ations compared to 2014. The difference between NAT and
ACT represents the anthropogenic impact, while the differ-
ence between GHG and ACT gives an estimate of the impact
of aerosols.

The model is evaluated by comparing the climatology
of the highest daily maximum and minimum temperatures
(TXx and TNx, respectively; Table 2) with results from ERA-
Interim (Dee et al., 2011), referred as ERAI in the figures.
Although the simulated TXx values are too large compared
to ERA-Interim over central and East China (Fig. S1), the
spatial pattern is reproduced well. Comparing the model in-
terannual variability and mean with ERA-Interim for Tmax
and Tmin over central East China (Fig. S2), the model is
warmer than ERA-Interim (especially Tmax) but cooler than
the ground station observation. Moreover, it is consistent
with the ERA-Interim trend and variability. The mean 2014–
16 summer signal is also found to have a reasonable range
compared to reanalysis and observation (Fig. S2), albeit the
model mean is smoother due to ensemble averaging. The
daily distribution of the temperatures over the region is also in
good agreement with the observations (Fig. S3). The model
performance is summarized with a Taylor diagram (Fig. S4)
using ERA-Interim as a reference for all diagnostics. Spa-
tial correlations are all above 0.9 and the variability of the

model is close to ERA-Interim, albeit the most extreme tem-
peratures (TXx and TNx) have slightly weaker scores than
Tmax and Tmin. Station observations have weaker correla-
tions with ERA-Interim than the model, which may be ex-
plained by their sparse spatial coverage compared to ERA-
Interim.

2.2. Index definition and computation
TX and TN are each used to compute several extreme

indices during the extended summer (May–September): the
summer maximum of each temperature (TXx and TNx, re-
spectively, expressed in ◦C) and the number of days above
the 2014 climatological 95th percentile of each temperature
(TX95 and TN95, expressed in days). Table 2 summarizes
the notation and definitions.

The duration of the events is also considered, by select-
ing five-day persistent temperatures. To do so, the minimum
temperature during the five-day time window is first selected
(for each day of the summer), and then the maximum of these
minima is extracted. For instance, first the minimum temper-
ature is selected for 1–5 May, 2–6 May . . . to 25–30 Septem-
ber. Then, the maximum among these minima is retained.

Each index is computed individually for each ensemble
member before being analyzed as an ensemble. Thus, results
are obtained for the GHG, NAT and ACT ensembles, and for
2014, 2015 and 2016.

TXx and TNx are both fitted to generalized extreme value
(GEV) distributions using, for each simulation, the maximum
value at each grid point, in the extended summer season. Un-
certainties in the parameter values are computed by boot-
strapping (Efron and Tibshirani, 1993) ACT-14 with 1000
samples and then computing the standard errors. The dif-
ferences between ensembles are considered significant when
they are larger than three standard deviations of the bootstrap
ensemble (99.7% confidence interval). As there is a large
number of members in each ensemble, the GEV fit is stable
and uncertainties are small.

Most of the results are presented as differences between
cases, and thus the systematic biases of the model are can-
celled out. However, when presenting results as absolute tem-
peratures, a bias correction is first applied. The model bias is
estimated by simply computing the difference between the
2014 climatology and ERA-Interim (Fig. S1c and f), and re-
moved from the model temperatures before being displayed
in the figures.

3. Results
The extended summer TXx and TNx are analyzed first.

We use a GEV distribution to fit the ensemble distributions
at each grid point and display the results in terms of loca-
tion and scale parameters. Figure 2 displays the differences
between each case, and the reference used for comparison
(ACT-14) is also shown, in Fig. S5. The anthropogenic im-
pact is quite clear and affects the temperatures over the whole
region (Figs. 2b and d) with an increase in the location pa-
rameter, and thus the mean summer TXx and TNx, of 1◦C
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Fig. 2. Differences in the (a–h) location and (i–p) scale parameters from the GEV fit for each ensemble. All scales are in ◦C.
Contours are every 0.2◦C and 0.05◦C intervals for the location and scale, respectively (with dashed lines indicating negative
values). Only significant differences are shaded (see section 2 for details).

Table 2. Notation for the different types of indices.

Notation Definition

TX Daily maximum temperature
TN Daily minimum temperature
TXx Summer maximum of the daily maximum temperatures
TNx Summer maximum of the daily minimum temperatures

TX95 Number of days above the 95th percentile of the 2014
ACT climatology of TX

TN95 Number of days above the 95th percentile of the 2014
ACT climatology of TN

to 1.5◦C. Conversely, aerosols tend to reduce the location pa-
rameter, by 0.5◦C to 1◦C (Figs. 2a and c), consistent with pre-
vious findings (e.g., Li et al., 2016). This suggests that well-
mixed greenhouse gases have increased the mean TXx and
TNx. The scale parameter is found to be reduced by aerosols
emissions (Figs. 2i and k), by about 10% relative to the ref-
erence (Figs. S2c and d). This is especially the case for TNx,
possibly due to the aerosols and their interaction with hu-
midity. Another possibility is cooling reducing the potential

land-surface amplification of extremes. However, this effect
is small when considering all anthropogenic forcings (Figs.
2j and l). This indicates that greenhouse gas emissions op-
pose the effect of aerosols and tend to increase the extreme
temperature variability, leading to a small net effect.

