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ABSTRACT

The land surface processes of the Noah-MP and Noah models are evaluated over four typical landscapes in the Haihe
River Basin (HRB) using in-situ observations. The simulated soil temperature and moisture in the two land surface models
(LSMs) is consistent with the observation, especially in the rainy season. The models reproduce the mean values and season-
ality of the energy fluxes of the croplands, despite the obvious underestimated total evaporation. Noah shows the lower deep
soil temperature. The net radiation is well simulated for the diurnal time scale. The daytime latent heat fluxes are always
underestimated, while the sensible heat fluxes are overestimated to some degree. Compared with Noah, Noah-MP has im-
proved daily average soil heat flux with diurnal variations. Generally, Noah-MP performs fairly well for different landscapes
of the HRB. The simulated cold bias in soil temperature is possibly linked with the parameterized partition of the energy into
surface fluxes. Thus, further improvement of these LSMs remains a major challenge.
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1. Introduction
The importance of land surface processes to weather and

climate change has been increasingly recognized. The land
surface regulates the partition of precipitation, evaporation,
runoff or snowfall, and controls the terrestrial energy balance
(Dickinson, 1995; Dan and Ji, 2007). As a result, the vari-
ation of surface available energy will directly affect the re-
gional climate, hydrological change, and the carbon/nitrogen
cycles (Dan et al., 2015; Peng and Dan, 2015). A key compo-
nent to study land–atmosphere interactions and climate pro-
jections is land surface models (LSMs), which can be eas-
ily used to simulate the hydrological, biogeophysical, and
biogeochemical processes (Chen et al., 2011). Rapid growth
in LSM development has resulted in both the improvement
of existing physical process representations and the addition
of new processes and functions (Cai et al., 2014a). How-
ever, different LSMs vary in their levels of complexity and
the types of physical parameterizations they incorporate, and
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differ in their outputs (Pitman, 2003). It is therefore impor-
tant to evaluate and validate LSMs before using them to study
land surface–atmosphere interactions in a particular region.

As a newly developed LSM, the multi-parameterization
options version of the Noah model (Noah-MP) incorporates
the recently improved physics in LSMs (Niu et al., 2011;
Yang et al., 2011). Compared with other LSMs, it has been
shown to present reasonable snow characteristics and sur-
face heat fluxes in the Colorado forested region (Chen et al.,
2014). Although, the authors of that study also highlighted
that it remains a challenge to parameterize the cascading ef-
fect of the snow albedo, the canopy-scale turbulence, and ra-
diative transfer. Moreover, Zheng et al. (2015) enhanced the
multi-parameterization framework in representing the under-
canopy turbulence transfer and root water uptake, and im-
proved the model capacity to simulate the vertical profile of
soil temperature and water. Recently, Zhang et al. (2016) used
different analysis methods to identify the impacts of atmo-
spheric forcing uncertainties, vegetation parameters, and sub-
processes on the physics in Noah-MP ensemble simulations.
They found that precipitation data uncertainty has a greater
influence than that in leaf area index (LAI). Combining a
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better precipitation forcing dataset and monthly satellite re-
trievals of LAI significantly reduced the uncertainty range of
the ensemble mean of surface heat fluxes. Ultimately, these
offline simulation results all indicate that the worldwide use
of the new community Noah-MP LSM still requires more rig-
orous assessments and validations, especially in China.

Eddy-covariance (EC) observations have been carried out
in typical landscapes to investigate the water and energy bal-
ance in the Haihe River Basin (HRB). These kinds of obser-
vations are necessary to validate and improve LSM develop-
ment (Jia et al., 2012; Liu et al., 2013). However, according to
these studies, such assessments and validations of Noah-MP
in the HRB are still limited, partly due to the lack of relevant
observations. The objective of this study, therefore, is to as-
sess the performance of Noah-MP in the HRB by simulating
water and terrestrial fluxes in different typical landscapes of
the region. For comparison, we also present the offline simu-
lation results of version 3.4 of Noah. The data and methods
used are described in section 2. Section 3 presents the vali-
dations of the Noah-MP and Noah model results with respect
to corresponding observational data. Section 4 concludes the
study, along with some further discussion.

