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ABSTRACT

This paper preliminarily investigates the application of the orthogonal conditional nonlinear optimal perturbations
(CNOPs)–based ensemble forecast technique in MM5 (Fifth-generation Pennsylvania State University–National Center for
Atmospheric Research Mesoscale Model). The results show that the ensemble forecast members generated by the orthogonal
CNOPs present large spreads but tend to be located on the two sides of real tropical cyclone (TC) tracks and have good agree-
ments between ensemble spreads and ensemble-mean forecast errors for TC tracks. Subsequently, these members reflect
more reasonable forecast uncertainties and enhance the orthogonal CNOPs–based ensemble-mean forecasts to obtain higher
skill for TC tracks than the orthogonal SVs (singular vectors)–, BVs (bred vectors)– and RPs (random perturbations)–based
ones. The results indicate that orthogonal CNOPs of smaller magnitudes should be adopted to construct the initial ensemble
perturbations for short lead–time forecasts, but those of larger magnitudes should be used for longer lead–time forecasts due
to the effects of nonlinearities. The performance of the orthogonal CNOPs–based ensemble-mean forecasts is case-dependent,
which encourages evaluating statistically the forecast skill with more TC cases. Finally, the results show that the ensemble
forecasts with only initial perturbations in this work do not increase the forecast skill of TC intensity, which may be related
with both the coarse model horizontal resolution and the model error.
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1. Introduction
For numerical atmospheric and oceanic forecast systems,

model errors and initial errors always exist. Due to the insta-
bility of atmospheric and oceanic systems and their related
nonlinearities, small initial errors may grow nonlinearly and
lead to large forecast errors (Lorenz, 1963). Ensemble fore-
casting techniques have been an effective and popular way
to estimate and reduce forecast errors in operational fore-
casts. The basic idea of ensemble forecasting was proposed
by Leith (1974), who specifically proposed the Monte Carlo
Forecasting method (also known as the random perturbations
method; hereafter denoted as the RPs method) to estimate the
probability distribution function of forecast results. For the
RPs method, random perturbations are superimposed on the
initial analysis field to generate a group of forecast members.
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These forecast members can be used to estimate the uncer-
tainties of forecast results and calculate the occurrence prob-
ability for the weather or climate events of concern. Leith
(1974), Molteni et al. (1996), Buizza et al. (2005), and Leut-
becher and Palmer (2008) have indicated that the average of
the ensemble forecast members, i.e., the ensemble mean, may
leave the common predictable parts and filter out the unpre-
dictable parts of the forecast members, which ultimately de-
creases the uncertainties of the single and deterministic fore-
cast result.

In recent years, several methods have been developed
to produce the initial perturbations and adopted in differ-
ent operational centers for operational ensemble forecasts.
For example, the singular vectors (SVs) method proposed by
Lorenz (1965) has been successfully applied in the ECMWF
(European Centre for Medium-Range Weather Forecasts) for
operational ensemble forecasts (Mureau et al., 1993; Molteni
et al., 1996). SVs are initial perturbations that are orthogo-
nal and have the largest linear growth rates in their respective
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subspaces of initial perturbations during the optimization pe-
riod. Though SVs have been successfully applied in opera-
tional centers for ensemble forecasts, there also exist some
limitations for SVs. Gilmour and Smith (1998) noted that the
SVs method has limitations in the construction of initial en-
semble perturbations because of the linear approximation of
the SVs method. Anderson (1997) indicated that in a linear
regime SVs are effective to grasp the fast growing initial per-
turbations, but in nonlinear regimes SVs cannot describe the
extreme perturbations well. All these aspects may limit the
benefits of SVs for improving ensemble forecast skill.

