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ABSTRACT

A  3D  compressible  nonhydrostatic  dynamic  core  based  on  a  three-point  multi-moment  constrained  finite-volume
(MCV)  method  is  developed  by  extending  the  previous  2D  nonhydrostatic  atmospheric  dynamics  to  3D  on  a  terrain-
following grid. The MCV algorithm defines two types of moments: the point-wise value (PV) and the volume-integrated
average (VIA). The unknowns (PV values) are defined at the solution points within each cell and are updated through the
time  evolution  formulations  derived  from  the  governing  equations.  Rigorous  numerical  conservation  is  ensured  by  a
constraint on the VIA moment through the flux form formulation. The 3D atmospheric dynamic core reported in this paper
is  based  on  a  three-point  MCV  method  and  has  some  advantages  in  comparison  with  other  existing  methods,  such  as
uniform  third-order  accuracy,  a  compact  stencil,  and  algorithmic  simplicity.  To  check  the  performance  of  the  3D
nonhydrostatic dynamic core, various benchmark test cases are performed. All the numerical results show that the present
dynamic  core  is  very  competitive  when  compared  to  other  existing  advanced  models,  and  thus  lays  the  foundation  for
further developing global atmospheric models in the near future.
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Article Highlights:

•  A 3D nonhydrostatic atmospheric dynamic core is built by using a three-point MCV method.
•  The  MCV scheme used  in  the  present  model  ensures  rigorous  numerical  conservation,  and  has  a  compact  stencil  and
algorithmic simplicity.
•  The widely-used standard benchmark tests indicate that the MCV atmospheric model is very competitive when compared
to other existing advanced models.

 
 

1.    Introduction

With the rapid development of computational power,  it  is
possible  for  numerical  weather  prediction  models  to  simulate
smaller  scales  of  flows with  finer  resolution.  With  the  resolu-
tion  of  the  models  increased,  nonhydrostatic  effects  become

very important. In recent decades, many nonhydrostatic formula-
tions have been investigated; and today, almost all limited-area
models (Benoit et al., 1997; Hodur, 1997; Doms and Schättler,
1999; Xue  et  al.,  2000; Chen  et  al.,  2008; Skamarock  and
Klemp,  2008)  use  a  nonhydrostatic  dynamic  core.  In  order  to
take full advantage of computers with massive cores, research-
ers  should  pay  more  attention  to  the  underlying  numerical  al-
gorithms  of  their  models.  The  numerical  methods  designed
should be local in nature, which implies a lower cost of commu-
nication  (Dennis  et  al.,  2012).  Local  high-order  schemes  such
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as  the  spectral  element  methods  (Patera,  1984; Thomas  and
Loft, 2000; Iskandarani et al., 2002; Fournier et al., 2004; Gir-
aldo  and  Rosmond,  2004; Karniadakis  and  Sherwin,  2005;
Taylor  and  Fournier,  2010)  and  discontinuous  Galerkin  meth-
ods (Cockburn and Shu,  1998; Levy et  al.,  2007; Giraldo and
Restelli,  2008; Hesthaven  and  Warburton,  2008; Nair  et  al.,
2009; Restelli and Giraldo, 2009; Blaise and St-Cyr, 2012) pos-
sess all of these characteristics and have been widely used in geo-
physical  fluid  dynamics.  But,  these  high-order  schemes  are
more computationally expensive, and must follow a restrictive
Courant−Friedrichs−Lewy  (CFL)  condition  for  the  mainten-
ance of computational stability (Zhang and Shu, 2005).

Recently, another type of high-order scheme with local re-
constructions,  the  so-called  multi-moment  constrained  finite-
volume  method  (MCV),  has  been  developed  (Ii  and  Xiao,
2009).  The  basic  idea  of  this  method  is  the  multi-moment
concept (Yabe and Aoki, 1991; Yabe et al., 2001; Xiao, 2004;
Ii  et  al.,  2005; Xiao  et  al.,  2005, 2006; Xiao  and  Ii,  2007),
where  we  make  use  of  different  kinds  of  discrete  quantities,
such as the point-wise value (PV), the volume-integrated aver-
age  (VIA),  and  the  derivatives  of  different  orders,  which  are
called  “moments ”  in  our  context,  to  describe  physical  fields.
With  these  moments  locally  defined,  high-order  reconstruc-
tions  can be built  in  compact  stencils.  Instead of  updating the
moments directly (Chen and Xiao, 2008; Li et al., 2008; Akoh
et al., 2010), the MCV formulation updates values at the points
as the basic model variables located in each mesh element (Li
et  al.,  2013b).  The  values  at  solution  points  are  predicted  by
time evolution equations obtained from imposing a set of con-
strained conditions on different types of moments. In the MCV
method, some constraint conditions are applied on the boundar-
ies of the computational element, where the derivatives of the nu-
merical flux are solved as derivative Riemann problems.

In comparison with other existing high-order schemes, the
MCV method allows a less restrictive CFL condition for compu-
tational stability (Ii  and Xiao, 2009). Besides, an MCV model
has  exact  numerical  conservation  through  a  constraint  on  the
VIA  moment  and  shows  superiority  in  computational  effi-
ciency and algorithmic simplicity. So far, this method has been
successfully implemented to develop 2D global advection and
shallow models on different grids (Ii  and Xiao, 2010; Chen et
al., 2012; Li et al., 2012; Li et al., 2013a; Chen et al., 2014a, b;
Xie and Xiao, 2016), as well as a nonhydrostatic dynamic core
on  a  Cartesian  grid  (Li  et  al.,  2013b, 2016),  which  has  been
demonstrated as a robust high-order method for a new type of nu-
merical  framework. Zhang  et  al.  (2017) also  showed  that  the
MCV method  has  good  scalability  on  high-performance  com-
puters,  thus  allowing massively parallel  computing with  thou-
sands of process cores.