2. Data and methods
2.1. Observational data and sites

The HRB is a semi-humid and semi-arid transitional re-
gion of China (Fig. 1). This region covers about 318 000

km2, accounting for 3.3% of the national land area. With
more than 10% of the national population in this region, in-
cluding Beijing, Tianjin, and some other megacities, it has
become one of the most densely populated areas of the world
(Liu et al., 2013). The northern and western basin is domi-
nated by mountains, accounting for about 60% of the whole
domain, while the eastern and southeastern part is mainly dis-
tributed on the North China Plain. The annual average tem-
perature ranges from 9.2◦C to 13.5◦C, and the total annual
precipitation exceeds 400 mm, being spatial heterogeneous
and concentrated in June to September (Table 1). With agri-
cultural production generating a high water demand under
the conditions of rapid economic development, over 12% of
the satellite-detected increase in evapotranspiration can be at-
tributed to human-induced activities in the region (Pan et al.,
2017). Ultimately, investigating the water resources and ana-
lyzing the surface energy balance in this basin are important
and urgent research topics.

Four experimental sites (Miyun, Huailai, Daxing and
Guantao stations) established over typical landscapes were
selected for the validation of the LSM (Table 1). Miyun and
Huailai stations are located in the northern mountains of the
basin. The maximum vegetation heights are 4.0 m for orchard
(plum and apple trees) and 2.2 m for maize at Miyun station.
Daxing station is situated in the middle reaches of the basin
on suburban farmland. The maximum vegetation heights are
2.2, 0.7 and 0.5 m, for maize, winter wheat and vegetables,
respectively. Guantao station is located in the southern North
China Plain. The maximum vegetation heights are 2.2, 0.7

Fig. 1. The (a) location and (b) topography height of the HRB in China. The labels represent the flux sites
as follows: MY, Miyun; HL, Huailai; DX, Daxing; GT, Guantao. The topography height (units: m) is color-
shaded.

Table 1. Summary of the surface characteristics at the four validation sites.

Latitude Longitude
Site (◦N) (◦E) Time MAT MAP Vegetation Soil

MY 40.63 117.32 Jan 2008 – Dec 2010 9.2 486.8 Cropland/woodland mosaic Loam
HL 40.35 115.79 Jan 2014 – Dec 2015 10.2 461.1 Dryland cropland and pasture Clay loam
DX 39.62 116.43 Jul 2008 – Nov 2010 12.8 404.3 Irrigated cropland and pasture Clay loam
GT 36.52 115.13 Oct 2009 – Dec 2010 13.5 577.9 Irrigated cropland and pasture Sandy clay loam

Notes: MY, Miyun; HL, Huailai; DX, Daxing; GT, Guantao; MAT, mean annual temperature (◦C); MAP, mean annual precipitation (mm).
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and 1.2 m, for maize, winter wheat and cotton, respectively,
around the site. The measurements of heat flux data were
logged every 30 min, and the meteorological and soil thermal
flux data were obtained from an automatic weather station
(AWS) at 10 min intervals. Additional details about these
sites and data processing are presented in Jia et al. (2012)
and Liu et al. (2013).

2.2. Noah

The Noah LSM has been incorporated into the Weather
Research and Forecasting (WRF) Model (Skamarock et al.,
2008) and the NOAA/National Centers for Environmental
Prediction weather/climate forecasting systems (Cai et al.,
2014a). It is the most commonly used scheme in WRF ap-
plications at present. Basically, it has a vegetation canopy,
one snow layer, and four soil layers with depths of 10, 30, 60
and 100 cm from the land surface to the bottom. The one-
dimensional thermal diffusion formula is taken for the soil
temperature calculation, and Richard’s equation is adopted to
predict the soil moisture:
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Here, T is the soil temperature (K) and θ is the soil mois-
ture content (m3 m−3), t is the time interval (s), z is the soil
depth (m), ρs is the soil density (kg m−3), Cs is the soil heat
capacity (J kg−1 K−1), λs is the soil thermal conductivity (W
K−1 m−1), D is the soil water diffusivity (m2 s−1), K is the
hydraulic conductivity (m s−1), and S s represents the water
sources and sinks (i.e., precipitation and evapotranspiration;
m s−1). The other parameters, such as LAI, minimum canopy
resistance and roughness length, are prescribed (Rosero et al.,
2010). A more detailed description of the model can be found
in Chen and Dudhia (2001) and Chen et al. (2010).