In view of the limitations of SVs in nonlinear regimes,
Mu et al. (2003) proposed the conditional nonlinear optimal
perturbation (CNOP) method. Duan et al. (2004) showed
that the CNOP represents the initial perturbation that has the
largest nonlinear evolution at a given forecast time among all
the initial perturbations that satisfy a certain physical con-
straint [also see Mu and Zhang (2006) and Duan and Mu
(2009)]. As the leading SV (LSV) is the initial perturbation
that has the largest growth rate in a linear regime, CNOP can
be regarded as the nonlinear extension of the LSV. In con-
sideration of the impact of nonlinearity on ensemble fore-
casts, Mu and Jiang (2008) replaced the LSV with CNOP,
while keeping other SVs unchanged, to obtain the initial
perturbations of ensemble forecasts with a two-dimensional
barotropic quasi-geostrophic model. The obtained results
showed that the ensemble forecast skill had been improved
[also see Jiang and Mu (2009)]. This indicates that it is use-
ful and important in ensemble forecasting to find those initial
perturbations that have large nonlinear evolutions. However,
in the approach suggested by Mu and Jiang (2008), other SVs
that develop optimally only in a linear regime still exist.

To fully consider the effects of nonlinearities, Duan and
Huo (2016) proposed the method of orthogonal CNOPs and
applied it to yield ensemble forecast initial perturbations by
using the Lorenz-96 model (Lorenz, 1995). They showed
that the orthogonal CNOPs overcome the limitations of SVs,
guarantee the diversity of ensemble members and effectively
estimate the initial uncertainties of forecasts, making the as-
sociated ensemble forecasts more skillful than those associ-
ated with the orthogonal SVs. However, such results are de-
rived from the simple Lorenz-96 model and are therefore only
generally indicative. To be more realistic, we should adopt a
more complete model to explore the usefulness of the orthog-
onal CNOPs in ensemble forecasts. Therefore, we may nat-
urally ask whether the orthogonal CNOPs behave better than
the orthogonal SVs in ensemble forecasts with more complex
weather models, such as the Fifth-generation Pennsylvania
State University–National Center for Atmospheric Research
Mesoscale Model (MM5; Dudhia, 1993; Grell et al., 1994)
or the Weather Research and Forecasting Model (WRF; Ska-
marock et al., 2005). In addition, there are other methods of
generating initial perturbations for ensemble forecasts, such
as the bred vectors [BVs; see next section; also see Toth and
Kalnay, 1993, 1997] and the abovementioned RPs. Is the or-
thogonal CNOPs method also more advanced than these two
methods?

To answer the above questions, we adopt MM5 to con-
duct ensemble forecasting experiments, and use the above
methods to generate the initial perturbations for the ensemble
forecasts. Although the MM5 model seems a little outdated,
it possesses effective tangent-linear and adjoint models (Zou
et al., 1997) and provides a way to efficiently compute SVs
and CNOPs. Furthermore, MM5 and its tangent-linear and
adjoint models have been widely applied in studies of data
assimilation, ensemble forecasts and the related predictabil-
ities of extreme weather events, such as tropical cyclones
(TCs) and heavy rain (Cheung, 2001; Chien and Jou, 2004;
Liang et al., 2007; Mu et al., 2009; Pessi and Businger, 2009;
Hwang et al., 2011; Wei, 2012; Yang et al., 2012; Zhao et
al., 2012; Yu et al., 2017). Those studies adopted MM5 to
either explore the predictability dynamics of related weather
events or to act as a platform to examine the usefulness of
new approaches. For example, Mu and colleagues recently
used MM5 and its tangent and adjoint models to examine
the feasibility of the CNOP approach in revealing the pre-
dictability of TCs (Mu et al., 2009; Qin and Mu, 2011; Zhou
and Mu, 2011; Jiang and Wang, 2012; Qin et al., 2013; Mu
et al., 2014; Yu et al., 2017). Therefore, it is acceptable for
us to regard MM5 as a platform to examine the usefulness
of the orthogonal CNOPs in yielding initial perturbations and
improving the ensemble forecast skill.

Considering TC-induced severe disasters, we follow
these previous studies and continue to use TC predictabil-
ity as the point of interest to examine the performance of or-
thogonal CNOPs in the ensemble forecasts (especially using
a complex model) and the superiority of orthogonal CNOPs
to other methods. As we know, due to the lack of conven-
tional observational data over the tropical ocean, the initial-
value problem has become a key question for TC-track fore-
casts. Furthermore, previous studies have shown that TC-
track forecasts are very sensitive to initial states (Langland et
al., 2002; Hsiao et al., 2009; Yamaguchi et al., 2012). Partic-
ularly, Yamaguchi et al. (2009) demonstrated that the ensem-
ble forecasts associated with initial perturbations improve the
TC-track forecast skill. Zhang and Krishnamurti (1997) and
Cheung (2001) also obtained similar results. Therefore, we
follow these works and regard the TC-track forecast as an
initial value problem to examine the skill of the ensemble
forecasts generated by the orthogonal CNOPs.