The influence of ENSO (or more specifically, SST pat-
terns) is more variable (Figs. 2e–h). During the peak of the
ENSO event (2015), extreme temperatures are reduced over
central and Northeast China. This is especially so for TXx,
for which the location parameter changes by 0.5◦C to 1◦C,
which is of a similar magnitude to the impact of aerosols.

In the year after the event (2016), the impact is somewhat
reversed, with an increase in temperatures over the eastern
coastal region (especially for TNx, with a magnitude of 0.5◦C
to 1.2◦C). This is in accordance with Hu et al. (2013), who
found an increase in hot days over the Yangtze River basin
during El Niño years. This may be partly due to a warm SST
anomaly (Fig. 1c) in the Yellow Sea during 2015 (Fig. 1b).
The reduction of TXx and TNx during the ENSO year is quite
consistent with the negative anomaly of SST over the West
Pacific (Fig. 1b). Increased surface pressure over the West
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Pacific (Fig. S6) leads to cooler air being transported from the
ocean to the continent and to milder temperatures over cen-
tral China. Locally, the influence of ENSO or SST patterns
can be considerable, potentially amplifying or offsetting an-
thropogenic influences. The scale parameter mainly shows a
reduction during and after ENSO, indicating less variability
in extreme temperatures outside peak ENSO. This effect is lo-
cal and does not correspond to the regions where the location
parameter changes are the largest.

Similar results were analyzed for five-day persistent
events (not shown). The patterns and magnitude of the dif-
ferences were similar to the previous results, indicating that
daily extremes and persistent extremes are impacted in the
same way by the different drivers.

The shape parameter is also analyzed for daily extremes
(Fig. S7). It does not show consistent large-scale signals; al-
though, it can vary locally, indicating some changes in the
tails of the distributions (i.e., the most extreme values). Most
of the differences, however, are not significant.

As a complement to the most extreme temperatures, we
also analyze the probability of temperatures exceeding their
respective climatological 95th percentiles (Fig. S8). Similar
to TXx and TNx, the anthropogenic influence is quite ho-
mogenous and increases TX95 and TN95 by 30% to 60%
compared to the naturalized case (Fig. S8b and d). Aerosols
produce stronger and more variable spatial patterns (Figs. S8a
and c) than greenhouse gases, especially for TN95. Along
the coastal regions, TN95 is more than doubled in GHG
compared to ACT. Thus, aerosols halve the probability of
nighttime high temperatures over these regions. This pat-
tern is not visible for TX95, and as these coastal regions
have overall more humidity than central regions it indicates

again that aerosols have strong interaction with humidity (and
thus nighttime temperatures). This may be an indirect effect
of aerosols insofar as they tend to cool down the SST and
thus lower the overall atmospheric humidity, especially over
coastal regions.

The impact of ENSO on TX95 and TN95 (Figs. S8e–h) is
similar to TXx and TNx. During 2015, TX95 and TN95 are
both reduced by more than 40% over central China; whereas,
after the ENSO event, TN95 is approximately doubled over
the eastern coast. Thus, ENSO has a more consistent impact
on the temperatures: it tends to reduce (during) or enhance
(after) both the high (above the 95th percentile) and maxi-
mum temperatures, while the aerosols lead to a variable re-
sponse.

To summarize the impact of ENSO over the central
China region (orange box in Fig. 1a), the distribution of the
regional-averaged TXx and TNx is computed and displayed
(Fig. 3) in terms of estimated return periods. TXx and TNx
are bias-corrected first (see section 2). During the ENSO
year, the return times of TXx are strongly reduced, so ex-
treme high temperatures become less probable. For instance,
a 1-in-10-year return event becomes a 1-in-50-year return
event during 2015. This shift is similar for all return periods
(although, it follows a logarithmic scale, meaning the effect
on the highest return periods is amplified). Each case (ACT,
GHG and NAT) shows the same signal, albeit it is stronger in
ACT. This may be because ACT uses observed SSTs, while
the other cases use modified SSTs to be consistent with the
emissions or naturalized world scenario (thus, the actual pat-
tern of ENSO may be altered). The signal is weaker for TNx,
although it is still visible for each case. The anthropogenic
and aerosol impacts are also quite clear, with a large shift be-

Fig. 3. Return period of central China (25◦–35◦N, 110◦–117E) regional-mean temperatures (units: ◦C) for each en-
semble and year (colored circles) and their respective 95% confidence interval (shading). The temperatures are first
bias-corrected, by removing the corresponding regional mean differences (based on the 2014 climatology) between
HadRM3P and ERA-Interim (Figs. S1c and f).
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tween the different cases.
The same investigation is conducted for coastal East

China (Fig. S9, and Fig. 1a for the definition of the region).
TNx is the most impacted over this region during the post-
ENSO year, and the signal is clearly visible for all cases and
all return periods. TXx does not exhibit a clear shift dur-
ing the post-ENSO year, but the shift during 2015 is visible.
Thus, the ENSO impact on TXx is not limited to the central
China region (although it is clearer there).