2.3. Noah-MP

Building on the original Noah model (Ek et al., 2003),
Noah-MP was enhanced through the addition of improved
physics and employing an ensemble forecasting framework
(Niu et al., 2011; Yang et al., 2011). The improved physics
includes dynamic groundwater, an interactive vegetation
canopy, and a multi-layer snowpack. In contrast with Noah
(version 3.0), Niu et al. (2011) used enhanced physical
schemes and improved the runoff and surface flux simulations
of steppe. Using the fully augmented version of Noah-MP,
Yang et al. (2011) also showed improvements in soil water,
runoff and skin temperature simulations, across river basins
worldwide.

The multi-parameterization options provide users with
multiple choices of parameterizations in leaf dynamics,
canopy stomatal resistance, and soil moisture factors for
stomatal resistance, runoff and groundwater. Each combina-
tion of these different parameter scheme options could form

an ensemble forecasting. The total number of combinations
of the 10 multiple parameterization options described in Niu
et al. (2011) can be up to 4608, representing 4608 alter-
native schemes. Given the regional climate characteristics
and computational demand, we selected five major processes
that might significantly affect land surface interactions in the
HRB, which resulted in 144 ensemble experiments. These se-
lected five major parameterization options include (1) canopy
stomatal resistance, (2) soil moisture factors for stomatal re-
sistance, (3) runoff and groundwater, (4) surface layer drag
coefficient, and (5) radiation transfer. Details on the other
aspects of the model can be found in Niu et al. (2011) and
Zhang et al. (2016), while the ensemble mean of these 144
process parameterizations will be analyzed in this study.

2.4. Experimental design

Four experiments with the Noah and Noah-MP LSMs
were implemented at Miyun, Huailai, Daxing, and Guantao
stations, independently. While the integrations did not take
into consideration the dynamic vegetation process, due to the
relatively short simulation period, the green vegetation frac-
tion and LAI were prescribed. The soil textures were classi-
fied as loam for the Miyun run, clay loam for the Daxing and
Huailai runs, and sandy clay loam for the Guantao run, based
on the Food and Agriculture Organization database. The veg-
etation types were cropland/woodland mosaic for the Miyun
run, dryland cropland and pasture for the Huailai run, and irri-
gated cropland and pasture for the Daxing and Guantao runs,
according to U.S. Geological Survey classification (Table 1).

The atmospheric forcing data were downloaded directly
from a multiscale surface flux and meteorological elements
observation dataset in the HRB, which includes precipita-
tion, air temperature, atmospheric relative humidity, down-
ward short- and longwave radiation, surface pressure, and
wind speed. All the abovementioned EC and AWS data were
rigorously and carefully processed following uniform stan-
dard procedures (Jia et al., 2012). Gaps in the forcing data,
which were generally no more than few hours, were filled by
linear interpolation. Each offline simulation was initialized
by repeating the forcing data 50 times to ensure soil moisture
and temperature convergence was achieved. Given the obser-
vational data availability, the offline LSMs were integrated
from January 2008 to December 2010 at Miyun station, from
January 2014 to December 2015 at Huailai station, from July
2008 to November 2010 at Daxing station, and from October
2009 to December 2010 at Guantao station.

The simulated seasonal variations of soil temperature,
soil moisture, net radiation, surface energy fluxes, and soil
heat flux were validated. At the same time, we also ana-
lyzed the diurnal uncertainties of the surface heat fluxes for
boreal summer (June through August) and winter (December
through February). The biases of the models are depicted by
the Pearson correlation coefficient (COR), root-mean-square
error (RMSE), and the mean bias error (MBE):

MBE =
1
N

N∑

i=1

(Mi−Oi) ; (3)
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RMSE =

√∑N
i=1(Mi−Oi)2

N
. (4)

Here, Mi and Oi are the daily averages of the simulation and
observation for the ith day, and N is the number of days.

The mean energy balance ratios are 0.80, 0.86, 0.76 and
0.93 for Miyun, Daxing, Huailai and Guantao stations, re-
spectively. Since the EC data always show energy imbalance,
the surface heat fluxes could be underestimated. The Bowen
ratio (Bo = H/LE, where H is the sensible heat flux and LE
is the latent heat flux) energy closure method was used to ad-
just the sensible and latent heat flux on a daily basis (Twine
et al., 2000; Liu et al., 2013). The corrected fluxes were only
utilized to explore the seasonal and interannual variations at
the corresponding observation station (here, we utilized the
flux adjustment on daily aggregated fluxes instead of invok-
ing flux correction at every half-hour time step, to avoid er-
rors due to high-frequency flux variations).