The paper is organized as follows: The model (MM5) and
the selected TC cases are introduced in section 2. The orthog-
onal CNOPs– and SVs–, RPs– and BVs–based methods are
described in section 3. In section 4, the ensemble forecast-
ing experiments for TC tracks conducted by using orthogonal
CNOPs–, orthogonal SVs–, RPs–, and BVs–based ensem-
ble forecast techniques are described and the related forecast
skills are subsequently compared. Then, the results are dis-
cussed in section 5 and a summary is provided in section 6.

2. MM5 and the TC cases
MM5 (Dudhia, 1993; Grell et al., 1994) is a mesoscale

model developed by the National Center for Atmo-
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spheric Research and Pennsylvania State University. It is a
non-hydrostatic, limited-area, terrain-following sigma (σ)-
coordinate model, and was designed to simulate and predict
mesoscale atmospheric circulations (Dudhia, 1993; Grell et
al., 1994). MM5 was also employed in Mu et al. (2014), and
the following text is taken from there with some modifica-
tions. The horizontal resolution (dx) of the model used here is
60 km, with the model domain covering 51×61 (y-direction
by x-direction) grid points. The vertical direction is evenly
divided into 20 σ levels, and the integration time step is in
seconds chosen on the basis of the 3×dx criterion. Following
Mu et al. (2009) and Zhou and Mu (2011, 2012), the physical
parameterizations associated with the TC simulations include
the Anthes–Kuo cumulus parameterization scheme, the sim-
ple cooling radiation scheme, the high-resolution Blackadar
planetary boundary layer parameterization scheme, and the
stable precipitation scheme. Since MM5 is a regional model,
it requires not only an initial condition but also a boundary
condition. The initial and boundary conditions used here are
supplied by interpolating the National Centers for Environ-
mental Prediction (NCEP) FNL (Final) Operational Global
Analysis (1◦ × 1◦) into MM5 grids. Integrating MM5 with
the initial and boundary conditions, one can obtain a control
forecast for weather events of concern.

The historical TC data, i.e., the best-track data, adopted
in the present study, are available online at http://tcdata.
typhoon.org.cn/en/zjljsjj zlhq.html [also see Ying et al.
(2014)]. We select five TCs to study the ensemble forecasts
associated with orthogonal CNOPs. The five TCs are the
severe typhoon (STY) Matsa (2005), severe tropical storm
(STS) Bilis (2006), super typhoon (Super TY) Sepat (2007),
typhoon (TY) Morakot (2009), and STS Fungwong (2014).
These TCs were of different intensity but all made landfall in
China and caused severe disasters. Table 1 shows the model
domain center, the forecast periods, the minimum sea level
pressure at the initial time, the maximum wind speed at the
initial time, and the initial intensity category for each of the
five TCs. The TC intensity category is divided based on the
maximum wind speed, and the TC intensity category stan-
dard is available online at http://tcdata.typhoon.org.cn/en/

zjljsjj sm.html [also see General Administration of Quality
Supervision, Inspection and Quarantine of the People’s Re-

public of China and Standardization Administration of the
People’s Republic of China (2006)]. Here, the model do-
mains for each TC are selected to cover the TC tracks dur-
ing the forecast period. The forecast periods are chosen as
five days for the first four TCs in Table 1, but four days for
the last TC case (which decayed after four days’ evolution).
Note that the forecast period for each TC covers its landing
process.

3. The orthogonal CNOPs, SVs, RPs, and BVs
In the present study, the orthogonal CNOPs are used to

generate ensemble initial perturbations for the TC tracks. The
related forecast skills are compared with those associated
with the orthogonal SVs, RPs, and BVs methods. Integrating
MM5 with the initial and boundary conditions derived from
the FNL data, we can derive the control forecast. We use each
method to experimentally generate five initial perturbations
for one TC, and then add them to and subtract them from the
initial analysis to obtain 10 perturbed initial conditions. The
control forecast can be obtained by integrating MM5 with
the unperturbed initial analysis field. Then, integrating MM5
with these perturbed initial conditions, we can obtain 10 per-
turbed forecast members for the TC case. Therefore, there are
11 ensemble forecast members in total for each TC and each
method. Using the resultant ensemble members, the skills of
ensemble forecasts can be evaluated and a comparison among
the aforementioned methods realized.