In  this  paper,  given  the  attractive  results  of  the  previous
2D three-point MCV nonhydrostatic atmospheric dynamics (Li
et al., 2013b), we further extend it to a 3D nonhydrostatic dynam-
ic core and verify its performance, which will set the stage for
the development of practical global atmospheric modeling. The
remainder of the paper is organized as follows: In section 2, the
3D governing equations  with  the  effect  of  topography are  de-
scribed in detail. The basic numerical formulation of the three-
point  MCV  scheme  follows  in  section  3.  Numerical  results

from benchmark tests are presented in section 4. And finally, a
short conclusion is given in section 5.

2.    The 3D compressible nonhydrostatic model

The  nonhydrostatic  atmospheric  governing  equations  can
be  written  in  different  forms  (Giraldo  and  Restelli,  2008).
Here, we utilize the following form: 

∂ρ

∂t
+

[
∂ (ρu)
∂x
+
∂ (ρv)
∂y
+
∂ (ρw)
∂z

]
= 0 , (1)

 

∂(ρu)
∂t
+

 ∂
(
ρu2+ p

)
∂x

+
∂ (ρuv)
∂y

+
∂ (ρuw)
∂z

 = fρv , (2)

 

∂(ρv)
∂t
+

 ∂ (ρvu)
∂x

+
∂
(
ρv2+ p

)
∂y

+
∂ (ρvw)
∂z

 = − fρu , (3)

 

∂(ρw)
∂t
+

 ∂ (ρwu)
∂x

+
∂ (ρwv)
∂y

+
∂
(
ρw2+ p

)
∂z

 = −ρg , (4)

 

∂(ρθ)
∂t
+

[
∂ (ρθu)
∂x

+
∂ (ρθv)
∂y

+
∂ (ρθw)
∂z

]
= 0 , (5)

θ = T (p0/p)Rd/cp

p =C0(ρθ)γ C0 = Rd
γp0
−Rd/cv

where ρ is the air density; V = (u, v, w)T is the 3D velocity
field in the Cartesian coordinate; f is the Coriolis parameter;
and θ is the potential temperature, which is related to the air
temperature T and pressure p by . The con-
tinuity equation, Eq. (1), enforces the conservation of mass,
and the equation of potential temperature, Eq. (5), enforces
the conservation of entropy. Equations (2)−(4) enforce mo-
mentum conservation without the source terms.  In order to
close the above system, the equation of state is expressed by

, where . The constants used in
the above relations are given as follows: p0 = 105 Pa is the ref-
erence surface pressure; cp = 1004.5 J kg−1 K−1 represents spe-
cific  heat  capacity  of  dry  air  at  constant  pressure  and cv =
717.5 J kg−1 K−1 is the specific heat capacity of dry air at con-
stant  volume; γ = cp/cv =  1.4  is  the  ratio  of  specific  heats;
Rd = 287 J kg−1 K−1 is the ideal gas constant of dry air; and
g = 9.806 16 m s−2 is the gravitational acceleration.

2.1.    Splitting of reference profile

As generally used in atmospheric modeling, thermodynam-
ic variables are written as the sum of the mean state and perturba-
tion (Skamarock and Klemp, 2008): 

ρ(x,y,z, t) = ρ(z)+ρ′(x,y,z, t) , (6)
 

p(x,y,z, t) = p(z)+ p′(x,y,z, t) , (7)
 

ρ(x,y,z, t)θ(x,y,z, t) = ρ(z)θ(z)+ρ′(x,y,z, t)θ′(x,y,z, t) , (8)

where the mean state (denoted by the overbar) satisfies loc-
al hydrostatic balance: 
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∂p
∂z
= −ρg . (9)

Under this splitting, Eqs. (1)−(5) take the form
 

∂ρ′

∂t
+

[
∂ (ρu)
∂x
+
∂ (ρv)
∂y
+
∂ (ρw)
∂z

]
= 0 , (10)

 

∂(ρu)
∂t
+

 ∂
(
ρu2+ p′

)
∂x

+
∂ (ρuv)
∂y

+
∂ (ρuw)
∂z

 = fρv , (11)

 

∂(ρv)
∂t
+

 ∂ (ρvu)
∂x

+
∂
(
ρv2+ p′

)
∂y

+
∂ (ρvw)
∂z

 = − fρu , (12)

 

∂(ρw)
∂t
+

 ∂ (ρwu)
∂x

+
∂ (ρwv)
∂y

+
∂
(
ρw2+ p′

)
∂z

 = −ρ′g , (13)
 

∂(ρθ)′

∂t
+

[
∂ (ρθu)
∂x

+
∂ (ρθv)
∂y

+
∂ (ρθw)
∂z

]
= 0 , (14)

p′ = ε0(ρθ)′, ε0 = γC0(ρθ)γ−1where . It should be noted that
the present core is targeted to short-term weather prediction,
so that  the  mean state  can be reasonably determined based
on the current conditions of the atmosphere.

2.2.    Incorporation of topography

Owing to the advantages of accuracy and flexibility, a ter-
rain-following height-based coordinate is preferred in many non-
hydrostatic models (Prusa et al., 2008; Skamarock et al., 2012),
as  originally  proposed  by Gal-Chen  and  Somerville  (1975).
Here, we use a more sophisticated terrain-following coordinate
system (Schär et al., 2002) to map the Cartesian space (x, y, z)
to computational space (x, y, ζ)
 

z(ζ) = ζ +h
sin

(
H−ζ

s

)
sin

(
H
s

) , (15)

where h is the topographic height, H is the altitude of the mod-
el top, and s is the scale height parameter.

√
G

The coordinate  transformation enters  the  governing equa-
tions through the metric coefficients G1,3 and G2,3, and the Jacobi-
an  of  the  transformation .  Following  standard  notation
(Clark, 1977), they are defined as
 

√
G=

(
∂z
∂ζ

)
x,y=const

, G1,3 =

(
∂ζ

∂x

)
y,z=const

,

G2,3 =

(
∂ζ

∂y

)
x,z=const

.