3. Results
3.1. Simulation at Miyun
3.1.1. Daily soil temperature and moisture

The soil temperature was validated at the depth of 10 and
40 cm for Miyun station (Fig. 2). Generally, the soil temper-

atures are underestimated in the two LSMs. The discrepan-
cies between Noah-MP outputs and observations are slight
when the simulation begins, suggesting that the discrepancy
might be linked with sensor calibration errors. The shallow
soil layer shows more consistency between simulations and
observations than that of the deep soil layer, as revealed by
lower MBE values (Table 2). The soil temperature is under-
estimated by approximately 1.00◦C in the upper soil layer,
and by about 2.00◦C in the deeper soil layer. Compared with
Noah-MP, Noah shows more bias, with RMSE of approxi-
mately 2.76◦C in the shallow soil layer and 3.57◦C in the
deeper soil layer. The warm season soil temperatures are
overestimated, while the cold season soil temperatures are
underestimated, especially for the deeper soil layer, in Noah.
This result is inconsistent with previous studies (Jin et al.,
1999; Chen et al., 2014), possibly because of our physics pro-
cess selections. Given the semi-humid and semi-arid transi-
tional climate in the HRB (annual average temperature ranges
from 9.2◦C to 13.5◦C), we did not take into consideration
snow processes and supercooled liquid water parameteriza-
tions. This may have resulted in underestimations of the win-
ter soil temperature at this station. Although Noah treats the
canopy and snow physics simply, it shows comparable perfor-
mance with other more complicated LSMs (Niu et al., 2011;
Cai et al., 2014a; Chen et al., 2014).

Figures 2c and d present the simulated and observed soil

Fig. 2. Daily average (a, b) soil temperature and (c, d) soil moisture at depths of 10 cm and 40 cm from the
Miyun run. The black lines are observations, the red lines are the Noah-MP LSM simulations, and the blue
lines are the Noah LSM simulations. The units are ◦C for soil temperature and m3 m−3 for soil moisture.
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Table 2. Statistics of daily averaged soil temperature and soil mois-
ture at the depth of 10 cm and 40 cm, net radiation, turbulent heat
fluxes, and soil heat flux from Miyun station.

Noah-MP Noah

COR MBE RMSE COR MBE RMSE

Soil temperature at 10 cm 0.99 −0.17 2.42 0.99 −1.53 2.76
Soil temperature at 40 cm 0.98 −1.26 2.75 0.99 −3.18 3.57
Soil moisture at 10 cm 0.75 −0.06 0.07 0.61 −0.06 0.08
Soil moisture at 40 cm 0.76 −0.02 0.04 0.75 −0.03 0.04
Net radiation 0.98 −10.94 17.94 0.98 −3.05 11.74
Latent heat flux 0.84 −12.26 31.58 0.86 −13.84 31.57
Sensible heat flux 0.51 −15.48 32.43 0.56 −4.58 28.72
Soil heat flux 0.85 −0.97 7.34 0.84 −1.75 6.98

Notes: all correlation coefficients passed the 95% confidence test. The MBE
and RMSE are in ◦C.

wetness at the depths of 10 and 40 cm at Miyun station. Pre-
cipitation is a key contributor to the seasonal variations of soil
moisture in this region. In summer, when most rainfall events
are concentrated, the soil moisture shows large daily varia-
tions. In winter, fewer rainfall events take place and the soil
moisture fluctuations are stable. Noah-MP and Noah capture
the seasonal variations of soil moisture reasonably well. Al-
though there are some dry biases in both LSM simulations, it

is clear that Noah-MP is closer to the observational situation
(MBE = −0.06 and −0.02 m3 m−3 at the 10 and 40 cm soil
layer, respectively). In the summer rainy season, Noah-MP
shows potential skill to decrease the dry soil moisture dis-
crepancy of the original Noah LSM. It should be mentioned
that the soil moisture simulations in both LSMs are appar-
ently smaller than the observations in 2009 at Miyun station
(Fig. 2c). This is probably related to in-situ forcing measure-
ments missed during several rainfall events before the sum-
mer period (not shown).