Finally, to complete the statistical approach of the study,
the differences in the atmospheric circulation between each
case are investigated (Fig. S6). In HadRM3P, the main differ-
ences are found for sea level pressure (SLP). During 2015, a
positive anomaly extends over the West Pacific to the South
Asia region. This leads to enhanced air transport from the
ocean to the continent and thus moderates the temperature
over central China (lower TXx). During 2016, a positive SLP
anomaly is also visible over the West Pacific but it does not
extend over the continent. This may lead to enhanced cir-
culation near the coast (with possibly higher humidity and
thus enhanced TNx), while central China temperatures re-
main more impacted by land–atmosphere processes (thus,
higher TXx). The differences between the HadRM3P en-
sembles (ACT minus GHG and ACT minus NAT) are much
weaker and suggest that the anthropogenic impact on temper-
ature is mainly due to thermodynamic effects. It is also no-
ticeable that the anomalies in ERA-Interim are different from
the model, especially in the mid-upper troposphere. This may
be due to the ensemble averaging, where only the most sys-
tematic anomalies remain.

Finally, the seasonal signal of TX and TN is analyzed by
extracting the day corresponding to TXx and TNx in each
member (ensemble results displayed in Fig. 4 for the differ-
ences, and Figs. S5g and h for the reference). The results
show that when we consider all anthropogenic forcings, or
the forcing of aerosols alone, the effect on the timing of the
maxima is only slight (Figs. 4a–d). ENSO exhibits a dipole

pattern during the event (Figs. 4e and g), with the hottest day
occurring earlier in South China and later in North China, and
an overall delay after the event (Figs. 4f and h). As we only
consider one ENSO event, it does not mean that the season-
ality of the extreme temperatures is systematically modified
in the same way (during and just after the event), but mainly
that changes in SST patterns modify the seasonal timing of
extreme temperatures.

4. Conclusion
The influence of anthropogenic forcings (mainly green-

house gases and aerosols) and natural variability (using the
2015/16 ENSO event) on summer extreme temperatures over
China is analyzed with multi-thousand-member ensembles.
This method allows a strong statistical analysis for a single
ENSO event and for the most extreme temperatures in an ex-
tended summer, albeit the results are only based on results
from a single model.

During the peak of ENSO, TXx is reduced significantly
over the central China region. In 2016 (post ENSO) TNx
tends to increase over the eastern coastal region. The magni-
tude of the year-to-year anomalies is as large as the anthro-
pogenic influence. This implies that the natural variability
can influence, at a regional scale, in a significant way, ex-
treme temperatures. Based on the model, ENSO can oppose,
during the peak of the event, or amplify, the following year,
the effect of greenhouse gases on summer temperature ex-
tremes. The overall return-period probability is also found to
be reduced for both TX and TN during El Niño. The impact
is mainly observed on the location parameters of the GEV fit-
ting, meaning it is mainly due to a shift in temperatures rather
than a change in variability.

Aerosols have a strong signature in TNx over the coastal
region, perhaps indicating an effect of aerosols on the humid-
ity (including reduced evaporation due to the cooling effect,
or potential changes in cloud properties). Although this is an

Fig. 4. Difference in the ensemble means of the average time of TXx and TNx in days. Contours are in two-day intervals (with
dashed lines indicating negative values). Positive (negative) values correspond to a delay (advance) in the peak of temperatures.
Shaded values are above the 99.7% confidence interval.
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interesting point, more experiments are needed for a better
understanding.

Finally, the timing of the maximum temperatures during
the summer shifts by more than 10 days between the year
2016 and 2014 (whereas, the anthropogenic forcings did not
impact this shift). This highlights how ENSO can quickly
modify the seasonality of extreme temperatures, and should
be an important point for seasonal forecasting.

This study indicates that, based on model results, nat-
ural interannual variability and anthropogenic forcing have
similar magnitudes of impact on extreme temperatures over
China. Although, the former has a more regional effect, while
the latter has a more spatially homogenous signal.

It should be noted that this study considers only one spe-
cific ENSO event, which had a strong signal during the sum-
mer. Other ENSO events could have different impacts, de-
pending on their SST patterns and timing. Moreover, given
the possible biases in the model, the magnitude of the re-
sponse in the real world could be different. We are highly
confident that the patterns are realistic, given that the model
has very good skill in reproducing TXx and TNx spatial char-
acteristics.
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