(16)

For an arbitrary field variable ϕ, the following chain rules
(Clark, 1977) connecting the (x, y, z) with the (x, y, ζ) coordin-
ate system are used:
 

∂ϕ

∂x

∣∣∣y,z=const =
∂ϕ

∂x
+
∂ϕ

∂ζ

∂ζ

∂x

=
1
√

G

[
∂

∂x
(
√

Gϕ)
∣∣∣y,ζ=const +

∂

∂ζ
(
√

GG1,3ϕ)
]
,

(17)
 

∂ϕ

∂y

∣∣∣x,z=const =
∂ϕ

∂y
+
∂ϕ

∂ζ

∂ζ

∂y

=
1
√

G

[
∂

∂y
(
√

Gϕ)
∣∣∣x,ζ=const +

∂

∂ζ
(
√

GG2,3ϕ)
]
,

(18)
 

∂ϕ

∂z
=
∂ϕ

∂ζ

∂ζ

∂z
=

1
√

G

∂ϕ

∂ζ
. (19)

Thus,  the  divergence  operator  of  a  flux F =  (Fx, Fy, Fz)
takes the following form: 

∇ ·F = 1
√

G

[
∂

∂x
(
√

GFx)+
∂

∂y
(
√

GFy)

+
∂

∂ζ
(Fz+

√
GG1,3 Fx +

√
GG2,3 Fy)

]
.

(20)

The vertical velocity in the transformed coordinate is 

ŵ =
dζ
dt
=

1
√

G
(w+

√
GG1,3u+

√
GG2,3v) . (21)

2.3.    Governing equations

Substituting  the  relations  of  Eqs.  (16)−(21)  into  Eqs.
(10)−(14), the governing equations in the transformed coordin-
ate are written as follows: 

∂ρ′

∂t
+

1
√

G

 ∂
(√

Gρu
)

∂x
+
∂
(√

Gρv
)

∂y
+
∂
(√

Gρŵ
)

∂ζ

 = 0 ,

(22)
 

∂(ρu)
∂t
+

1
√

G

 ∂
(√

Gρu2+
√

Gp′
)

∂x
+
∂
(√

Gρuv
)

∂y

+
∂
(√

Gρuŵ+
√

GG1,3 p′
)

∂ζ

 = fρv ,

(23)

 

∂(ρv)
∂t
+

1
√

G

 ∂
(√

Gρvu
)

∂x
+
∂
(√

Gρv2+
√

Gp′
)

∂y

+
∂
(√

Gρvŵ+
√

GG2,3 p′
)

∂ζ

 = − fρu ,

(24)

 

∂(ρw)
∂t
+

1
√

G

 ∂
(√

Gρwu
)

∂x
+
∂
(√

Gρwv
)

∂y

+
∂
(√

Gρwŵ+ p′
)

∂ζ

 = −ρ′g ,
(25)
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∂(ρθ)′

∂t
+

1
√

G

 ∂
(√

Gρθu
)

∂x
+
∂
(√

Gρθv
)

∂y
+
∂
(√

Gρθŵ
)

∂ζ

= 0 .

(26)

We rewrite Eqs. (22)−(26) into the following vector form: 

∂q
∂t
+
∂ f
∂x
+
∂g
∂y
+
∂h
∂ζ
= sst(q) , (27)

q =
[√

Gρ′,
√

Gρu,
√

Gρv,
√

Gρw,
√

G(ρθ)′
]T

sst(q) =
[
0, fρv,− fρu,−ρ′g,0]T

where  is  the

state  vector;  represents  the
source terms; and 

f =
[√

Gρu,
√

Gρu2+
√

Gp′,
√

Gρvu,
√

Gρwu,
√

Gρθu
]T
,

 

g=
[√

Gρv,
√

Gρuv,
√

Gρv2+
√

Gp′,
√

Gρwv,
√

Gρθv
]T
,

and 

h=
[√

Gρŵ,
√

Gρuŵ+
√

GG1,3 p′,
√

Gρvŵ+
√

GG2,3 p′,
√

Gρwŵ+ p′,
√

Gρθŵ
]T

are the flux vectors in the x, y and ζ directions, respectively.

2.4.    Eigenvalues and eigenvectors of the governing equa-
tions

As in section 3, the eigenvalues and eigenvectors of the hy-
perbolic parts of the governing equations are needed when we
compute  the  derivative  Riemann  problems.  For  convenience,
we briefly discuss how to calculate them here. Considering the
homogeneous part of the governing equations, Eqs. (22)−(26),
the set of hyperbolic equations in 3D is given as follows: 

∂q
∂t
+
∂ f
∂x
+
∂g
∂y
+
∂h
∂ζ
= 0 . (28)

The linearized form of Eq. (28) is written as 

∂q
∂t
+ A ∂

q
∂x
+B ∂

q
∂y
+C ∂

q
∂ζ
= 0 , (29)

where A, B and C are the Jacobian matrices corresponding
to  flux  function f, g and h,  which  are  calculated,  respect-
ively, by 

A= ∂
f
∂q
=


0 1 0 0 0
−u2 2u 0 0 ε0
−uv v u 0 0
−uw w 0 u 0
−uθ θ 0 0 u

 , (30)

 

B= ∂
g
∂q
=


0 0 1 0 0
−uv v u 0 0
−v2 0 2v 0 ε0
−vw 0 w v 0
−vθ 0 θ 0 v

 , (31)

 

C= ∂
h
∂q
=



0 G1,3 G2,3
1
√

G
0

−uŵ ŵ+G1,3u G2,3u
u
√

G
G1,3ε0

−vŵ G1,3v ŵ+G2,3v
v
√

G
G2,3ε0

−wŵ G1,3w G2,3w ŵ+
w
√

G

ε0√
G

−θŵ G1,3θ G2,3θ
θ
√

G
ŵ


,

(32)

ε0 = Rd
γp0
−Rd/Cvγ(ρθ)γ−1where .