3.1.2. Surface energy fluxes

The daily averages of the latent heat flux, sensible heat
flux, net radiation, and soil heat flux at the Miyun site are
presented in Fig. 3. It can be seen that the offline simulations
successfully capture the seasonal variations of surface heat
fluxes, although the simulated results are smaller than in-situ
observations during some periods. The net radiation heat flux
is the major proportion in land–atmosphere energy exchange,
which is the best simulated flux component by both LSMs
(COR = 0.98). Noah-MP underestimates the daily sensible
and latent heat flux (MBE around 10 W m−2), while Noah
shows more comparable sensible heat flux with the observa-
tion (Table 2). At the same time, both LSMs capture well the
seasonal variations of the ground heat flux.

The simulated energy fluxes were also compared with ob-

Fig. 3. Daily average (a) net radiation, (b) latent heat flux, (c) sensible heat flux, and (d) soil heat flux at Miyun
station. The black lines are tower observations, the red lines are the Noah-MP LSM simulations, and the blue
lines are the Noah LSM simulations. Units: W m−2.
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servations in terms of half-hour averages to investigate the di-
urnal cycle. At Miyun station, larger variations of the surface
energy flux could be found in the daytime than at nighttime
(Fig. 4). In summer daytime, the two LSMs underestimate
the net radiation and total evaporation. Compared with Noah,
Noah-MP obviously improves the sensible heat flux simula-
tion in the daytime. While Noah captures the diurnal varia-
tions of the soil heat fluxes in summer well, Noah-MP overes-
timates the daytime soil heat fluxes and underestimates them
at nighttime. This is probably due to the different parame-
terization process for surface soil thermal conductivity (Niu
et al., 2011). Due to the model structural change (i.e., sepa-
rating the vegetation canopy from the soil surface), Noah-MP
removes the exponential decay of the surface soil thermal dif-
fusivity with vegetation cover fraction (Peters-Lidard et al.,
1998), which was adopted by the original Noah LSM. The
performances of the LSMs in winter are similar to the sum-
mer situation. The daytime net radiation and sensible heat
flux are underestimated to some degree.

On average, annually, the diurnal variations of the sur-
face water flux are reasonably reproduced by both LSMs.
The two LSMs underestimate the net radiation but overes-
timate the sensible heat flux during the daytime. Compared
with Noah, Noah-MP improves the thermal flux simulation
during the daytime and shows more daily fluctuations of soil
heat flux simulation. To summarize, the diurnal variations of

the sensible heat flux, net radiation and latent heat flux from
both LSMs are reasonably captured in terms of the annual
daily average at Miyun station (Fig. 4). The ground heat flux
is overestimated, which might be linked to the parameteriza-
tion algorithm of leaf stomata in croplands (De Gonçalves et
al., 2013).

3.2. Simulation at Huailai
3.2.1. Daily soil temperature and moisture

As with Miyun station, the simulated daily soil tempera-
tures at the depths of 10 and 40 cm were validated at Huailai
station (Fig. 5). Generally, the LSM simulations show simi-
lar seasonal patterns to the AWS data products, with correla-
tion coefficients ranging from 0.89 to 0.99 and RMSE rang-
ing from 4.14◦C to 5.66◦C (Table 3). However, a warm soil
temperature bias exists in the two soil layers in both LSMs.
In particular, the simulated warm soil temperature deviations
at 40 cm can reach up to 10.0◦C in summer. Compared
with Noah (MBE = 4.57◦C and 0.27◦C at 10 and 40 cm, re-
spectively), using Noah-MP exaggerates the warm deviations
(MBE = 5.75◦C and 1.77◦C).

The daily mean observed and simulated soil moisture at
Huailai station at the depths of 10 and 40 cm are presented
in Figs. 5c and d. Although both LSMs capture the seasonal
variations of soil moisture in both soil layers, there are always
some wet simulation discrepancies, especially in winter. This

Fig. 4. Diurnal cycle of (a, e, i) net radiation, (b, f, j) latent heat flux, (c, g, k) sensible heat flux, and (d, h, l) soil heat
flux for the Miyun run during the (a–d) summer, (e–h) winter, and (i–l) annual average. The black circles are tower
observations, the red lines are the Noah-MP LSM simulations, and the blue lines are the Noah LSM simulations. Units:
W m−2. The light-blue shaded region indicates ±1 standard deviations of variation for half-hourly tower observations.
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Fig. 5. As in Fig. 2 but for Huailai station.