3.1. Orthogonal CNOPs
The orthogonal CNOPs method is the same as proposed

and employed by Duan and Huo (2016). Specifically, orthog-
onal CNOPs are a group of nonlinear optimal initial perturba-
tions denoted as 1st-CNOP, 2nd-CNOP, 3rd-CNOP, . . . , nth-
CNOP. The 1st-CNOP is the nonlinear optimal initial pertur-
bation that has the largest nonlinear evolution at the end of
the optimization time period in the whole perturbation phase
space Ω1. The jth-CNOP represents the nonlinear optimal
initial perturbation in the subspace Ω j that is orthogonal to
1st-CNOP, 2nd-CNOP, 3rd-CNOP, . . . , ( j − 1)th-CNOP. In
present study, the jth-CNOP can be defined as the initial
perturbation xxx∗0, j, which satisfies the following optimization

Table 1. The model domain center, forecast period (UTC), minimum sea level pressure at the initial time, maximum wind speed at the
initial time, and initial intensity category for each of the five typhoon cases.

Minimum sea level Maximum wind Initial intensity
Case Domain center Forecast period pressure speed category

STY Matsa (2005) (28◦N, 122◦E) 1200 UTC 3 August 2005 to 1200
UTC 8 August 2005

960 hPa 40 m s−1 TY

STS Bilis (2006) (22◦N, 122◦E) 1200 UTC 10 July 2006 to 1200
UTC 14 July 2006

990 hPa 23 m s−1 TS

Super TY Sepat (2007) (21◦N, 123◦E) 1200 UTC 15 August 2007 to
1200 UTC 20 August 2007

935 hPa 55 m s−1 Super TY

TY Morakot (2009) (23◦N, 125◦E) 0600 UTC 5 August 2009 to 0600
UTC 10 August 2009

975 hPa 33 m s−1 TY

STS Fungwong (2014) (26◦N, 121◦E) 0000 UTC 19 September 2014 to
0000 UTC 24 September 2014

995 hPa 20 m s−1 TS

http://tcdata.typhoon.org.cn/en/zjljsjj{_}zlhq.html
http://tcdata.typhoon.org.cn/en/zjljsjj{_}zlhq.html
http://tcdata.typhoon.org.cn/en/zjljsjj{_}sm.html
http://tcdata.typhoon.org.cn/en/zjljsjj{_}sm.html
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problem:

J(xxx∗0, j) = max
xxx0, j∈Ω j

J(xxx0, j)

= max
xxx0, j∈Ω j

[Mτ(XXX0 + xxx0, j)−Mτ(XXX0)]T×

CCC[Mτ(XXX0 + xxx0, j)−Mτ(XXX0)] , (1)

where XXX0, composed of zonal wind uuu, meridional wind vvv,
temperature TTT and surface pressure ppps, is the initial condition
of a reference state, where the reference state can be under-
stood as a control forecast; xxx0, j is the corresponding initial
perturbation in the subspace Ω j; τ is the optimization time
period; Mτ is the propagator of MM5; the superscript “T” is
the transposition symbol; the objective function J(xxx0, j) eval-
uates the magnitude of the nonlinear evolution of the initial
perturbation xxx0, j at the end of the optimization time period τ,
which is the dry energy of the nonlinear evolved perturbation;
and CCC is the operator corresponding to the dry energy norm,
which satisfies:

δXXXTCCCδXXX =
1
D

∫
D

∫ 1

0

uuu′2 + vvv′2 +
cp

Tr
TTT ′2 + RaTr

(
ppp′s
pr

)2dσdD ,

(2)
where the perturbation vector δXXX is composed of the per-
turbed zonal wind uuu′, the perturbed meridional wind vvv′, the
perturbed temperature TTT ′ and the perturbed surface pressure
ppp′s. D is the horizontal domain, which corresponds to the op-
erator CCC, and σ represents the vertical coordinate. The con-
stant cp = 1005.71 J kg−1 K−1 is the specific heat at a constant
pressure, Ra = 287.04 J kg−1 K−1 is the gas constant of the
dry air, and pr = 1000 hPa and Tr = 270 K are the reference
parameters.