For hyperbolicity, the eigenvectors and eigenvalues can be
obtained from the Jacobian matrix. The eigenvalues of Jacobi-
an matrix A, B and C are computed by 

|A−λx · I| = 0,
∣∣∣B−λy · I

∣∣∣ = 0,
∣∣∣C−λζ · I∣∣∣ = 0 , (33)

where λx, λy and λζ are the eigenvalues and I is the identity
matrix.

The solution of  the above determinants  gives  the respect-
ive eigenvalues: 

λx = [u,u,u,u−a,u+a] ,λy = [v,v,v,v−a,v+a] ,

λζ =

ŵ, ŵ, ŵ, ŵ− √M
√

G
a, ŵ+

√
M
√

G
a
 , (34)

The corresponding right and left eigenvectors (the inverse
matrix of right eigenvectors) are as follows: 

Rx =


1 0 0 1 1
u 0 0 u−a u+a
0 1 0 v v
0 0 1 w w
0 0 0 θ θ

 ,

Lx =



1 0 0 0 −1
θ

0 0 1 0 −v
θ

0 0 0 1 −w
θ

u
2a

− u
2a

0 0
1
2θ

− u
2a

u
2a

0 0
1
2θ


,

(35)

 

Ry =


0 1 0 1 1
1 0 0 u u
0 v 0 v−a v+a
0 0 1 w w
0 0 0 θ θ

 ,

Ly =



0 1 0 0 −u
θ

1 0 0 0 −1
θ

0 0 0 1 −w
θ

v
2a

0 − v
2a

0
1
2θ

− v
2a

v
2a

0 0
1
2θ


,

(36)

1132 MCV NONHYDROSTATIC ATMOSPHERIC MODEL VOLUME 36

 

  



Rζ =



1
√

Gŵ

G2,3

ŵ
G1,3

ŵ
1 1

0 0 1 u−G1,3a

√
G
√

M
u+G1,3a

√
G
√

M

0 1 0 v−G2,3a

√
G
√

M
v+G2,3a

√
G
√

M
1 0 0 w− a

√
M

w+
a
√

M
0 0 0 θ θ


,

Lζ =



√
Gŵ
M

−
√

GG1,3

M
−
√

GG2,3

M
1− 1

M
−w
θ

G2,3Gŵ
M

−GG1,3G2,3

M
1+G(G1,3 )2

M
−
√

GG2,3

M
−v
θ

G1,3Gŵ
M

1+G(G2,3 )2

M
−GG1,3G2,3

M
−
√

GG1,3

M
−u
θ√

Gŵ

2a
√

M
−
√

GG1,3

2a
√

M
−
√

GG2,3

2a
√

M
− 1

2a
√

M

1
2θ

−
√

Gŵ

2a
√

M

√
GG1,3

2a
√

M

√
GG2,3

2a
√

M

1

2a
√

M

1
2θ



,

(37)

M = 1+G(G1,3 )2+G(G2,3 )2,a =
√
ε0θwhere  is the speed of

sound.

3.    Numerical formulations

Here, we begin with the 1D hyperbolic conservation law to
show the solution procedures of the third-order MCV scheme.
The scalar hyperbolic system has the form 

∂q
∂t
= − ∂ f (q)

∂x
, (38)

where q is a dependent state variable and f(q) is the corres-
ponding flux function.

Ci =
[
xi−1/2, xi+1/2

]
,i = 1,

2, ..., I
The 1D computational domain, 

,  is  segmented  into I non-overlapping  elements.  As
shown in Fig. 1a, the unknowns are defined as the pointwise val-
ues at three equally spaced solution points within cell i, 

qi,1(t) = q(xi,1, t),qi,2(t) = q(xi,2, t),qi,3(t) = q(xi,3, t) , (39)

xi,1 = xi−1/2, xi,2 = (xi−1/2+ xi+1/2)/2, xi,3 = xi+1/2where .
To  build  the  MCV  scheme,  two  kinds  of  moments —na-

mely,  the VIA moment over the segment and the PV moment
at the two ends—are defined as 

qi(t) =
1
∆xi

∫ xi+1/2

xi−1/2

q(x, t)dx , (40)

 

qi,1(t) = q(xi−1/2, t) , (41)
 

qi,3(t) = q(xi+1/2, t) , (42)

∆xi = xi+1/2− xi−1/2where .  Then,  the  time  evolution  equa-
tions  of  the  above  moments  are  obtained  from  governing
Eq. (38), 

dqi

dt
= − 1
∆xi

( f̂i+1/2− f̂i−1/2) , (43)
 

dqi,1

dt
= − f̂x,i−1/2 , (44)

 

dqi,3

dt
= − f̂x,i+1/2 , (45)

f̂ f̂x

xi−1/2 xi+1/2

where  and  are the numerical flux function and its derivat-
ives at cell boundary  and .

Given qi,s (s =  1,  2,  3),  a  cell-wise  Lagrangian  interpola-

 

Fig.  1.  The  locations  (black  circles)  of  (a)  solution  points  in
the  1D  case  and  (b)  solution  points  over  cell Ci,j,k on  a  3D
Cartesian grid.
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tion function Qi(x) can be built, 

Qi(x) =
3∑

s=1

ϕi,s(x)qi,s , (46)

where 

ϕi,s =

3∏
p=1,p,s

x− xi,p

xi,s− xi,p
, (47)

is the Lagrangian basis function.
Given interpolation function (46), Eqs. (40)−(42) can be ex-

plicitly expressed in the unknowns, 

q̄i =
1
∆xi

∫ xi+1/2

xi−1/2

Qi(x)dx =
1
6

(qi,1+4qi,2+qi,3) , (48)

 

qi−1/2 = Qi(xi−1/2) = qi,1 , (49)
 

qi+1/2 = Qi(xi+1/2) = qi,3 . (50)

Using the relations of Eqs. (48)−(50), the evolution equa-
tions of different moments (43)−(45) are obtained as 

d
dt

q̄i =
1
6

d
dt

(qi,1+4qi,2+qi,3) = − 1
∆xi

( f̂i+1/2− f̂i−1/2) , (51)
 

d
dt

qi−1/2 =
dqi,1

dt
= − f̂x,i−1/2 , (52)