Table 3. As in Table 2 but for Huailai station.

Noah-MP Noah

COR MBE RMSE COR MBE RMSE

Soil temperature at 10 cm 0.98 5.75 5.66 0.99 4.57 4.41
Soil temperature at 40 cm 0.89 1.77 5.22 0.89 0.27 4.14
Soil moisture at 10 cm 0.58 0.01 0.05 0.58 −0.01 0.05
Soil moisture at 40 cm 0.57 0.05 0.06 0.20 −0.00 0.04
Net radiation 0.97 −5.00 15.88 0.99 −1.72 9.92
Latent heat flux 0.77 −13.95 30.85 0.81 −13.77 30.80
Sensible heat flux 0.49 4.12 33.68 0.53 9.25 35.61
Soil heat flux 0.77 −0.98 8.29 0.73 −1.32 6.73

Notes: all correlation coefficients passed the 95% confidence test. The MBE
and RMSE are in ◦C.

is probably related to the simple snowfall treatments and
snowmelt parameterizations in the LSMs (Chen et al., 2014).
Compared with the shallow soil layer (10 cm), the soil mois-
ture variations at the deeper soil layer (40 cm) are signifi-
cantly improved by Noah-MP compared with Noah.

3.2.2. Surface energy fluxes

The daily average net radiation, latent heat flux, sensible
heat flux, and soil heat flux at Huailai station are shown in
Fig. 6. During the warm summer, the magnitudes and daily
variations of the turbulent heat fluxes are large. The two
LSMs adequately capture the seasonal variations of the soil

heat flux and net radiation. The sensible heat flux is overes-
timated to some extent, while the latent heat flux is underes-
timated by both offline simulations in the cold season (Table
3).

Figure 7 presents the simulated and observed diurnal cy-
cle of surface energy heat fluxes at Huailai station. The net
radiation with hourly variation is reasonably simulated by the
two LSMs. The water flux is underestimated, while the sen-
sible heat is overestimated in the daytime, especially in the
warmer rainy season (Fig. 7c). The surface net radiation is
simulated well in the two LSMs, with the bias in the parti-
tion of surface heat fluxes. It should be noted that the diurnal
variations of soil heat flux for both LSMs are larger than the
original in-situ data. In other words, when compared with
the observational data, the LSMs absorb more radiation en-
ergy from the sun in the daytime, while they release more
radiation flux to the atmosphere at night. This situation is
even more serious for Noah-MP in summer.

3.3. Simulation at Daxing
3.3.1. Daily soil temperature and moisture

The simulated daily soil temperature and moisture at the
depths of 10 and 40 cm at Daxing station were validated
against observations (Fig. 8). Generally, the LSMs appropri-
ately capture the seasonal variations of the soil temperatures,
with correlation coefficients ranging from 0.96 to 0.97 (Ta-
ble 4). However, the simulated soil temperature magnitudes
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Fig. 6. As in Fig. 3 but for Huailai station.

Fig. 7. As in Fig. 4 but for Huailai station.
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Fig. 8. As in Fig. 2 but for Daxing station.

Table 4. As in Table 2 but for Daxing station.

Noah-MP Noah

COR MBE RMSE COR MBE RMSE

Soil temperature at 10 cm 0.97 1.19 3.40 0.97 −0.12 2.71
Soil temperature at 40 cm 0.97 1.12 3.20 0.96 −0.94 2.82
Soil moisture at 10 cm 0.56 0.00 0.07 0.63 −0.01 0.06
Soil moisture at 40 cm 0.52 −0.11 0.11 0.34 −0.15 0.16
Net radiation 0.99 −2.98 10.05 0.99 −3.05 10.74
Latent heat flux 0.67 −31.60 48.04 0.72 −32.91 48.02
Sensible heat flux 0.28 −2.62 30.15 0.30 0.17 29.19
Soil heat flux 0.78 −0.44 8.09 0.75 −0.24 8.01

Notes: all correlation coefficients passed the 95% confidence test. The MBE
and RMSE are in ◦C.

are much larger than the observed data (with RMSE rang-
ing from 2.71◦C to 3.40◦C). The offline simulations always
present higher (lower) soil temperatures in summer (winter)
than the observations. This phenomenon is even distinct in
the deeper soil layer. It is important to note that Noah-MP
shows some improved skill in the summer soil temperature
simulations, while the winter soil temperature simulations are
comparable with Noah (Fig. 8b).