The subspace Ω j is described by:

Ω j=

{x
xx0, j ∈R

n|xxxT
0, jCCC1xxx0, j6β}, j=1

{xxx0, j ∈R
n|xxxT

0, jCCC1xxx0, j6β, xxx0, j ⊥Ω j,k=1, . . . , j−1}, j>1
,

(3)
where xxx0, j is the initial perturbation, R denotes the real num-
ber symbol, n is the vector dimension of xxx0, j, β is a positive
number that limits the amplitudes of the initial perturbations
with units of J kg−1, and CCC1 is the operator corresponding
to the initial dry energy norm. xxxT

0, jCCC1xxx0, j evaluates the mag-
nitude of the initial perturbation, which is the dry energy of
the initial perturbation corresponding to the whole model do-
main. Note that, when the objective function is defined to
evaluate the dry energy for the evolved perturbations in the
whole domain, there are always instabilities in the computa-
tion of CNOPs. Therefore, the initial perturbations xxx0, j are
produced over the whole model domain D1 (CCC1 corresponds
to D1), but the objective function is defined to evaluate the
dry energy in the remaining domain D by removing three
grids near the boundary of the whole model domain (CCC corre-
sponds to D) to confirm the computational stability. Here, we
use the SPG2 [Spectral Projected Gradient 2 (Birgin et al.,
2000)] method to compute the jth-CNOP ( j = 1,2,3, . . .,n)
with the optimization time period τ being 24 h.

3.2. Orthogonal SVs, RPs, and BVs
The orthogonal SVs, RPs, and BVs methods are used in

the same environment as that of the orthogonal CNOPs. In
other words, the perturbed physical variables, the model do-
mains and the norms to measure the perturbations are the
same as those used for the orthogonal CNOPs.

According to the definition of orthogonal SVs, the cost
function of SVs can be written as shown in Eq. (4), which
measures the linear growth rates of the initial perturbations.
Obviously, the orthogonal SVs represent the linear fastest-
growing initial perturbations in their respective subspaces:

J(xxx∗0) = max
xxx0∈Ω

(Lxxx0)TCCC(Lxxx0)
xxxT

0CCC1xxx0
, (4)

where xxx0 is the initial perturbation, Ω = {xxx0 ∈R
n|xxxT

0CCC1xxx0 6 β}
is the constraint condition of the initial perturbations, and L
is the linear propagator of MM5. The SVs are computed us-
ing the Lanczos algorithm (Simon, 1984), with the optimiza-
tion time period being 24 h, and are then scaled to match
the magnitudes of the orthogonal CNOPs, which guarantees
a fair comparison between the CNOPs and SVs.

For the RPs approach, the initial perturbations are ran-
dom. Compared with the orthogonal CNOPs and SVs, the
computations of RPs save computational resources and time,
but RPs do not have specific dynamical significances, i.e.,
they could be either growing initial perturbations or decaying
initial perturbations. The RPs are produced using the fol-
lowing steps: (i) subtract the initial analysis field from the
forecast field of the control forecast at 24 h to get the error
field EEE; (ii) for the components uuu′,vvv′,TTT ′ and ppp′s in the error
field EEE, compute their maximum a and minimum b at each
σ level; (iii) generate random numbers that obey the uniform
distribution and belong to [a,b], and then use them to create
a random perturbation xxx0 with the components uuu′,vvv′,TTT ′ and
ppp′s; (iv) scale the perturbation xxx0 so that it has the same mag-
nitude as the orthogonal CNOPs. Using these steps, we get
one RP. Repeating steps (iii) to (iv), we can get different RPs.