 

d
dt

qi+1/2 =
dqi,3

dt
= − f̂x,i+1/2 . (53)

The constraint conditions (51)−(53) finally lead to the equa-
tions to update the unknowns as follows: 

dqi,2

dt
= − 3

2∆xi
( f̂i+1/2− f̂i−1/2)+

1
4

( f̂x,i−1/2+ f̂x,i+1/2) , (54)
 

dqi,1

dt
= − f̂x,i−1/2 , (55)

 

dqi,3

dt
= − f̂x,i+1/2 . (56)

xi−1/2 xi+1/2

f̂x,i−1/2

At boundary points  and , the flux function deriv-
atives are shared by two adjacent cells, which may lead to discon-
tinuous values on the left and right sides. They should be com-
puted by the approximate derivative Riemann solver. There are
some existing approximate Riemann solvers available, such as
the  local  Lax−Friedrich  (LLF)  solver  (Shu  and  Osher,  1988),
Roe’s solver (Roe, 1981), and the Low Mach number Approxim-
ate Riemann Solver (Chen et al., 2013). In our present model, in-
stead of the LLF solver used in the previous 2D dynamic core
(Li et al., 2013b), Roe’s approximate Riemann solver is adop-
ted, say , which reads
 

f̂x,i−1/2 =
1
2

[ f L
x,i−1/2+ f R

x,i−1/2−
∣∣∣Ai−1/2

∣∣∣ (qR
x,i−1/2−qL

x,i−1/2)]

=
1
2

[ f L
x,i−1/2+ f R

x,i−1/2−Ri−1/2
∣∣∣Λi−1/2

∣∣∣R−1
i−1/2

× (qR
x,i−1/2−qL

x,i−1/2)] ,

(57)

Λi−1/2 Ri−1/2

R−1
i−1/2

Ai−1/2
xi−1/2

xi−1/2

where  is  the  matrix  of  eigenvalues;  and  and
 are the matrices of  the right  and left  eigenvectors  of
 respectively,  which  can  be  directly  calculated  from

the point values at . The left-side and right-side derivat-
ives of the state variable at the cell boundary  are com-
puted from the Lagrangian interpolated functions by 

qL
x,i−1/2 =

d
dx

Qi−1(xi−1/2) =
q(i−1),1−4q(i−1),2+3q(i−1),3

∆xi−1
,

(58)
 

qR
x,i−1/2 =

d
dx

Qi(xi−1/2) =
−3qi,1+4qi,2−qi,3

∆xi
. (59)

xi+1/2The same procedure also applies for cell boundary .
We write  Eqs.  (54)−(56)  into  the  following vector-matrix

form:  

dqi,1

dt
dqi,2

dt
dqi,3

dt


=


0 0 −1 0
3

2∆xi
− 3

2∆xi

1
4

1
4

0 0 0 −1




f̂i−1/2

f̂i+1/2

f̂x,i−1/2

f̂x,i+1/2


,

(60)

Denoting the entries of the matrix 

M =


0 0 −1 0
3

2∆xi
− 3

2∆xi

1
4

1
4

0 0 0 −1

 , (61)

by Ml,α (l =1, 2, 3 and α =1,…, 4), and the components of 

F =


f̂i−1/2

f̂i+1/2

f̂x,i−1/2

f̂x,i+1/2

 , (62)

by Fα, Eq. (60) can be written into a component form, 

d(qi,l)
dt
=

4∑
α=1

M
l,α
·Fα, for l = 1,2,3 . (63)

The 3D computational domain D is decomposed into non-
overlapping mesh elements Ci,j,k indexed by i, j and k in the x, y
and ζ directions respectively. Thus, we have 

D =
I,J,K∪

i, j,k=1

Ci, j,k , (64)

where the cell element spans over 
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Ci, j,k =
[
xi−1/2, xi+1/2

]⊗ [
y j−1/2,y j+1/2

]
⊗ [
ζk−1/2, ζk+1/2

]
,

with 

∆xi = xi+1/2− xi−1/2,∆y j = y j+1/2− y j−1/2 ,

and 

∆ζk = ζk+1/2− ζk−1/2

and I, J and K represent the total numbers of cell  elements
in  the x, y and ζ directions.  The  solution  points  (shown  in
Fig. 1b) for cell Ci,j,k are denoted by qi,j,k,l,m,n (l, m, n = 1, 2,
3)  and  defined  at  points  (xi,j,k,l, yi,j,k,m, ζi,j,k,n).  For  conveni-
ence, we drop the cell indices i, j and k from now on and fo-
cus on the local control volume. As addressed in Ii and Xiao
(2009),  multi-dimensional  MCV  formulation  in  regular
Cartesian grids can be obtained by directly applying 1D for-
mulation along each direction. The semi-discretized formula-
tion for updating the unknowns within cell element Ci,j,k in
the 3D MCV framework in Eq. (27) is then obtained as 

d(ql,m,n )

dt
=

4∑
α=1

M(x)
l,α
·Fα+

4∑
β=1

M(y)
m,β
·Gβ+

4∑
γ=1

M(ζ)
n,γ ·Hγ

+S (ql,m,n ), for l,m,n = 1,2,3 .

(65)

M(y)
m,β GβThe terms  and  are the elements of the matrix and

vector in the y direction: 

M(y) =


0 0 −1 0
3

2∆y j
− 3

2∆y j

1
4

1
4

0 0 0 −1

 ,G =


ĝ j−1/2

ĝ j+1/2

ĝy, j−1/2

ĝy, j+1/2

 . (66)

A similar expression is obtained in the ζ direction: 

M(ζ) =


0 0 −1 0
3

2∆ζk
− 3

2∆ζk

1
4

1
4

0 0 0 −1

 ,H =


ĥk−1/2

ĥk+1/2

ĥζ,k−1/2

ĥζ,k+1/2

 , (67)
and S(ql,m,n) stands for the source terms.