Soil moisture is underestimated in both LSMs’ offline
simulations (Table 4). While only the cold season moisture
at the top soil layer is underestimated, a significant dry dis-
crepancy is found at the deep soil layer throughout the whole

simulation period in both LSMs, especially the baseline of
Noah. Those differences could be partly related to the quality
control of validation records and the soil hydraulic parame-
terization calibration that we did not consider. At the same
time, the irrigation and runoff parameterization of the LSMs
might also be key factor for soil moisture simulations (Yang
et al., 2011). Future improvements in these aspects of mod-
eling are essential as the next step.

3.3.2. Surface energy fluxes

Figure 9 presents the simulated and observed daily mean
surface energy heat fluxes at Daxing station. It can be seen
that all of the heat flux components are underestimated in
both offline LSMs (Table 4). While the daily average of
the soil heat and net radiation are adequately represented,
both offline models always underestimate the latent heat flux
(MBE around 30 W m−2). The sensible heat is the worst sur-
face energy component simulated by these two LSMs at this
station.

Figure 10 exhibits the diurnal cycle of the simulated and
observed energy and water heat fluxes at the Daxing site. In
summer, Noah-MP and Noah capture the diurnal variations
of latent heat flux and net radiation. The sensible heat flux is
more likely to be overestimated by these two LSMs in sum-
mer daytime. Noah-MP improves the simulation of soil heat
flux in the daytime, but brings more uncertainties, while Noah
always underestimates the daytime soil heat flux. It should
be noted that the irrigation process might play a more im-
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Fig. 9. As in Fig. 3 but for Daxing station.

Fig. 10. As in Fig. 4 but for Daxing station.
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portant role in this region than any other places because we
always observe water evaporation even after sunset in winter
(Fig. 10f). Since we did not consider any physical irrigation
parameterization in this study, these two LSMs both signif-
icantly underestimate the winter latent heat fluxes. In terms
of the annual average (Figs. 10i–l), both LSMs enhance the
sensible heat and reduce the water flux in the daytime. While
both LSMs reasonably capture the diurnal variations of soil
heat flux and net radiation, Noah-MP also brings more uncer-
tainties in soil heat flux simulations.

3.4. Simulation at Guantao
3.4.1. Daily soil temperature and moisture

Figure 11 shows the simulated and observed time series
of daily mean soil temperature and soil moisture at Guantao
station. It can be seen that the simulated soil temperature at
10 cm depth generally agrees with the observation in summer
(Fig. 11a). However, the winter soil temperature simulation
often shows cooler discrepancies, especially in the deeper soil
layer (40 cm). Corresponding to soil temperature, both LSMs
show similar performance in their soil moisture simulations.
Considering the missing measurements through spring 2010,
the LSMs capture more daily soil moisture variations at the
shallow layer than at the deeper layer (Table 5).

3.4.2. Surface energy fluxes

The simulated and observed daily mean surface fluxes at
Guantao station are illustrated in Fig. 12. The soil heat flux

Table 5. As in Table 2 but for Guantao station.

Noah-MP Noah

COR MBE RMSE COR MBE RMSE

Soil temperature at 10 cm 0.99 −1.52 2.84 0.99 −2.52 3.05
Soil temperature at 40 cm 0.97 −0.46 3.42 0.97 −1.84 3.00
Soil moisture at 10 cm 0.70 −0.03 0.05 0.76 −0.03 0.05
Soil moisture at 40 cm 0.43 −0.05 0.06 0.38 −0.06 0.07
Net radiation 0.99 −4.56 12.74 0.99 −5.22 12.38
Latent heat flux 0.86 −11.13 24.35 0.84 −9.71 25.65
Sensible heat flux 0.48 0.04 22.46 0.43 −1.94 21.75
Soil heat flux 0.86 0.09 7.34 0.82 −0.21 7.32

Notes: all correlation coefficients passed the 95% confidence test. The MBE
and RMSE are in ◦C.

and net radiation simulations generally agree with the obser-
vations with respect to the magnitude and seasonal variations.
However, the sensible and latent heat flux seem to show more
discrepancies. In particular, distinctly underestimated latent
heat could be found in both LSMs (Table 5). Noah LSM un-
derestimates the sensible heat flux (MBE = −1.94 W m−2),
while Noah-MP shows slight improvements (MBE = −0.04
W m−2).