BVs, as mentioned above, are also used to generate en-
semble forecasts. The performance of BVs is compared with
that of the orthogonal CNOPs. In a data assimilation cycle,
random errors may evolve in fast-growing directions in the
atmospheric flow. According to this rationale, BVs are pro-
posed to simulate the initial perturbations with fast-growing
directions by periodically rescaling the differences between
a set of forecasts and the corresponding perturbation fore-
casts. In this study, the components of the BVs are the same
as in the above methods, i.e., the horizontal wind, meridional
wind, temperatures and surface pressure. The norm to mea-
sure the initial perturbations and scale the perturbations is the
same as that used for computing orthogonal CNOPs. The
computation of the BVs starts 24 h ahead of the start time of
the ensemble forecast, and the rescaling period is 6 h. Specif-
ically, we add the RP obtained as described in the last para-
graph to the initial analysis field of the control forecast to
get the perturbed initial field. Integrating the perturbed initial
field for 6 h, we can get the perturbed forecast. Subtracting
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the control forecast from that of the perturbed forecast, we
can get the error field. Second, we scale the error field so that
it has the same magnitude as the orthogonal CNOPs. Then,
we apply this scaled error field as the initial perturbation over
the next 6-h integration. After four integrations, we can get
the final scaled error field, i.e., the BV. Using different RPs,
we can obtain different BVs that are used for ensemble fore-
casts.

4. Ensemble forecast experiments for the TC
cases

In this section, we conduct ensemble forecast experi-
ments of the selected five TC cases (see Table 1). As men-
tioned in section 2, these five TC cases had different inten-
sities and all made landfall in China. Here, we investigate
the ensemble forecast by calculating the mean of the en-
semble forecast members of the TC track. In other words,
we evaluate the forecast skill of the ensemble-mean forecast
for the TC track, which is then compared with that of the
control forecast to obtain the improvement in the ensemble-
mean forecast. Here, the TC track is determined by the time-
dependent TC center locations, which are identified by the
locations where the sea level pressure is minimal. Usually,
a better ensemble forecast system means that the ensemble
forecast members’ spreads should be closer to the ensemble-
mean forecast errors (Branković et al., 1990; Eckel and Mass,
2005; Buckingham et al., 2010). Therefore, we also compute
the ensemble forecast members’ spreads and analyze the re-

lations between the ensemble-mean forecast errors and the
ensemble spreads. The details for the calculations of the fore-
cast error, ensemble spread, and improvement can be found
in the Appendix.

The amplitudes of the initial perturbations of the ensem-
ble forecast, which are limited by the constraint condition
xxxT

0CCC1xxx0 6 β in Eqs. (3) and (4), have been experimentally
chosen as β = 0.3 J kg−1, β = 0.3× 4 J kg−1 and β = 0.3× 9
J kg−1. We use these constraint conditions to compute the
orthogonal CNOPs and SVs. We find that the orthogonal
CNOPs are more different from the orthogonal SVs when
β is much larger. The differences between the CNOPs and
SVs reflect the effects of nonlinearities. To better show the
influences of nonlinearities on the ensemble forecasts, we
present the results with β = 0.3× 9 J kg−1. The constraint
condition of β = 0.3× 9 J kg−1 is physically reasonable. Pu
et al. (1997) showed that the root-mean-square errors (RM-
SEs) of the temperature and wind of the FNL analysis field
against the rawinsonde and dropsonde data at each vertical
level are respectively smaller than approximately 3 K and 6 m
s−1. Eom and Myoung-Seok (2011) showed that the RMSEs
of temperature and the zonal and meridional winds of FNL,
when compared to the rawinsonde data at Osan and Gwangju
from each vertical level, are less than 2 K, 3.5 m s−1 and 3
m s−1, respectively. Li et al. (2014) showed that the RMSEs
of the temperature and wind speed of FNL against the ob-
servational data are smaller than approximately 2 K and 5.2
m s−1, respectively, at each vertical level. In particular, they
all showed that the RMSEs for wind approximately increase
with vertical height. In Fig. 1, we show the vertical distri-