ĝy, j−1/2 ĝy, j+1/2

ĥζ,k−1/2 ĥζ,k+1/2

Analogously,  and  are the derivatives of the
numerical  flux  at  cell  boundaries  in  the y direction,  while

 and  are those in the ζ direction.
So far, we have described the spatial discretization proced-

ure of the three-point MCV scheme, and the resulting semi-dis-
crete system of Eq. (65) is then solved by the third-order Total
Variation  Diminishing  Runge−Kutta  method  (Shu,  1988)  for
time integration.

We denote the right-hand side of Eq. (65) by R(ql,m,n): 

d(ql,m,n)
dt

=R(ql,m,n) , (68)

qκl,m,n
qκ+1

l,m,n

The values  at time step κ are updated by the follow-
ing steps to obtain the values  at time step κ+1:
 

q(1)
l,m,n = qκl,m,n+∆tR(qκ

l,m,n
) , (69)

 

q(2)
l,m,n =

3
4

qκl,m,n+
1
4

q(1)
l,m,n+

1
4
∆tR(q(1)

l,m,n) , (70)
 

qκ+1
l,m,n =

1
3

qκl,m,n+
2
3

q(2)
l,m,n+

2
3
∆tR(q(2)

l,m,n) , (71)

∆t = tκ+1− tκwhere  is the interval of time integration.

4.    Numerical simulations
In this section, some standard benchmark tests are conduc-

ted in order to validate the computational accuracy and the per-
formance  of  our  3D  MCV  dynamic  core.  A  rising  thermal
bubble in a uniform environment is utilized to check the mod-
el’s ability in simulating atmospheric thermodynamic motions.
Then, flow over a lower terrain in the linear hydrostatic range
is  considered  for  validating  mountain  waves  triggered  by  a
gentle slope. Thirdly, a strongly stratified flow past a steep isol-
ated hill is simulated to assess the performance of the model in
handling complex topography. The dynamic viscosity and Coriol-
is force are not included in these idealized cases. Before detail-
ing the test cases, it is necessary to describe the boundary condi-
tions used in the model.

4.1.    Boundary conditions

In  the  following test  cases,  two types  of  boundary  condi-
tions are used, including a no-flux boundary and nonreflecting
boundary.

The  no-flux  boundary  condition  aims  to  omit  the  normal
component of the velocity and only keep the tangential compon-
ent. For velocity vector u, we enforce 

u · n= 0 , (72)

where n is the outward normal vector from the boundary. Spe-
cifically, the velocity vector on one side of the boundary is
equal to its negative value on the other side, while the scal-
ar variables are copied directly.

The  commonly  used  method  of  imposing  nonreflecting
boundary  conditions  involves  adding  absorbing  layers  (damp-
ing layers) along the lateral and top boundaries, which guaran-
tee the waves exiting the domain of interest without reflection.
This damping is added to the momentum and potential temperat-
ure evolution equations and always takes the following form: 

∂q
∂t
= −τ(q− qb) , (73)

where τ is the coefficient of the absorbing layer and qb is the
prescribed reference state. The strength of the damping is de-
termined by parameter τ, which is defined differently in differ-
ent works. Here, following Giraldo and Restelli (2008), it is
denoted as 

τ(sc) =


0, sc < s0− sT ,

τ0

[
sc− (s0− sT)

sT

]4

, sc ⩾ s0− sT ,
(74)

sc ∈ (x,y, ζ)where τ0 = 2.0 × 10−2 s−1,  is a location in the com-
putational  area, s0 indicates  the  position  of  the  boundary,
and sT is  the  thickness  of  the  damping  layer.  In  the  over-
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lapped  region,  we  use  the  maximum  of  the  coefficients  in
three coordinate directions.

4.2.    Test cases

4.2.1.    Rising thermal bubble

This test is taken from Marras et al. (2013). The domain is
bounded within [0, 3200] m × [0, 3200] m × [0, 4000] m. The
mesh resolution is set to 80 m. This test case uses a hydrostatic-
ally balanced reference state based on a uniform potential temper-
ature θ0 =  300  K.  No-flux  boundary  conditions  are  applied
along all six boundaries. The initial u velocity, v velocity and w
velocity are set to zero. The potential temperature perturbation
has the following form:
 

θ′ = A
(
1− Rc

r

)
, (75)

Rc =

√
(x− xc)2+ (y− yc)2+ (z− zc)2where , r = 500 m is the

radius of the bubble, A = 2 K is a constant, and (xc, yc, zc) =
(1600, 1600, 500) m. The model is run for 480 s without oro-
graphy.

The initial potential temperature perturbation field and the
simulated results after 480 s are shown in Fig. 2.  The thermal
bubble (Fig. 2a) is located in the center of the domain in the be-
ginning. The warm perturbation generates acceleration in the in-
ner region of the bubble, accompanied by downdrafts on either
side  of  the  bubble.  Since  the  highest  temperature  inside  the
bubble  is  located  in  the  center,  the  center  of  the  bubble  rises

 

 

Fig.  2.  Numerical  results  of  a  3D  rising  thermal  bubble  (xz slices  at y =  1600  m).  The  contour  lines  of  (a)  potential
temperature  perturbation  (units:  K)  at T =  0  s  are  from  0.0  to  2.0  with  an  interval  of  0.2,  (b)  potential  temperature
perturbation (units: K) at T = 480 s are from 0.05 to 1.0 with an interval of 0.05, (c) the u wind (units: m s−1) at T = 480 s
are from −2.4 to 2.4 with an interval of 0.4, (d) the vertical wind (units: m s−1) at T = 480 s are from −2 to 9 with an interval
of 1. Positive contours are presented with solid lines and negative contours with dashed lines.
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faster.  This  creates  sharp  temperature  gradients  in  the  upper
part of the bubble. After 480 s, it evolves into a classical mush-
room  shape.  Similar  to  previous  studies  such  as Chen  et  al.
(2013) and Marras et al. (2013), the present model captures the
evolution of the bubble in time, and the flow structures are repro-
duced  with  high  solution  quality. Figures  2b−d display  the xz
cross  section  of  potential  temperature  perturbation,  horizontal
wind and vertical wind at 480 s. As expected, the evolution of
potential temperature perturbations remains axisymmetric at all
times and is  very competitive when compared to  that  of Mar-
ras et al. (2013) (see their Fig. 19), which applies the variation-
al multiscale stabilization (VMS) method to suppress the instabil-
ities of dominated convection in the centered-nature finite ele-
ment  framework.  Different  from  the  VMS  method,  the  MCV
scheme  combined  with  the  approximate  Roe  solver  presents
small oscillations of potential temperature perturbations in the lar-
ger gradient of the mushroom edge. The horizontal wind and ver-
tical  wind  at  480  s  look  closely  like  those  of Marras  et  al.
(2013) as well. In a quantitative manner, the front of the bubble
finally  reaches  the  height  of  approximately  2400  m,  which
agrees  well  with Marras  et  al.  (2013).  By  comparing  the
thermal bubble test results with previous studies, the results of
the 3D MCV nonhydrostatic model look very competitive.