Figure 13 presents the diurnal cycle of energy and wa-
ter flux simulations and observations for the Guantao site.
Both LSMs reasonably simulate the diurnal cycle of soil heat
flux and net radiation. Compared to Noah LSM, the day-
time latent heat flux is more realistically simulated by Noah-

Fig. 11. As in Fig. 2 but for Guantao station.
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Fig. 12. As in Fig. 3 but for Guantao station.

Fig. 13. As in Fig. 4 but for Guantao station.
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MP, while the sensible heat flux is overestimated to some ex-
tent in summer (Figs. 13b and c). In winter, both LSMs cor-
rectly capture the sensible heat and net radiation, while the
soil heat flux is overestimated and latent heat is partly under-
estimated. In terms of the annual average, these two offline
LSMs reasonably predict the diurnal variation of the surface
heat fluxes. The daytime latent heat flux is underestimated,
while the sensible and soil heat flux are overestimated from
sunrise to sunset. The simulated phase of soil heat flux di-
urnally leads that of the observations slightly at Guantao sta-
tion.

4. Conclusions and discussion
Offline simulations of the Noah-MP and Noah LSMs

were performed over four typical landscapes in the HRB of
China. The model results were found to satisfactorily rep-
resent the seasonality of daily mean soil temperature, partic-
ularly in the warm periods, with correlation coefficients be-
yond 0.88. Both LSMs always show a cold bias in winter
soil temperature simulations. These biases might be partly
attributable to the model adjustment in simulating the equi-
librium between the soil temperature and water. An LSM
needs simultaneous water balance and energy closure. Such
closure, however, brings difficulty for soil temperature and
moisture simulations in LSMs (e.g., Pilotto et al., 2015). Due
to the simplified parameterization of the runoff and snowfall
processes, the soil moisture seasonal variations are harder to
represent in offline runs. While the simulations of heat fluxes
are comparable with the original Noah LSM, Noah-MP im-
proves the soil moisture simulations to some extent.

The simulated soil moisture and temperature discrepan-
cies increase with soil depth. This is possibly related to the
offline model using constant soil parameter values along with
the vertical soil profile, whereas hydraulic variations of soil
exist in measurements (e.g., Yang et al., 2005; Gao et al.,
2015). Organic matter is plentiful in the top soil layer, and
thus it might also induce more uncertainties in the model re-
sults. Chen et al. (2012) pointed out that high soil organic
carbon contained in the upper soil layer will weaken the bulk
density and thermal conductivity but enhance the soil poros-
ity.

Both LSMs reasonably capture the seasonal variations of
surface energy flux. At the diurnal time scale, the net ra-
diation components are the best simulated heat flux compo-
nents. The daytime latent heat fluxes are always underes-
timated, while the sensible heat fluxes are overestimated to
some degree. Compared with Noah, Noah-MP improves the
daily average soil heat flux simulation, even with more diur-
nal variations. According to Blyth et al. (2010) and Cai et
al. (2014b), the simulation is better for forest and grassland
in Noah-MP, but the two LSMs both show larger latent heat
in cropland. This might be attributable to the hard growth
reproduction of crops by LAI in these two LSMs (Cai et al.,
2014b). The crop submodel should be incorporated into the
Noah LSM to represent the biogeophysical processes (Gayler

et al., 2014).
This work shows a satisfactory capacity of Noah-MP to

present the daily average and seasonal variations of surface
energy flux in the HRB; however, the soil temperature simu-
lations still exhibit some discrepancies. On the other hand,
some uncertainties or biases of surface flux measurements
(e.g., Twine et al., 2000; Yang and Wang, 2008) may still
exist, due to our simple data processing and parameterization
selection. Finally, these offline evaluations demonstrate that
essential model improvements for heat and water simulations
are needed. Evaluation of model performance over a fuller
spectrum of parameter space (Gulden et al., 2008) should be
conducted in the future.
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