4.2.2.    3D linear hydrostatic mountain

T̄

N = g/
√

cpT

In this test, the initial state consists of an isothermal atmo-
sphere with  = 250 K, which means a constant Brunt−Väisälä

frequency . A constant mean flow u = 20 m s−1 is

imposed. The mountain profile is defined as
 

h(x,y) =
hc1+ (

x− xc

ac

)2

+

(
y− yc

ac

)2
3
2
, (76)

where hc =  1  m is  the  mountain  height, ac =  10  km is  the
half-width of the mountain, and (xc, yc) = (120, 120) km is
the  center  position  of  the  mountain.  The  domain  is  [0,
240]  km × [0,  240]  km × [0,  24]  km, with grid  spacing of
∆x = ∆y =1500 m and ∆ζ = 300 m. While no-flux boundary
conditions  are  imposed  along the  bottom boundary,  nonre-
flecting boundary conditions are used near the upper and later-
al boundaries. The sponge layers are placed in the region of
ζ ≥18  km  for  the  upper  boundary  and  the  thickness  of  60
km for the lateral boundaries. As mentioned in section 2.2,
the  hybrid  vertical  coordinate  (Schär  et  al.,  2002)  is  em-
ployed. It can be verified that the Froude number U/(Nh0) >
1,  so  the  flow  is  in  the  hydrostatic  range.  The  model  runs
for five hours.

Figures 3a and b show the numerical results of the u velo-
city  perturbation  and  vertical  velocity  after  one  hour,  respect-
ively. The results present the features of vertically propagating,
with a small tilt component, which are in good agreement with
the  results  reported  in Giraldo  (2011).  The  density  perturba-
tion field after five hours is plotted in Fig. 4a. Thanks to the the-
ory of Smith (1988),  the analytic  solution of  this  problem has
been made available. Our results are well matched with the ana-
lytic  solution  (Smith,  1988)  near  the  mountain,  but  deviate
away from the  mountain  due  to  the  influence  of  the  Rayleigh
damping layer. We should not expect to agree exactly with the
analytic solution, for it is solved under the linear Boussinesq ap-
proximation.  Therefore,  the  results  of  previously  published
work  are  also  used  for  comparison.  We  observe  agreement

 

 

Fig. 3. Numerical results of a 3D hydrostatic mountain after one hour (xz slices at y = 120 km). The contour lines of (a) the u
velocity perturbation (units: m s−1) are from −0.008 to 0.01 with an interval of 0.002, and (b) the vertical velocity (m s−1) are
from −0.002 to 0.0015 with an interval of 0.0005. Positive contours are presented with solid lines and negative contours with
dashed lines. Zero contour lines are not shown.
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with the results of Blaise et al. (2016) (see their Fig. 16a), sug-
gesting  our  model  is  correctly  capturing  the  mountain  waves
triggered by the gentle slope. It is worth mentioning that, com-
pared with the results of Blaise et al. (2016) obtained by the dis-
continuous  Galerkin  method,  our  simulated  density  perturba-
tion  field  shows  small  oscillations,  especially  at  the  lower
levels.  Additional  verification  is  performed  by  comparing  the
density perturbations along the line x = y = 120 km. It is noted
that  the  simulated  vertical  profile  in Fig.  4b matches  closely
with the reference work (Blaise et al., 2016, Fig. 16b). In gener-
al, our 3D MCV nonhydrostatic model simulates the linear hydro-
static mountain waves quite well.

4.2.3.    Stratified flow past a steep 3D hill

In  this  test  case  the  simulations  of  the  complex  flow  be-
hind  a  steep  isolated  hill  are  challenging  for  the  newly  de-
veloped numerical model. The steep isolated hill is defined by 

h(x,y) = h0cos2(πr/2L), r =
√

(x− x0)2+ (y− y0)2 ⩽ L ,

h(x,y) = 0.0, r =
√

(x− x0)2+ (y− y0)2 > L ,
(77)

where  the  peak  height  of  the  hill h0 =  1500  m,  the  half-
width L = 3000 m, and r is the distance to the mountain cen-
ter (x0, y0). A plot of the hill profile is shown in Fig. 5. The
domain size is [0, 15 000] m × [−6000, 6000] m × [0, 6000]
m,  respectively,  in  the x, y and ζ direction.  The mesh con-
sists  of  151 × 121 × 61 grid points  with uniform grid spa-
cing ∆x = ∆y = ∆ζ = 100 m. The model is integrated up to
1200 s when the main features of the solution are already es-
tablished.  The  sponge  layer  extends  upward  from  a  height
of 4500 m and at the lateral outflow boundary with 1500 m
thickness.  Following Smolarkiewicz  et  al.  (2013),  the  ini-
tial  state  is  characterized  by  uniform  horizontal  wind  (u =
5 m s−1)  with constant  buoyancy frequency (N = 10−2 s−1).

The reference potential temperature is θ0 = 300 K. The spe-
cified environmental profile and the height of the hill result
in  a  low  Froude  number  flow.  Here,  the  Froude  number
equals  1/3.  The  flow  is  in  the  nonhydrostatic  range.  This
test case also complements the quantitative test of our 3D non-
hydrostatic  model.  For  convenience  of  comparison,  the
same  contour  intervals  in  the  figures  of  this  test  case  are
used as in previous studies.

Figure  6 shows  the  vertical  velocity  along  the  lower  sur-
face of z = h(x, y). Wind vectors are overlaid on the contours of
vertical velocity. It can be seen in Fig. 6 that the symmetric struc-
tures of both vertical velocity and wind vectors are perfectly re-
produced,  similar  to  previous  studies  (Smolarkiewicz  et  al.,
2013),  especially  the  two large  eddies  on  the  lee  side  and  the
lower flow splitting.

Figure  7a displays  the  vertical  velocity  in  the  central xz

 

 

Fig. 4. Density perturbations (units: kg m−3) for the linear hydrostatic mountain after five hours. (a) xz cross section in the
plane y =  120 km.  The contour  lines  are  from −2.5  × 10−5 to  5.0  × 10−5 with  an  interval  of  5  × 10−6.  Positive  values  are
displayed by solid lines and negative values by dashed lines. (b) Vertical profile at x = y = 120 km.

 

Fig.  5.  The  steep  3D  hill  profile.  Units:  m,  in  both  the
horizontal and vertical direction.
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cross section (y = 0). This figure is generated by linearly interpol-
ating the vertical velocity in the transformed coordinate ζ to the
geometric height coordinate z. It can be seen that the MCV non-
hydrostatic  model  captures  fine-scale  features  of  the  turbulent
wake on the lee side and the gravity-wave response aloft. The
magnitude  of  vertical  velocity  also  agrees  quantitatively  with
the  simulation  of Smolarkiewicz  et  al.  (2013).  In  comparison
with the reference results (Smolarkiewicz et al., 2013; Szmelt-

er et al., 2015), our model introduces small spurious noises, al-
though numerical dissipation is not imposed. Additionally, our
numerical results show a better simulation of the positive vor-
tex on the lee side. Therefore, we can again confirm the competit-
ive performance of our model.

The profiles  of  vertical  velocity  in  the xy cross  section at
the height of z (= h0/3) = 500 m are plotted in Fig. 7b. This hori-
zontal  flow  patterns  also  compare  well  with  existing  results
[see Fig. 6 in Smolarkiewicz et al. (2013) and Fig. 7 in Szmelt-
er et al. (2015)]. The fine-scale eddy structures are perfectly re-
solved by our model, especially the two evident eddies behind
the hill. Figure 8 gives the xy cross section of vertical velocity
at z = 2500 m. No visually distinguishable differences are ob-
served  between  our  results  and  those  of Smolarkiewicz  et  al.
(2013) (see  their  Fig.  9).  Overall,  it  can  be  seen  that,  without
any artificial dissipation terms included in the equation set, the
3D MCV nonhydrostatic model not only simulates a smoother
numerical solution, but correctly reproduces all the small-scale
characteristics generated by the steep hill.

5.    Conclusions

In  this  paper,  a  3D compressible  nonhydrostatic  model  is
presented using a three-point MCV method, which extends the
previous 2D MCV nonhydrostatic atmospheric dynamics to 3D
in the terrain-following grid to facilitate accurate simulations in
the  presence  of  complex  topography,  which  is  a  challenging
task to numerical modeling of the atmosphere. In the MCV al-
gorithm, the two kinds of moments (PV moment and VIA mo-
ment)  are  treated  as  the  prognostic  variables  and  updated
through evolution equations  in  different  forms.  The constraint
on the VIA moment guarantees the exact numerical conserva-
tion, while the PV moment can be computed efficiently and en-
ables the building of high-order reconstructions in a single cell.
Being  a  nodal-type  high-order  method,  the  MCV  formulation
has an apparent  advantage in dealing with complex geometric
terms.

 

Fig. 6. Vertical velocity (units: m s−1) along the lower surface
of z = h(x, y).  The contour lines are from −5.0 to 1.0 with an
interval  of  0.5.  Positive values  are  denoted by solid  lines  and
negative  values  by  dashed  lines.  Zero  contour  lines  are  not
shown. Vector arrows are overlaid.

 

Fig.  7.  (a)  Vertical  velocity  (units:  m  s−1)  in  the  central xz
cross section at y = 0.  The contour lines are from −4.0 to 5.0
with  an  interval  of  0.5.  (b)  Vertical  velocity  (units:  m s−1)  in
the xy cross section at z = 500 m. The contour lines are from
−4.0 to 3.0 with an interval of 0.5. Positive values are denoted
by  solid  lines  and  negative  values  by  dashed  lines.  Zero
contour lines are not displayed. Vector arrows are overlaid.

 

Fig. 8. Vertical velocity (units: m s−1) in the xy cross section at
z =  2500  m.  The  contour  lines  are  from  −2.0  to  1.5  with  an
interval  of  0.5.  Positive values  are  denoted by solid  lines  and
negative  values  by  dashed  lines.  Zero  contour  lines  are  not
displayed. Vector arrows are overlaid.
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The numerical results of various benchmark tests indicate
that  the  present  MCV nonhydrostatic  model  is  very  competit-
ive  when  compared  to  most  other  existing  advanced  models.
The mountain wave tests verify the capability of the present mod-
el in accurately resolving the small-scale characteristics gener-
ated by terrain effects, especially when the topographic inclina-
tion  is  steep.  The  present  model  is  a  practical  and  promising
framework to simulate nonhydrostatic atmospheric flow.

The  implementation  of  more  complicated  physical  pro-
cesses  in  the  model  is  still  in  progress,  and  our  preliminary
tests  with  a  simple  wet  physical  process  look very promising.
The related results will be reported in another paper in the near
future. Meanwhile, the extension of the present MCV nonhydro-
static dynamics into the spherical system is another step to be un-
dertaken in future studies.
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