Fig. 1. Vertical distributions of the RMSEs of the (a) U-component, (b) V-component, (c) wind component,
and (d) temperature component of the first five CNOPs for STY Matsa (2005) with β = 0.3× 9 J kg−1. The
horizontal axis denotes the RMSE value and the vertical axis denotes the value of the vertical coordinate σ.
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bution of the RMSE of the U- and V-wind speed and tem-
perature components of the first five orthogonal CNOPs for
STY Matsa (2005). It can be seen that the temperature, zonal
and meridional winds and their related vertical structures of
orthogonal CNOPs approximately satisfy the magnitudes and
distributions of the analysis errors shown in Pu et al. (1997),
Li et al. (2014) and Eom and Myoung-Seok (2011), with the
largest RMSE of zonal wind, meridional wind, wind speed,
and temperature being less than 5 m s−1, 4.5 m s−1, 6.5 m
s−1 and 0.8 K, respectively. For the other TC cases, the re-
lated orthogonal CNOPs also show reasonable error distribu-

tion for their related variables, so the details are not shown
here. Therefore, we choose β = 0.3×9 J kg−1 to compute the
orthogonal CNOPs, and the orthogonal SVs, BVs and RPs.
Figure 2 plots the first five CNOPs, SVs, BVs, and RPs. It is
shown that they present different patterns from each other. As
a result, the skills of the ensemble forecasts may be different
if the related initial perturbations are generated by these four
methods. Therefore, which one would have higher forecast
skill for the TC track? This is an issue we are interested in.

Figure 3 illustrates the forecast and observed tracks of the
five TC cases. It is shown that the TC tracks for the orthogo-

Fig. 2. Spatial structures of the temperature (color-shaded) and wind components (vectors) of the first five CNOPs, SVs, BVs
and RPs with β = 0.3×9 J kg−1 for STY Matsa (2005) at the level σ = 0.975. The columns list them in sequence, from the first
to the fifth, respectively.



FEBRUARY 2019 HUO ET AL. 237

Fig. 3. Best tracks (black line with plus signs), tracks of the control forecast (black line with solid circles),
and the orthogonal CNOPs– (red line with solid circles), SVs– (green line with solid circles), BVs– (blue line
with solid circles), and RPs–based ensemble-mean forecasts (orange line with solid circles), with β = 0.3×9 J
kg−1, for the cases of (a) STY Matsa (2005), (b) STS Bilis (2006), (c) Super TY Sepat (2007), (d) TY Morakot
(2009), and (e) STS Fungwong (2014).

nal CNOPs–based ensemble-mean forecasts are much closer
to the observed ones than those for the forecasts based on
the other methods, especially for three TC cases: STY Matsa
(2005), Super TY Sepat (2007) and TY Morakot (2009). To

further demonstrate the superiority of orthogonal CNOPs–
based ensemble-mean forecasts clearly, we show in Fig. 4a
the averaged TC track forecast errors of all cases and all lead
times of the forecasts (6 h, 12 h, . . . , 120 h), and in Fig. 4b the
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corresponding improvements with respect to the control fore-
casts. It is clear that the forecast errors of the TC tracks are
much smaller for the orthogonal CNOPs–based ensemble-
mean forecasts than for those based on the other methods,
and therefore the former improves the control forecast more
than the latter. Figure 5a shows the TC track forecast er-
rors of the control and ensemble-mean forecasts averaged for
the five TC cases at lead times of 24 h, 48 h, 72 h, 96 h,
and 120 h. The results show that the orthogonal CNOPs–
based ensemble-mean forecasts do not improve the control
forecasts at the lead time of 24 h (the reason can be seen
in section 5.1); however, they improve the control forecasts
and show higher skill than the orthogonal SVs–based ones
at the lead time of 48 h. Particularly, at the 72-, 96- and
120-h lead times, the orthogonal CNOPs–based ensemble-

mean forecasts possess the smallest TC-track forecast errors
among the ensemble forecasts based on the different meth-
ods and greatly improve the control forecasts. It is inferred
that the orthogonal CNOPs–based ensemble forecast system,
compared with the orthogonal SVs–, RPs– and BVs–based
ensemble forecast systems, tends to possess the higher skill
in forecasting the TC track, especially at longer lead times.
Why, then, do the orthogonal CNOPs–based ensemble-mean
forecasts possess higher forecast skill? Next, we attempt to
uncover the possible reason.

It is known that the spread of the ensemble members (i.e.,
the ensemble spread) and the forecast error of the ensemble-
mean forecast should be close for a good ensemble forecast
system (Branković et al., 1990; Eckel and Mass, 2005; Buck-
ingham et al., 2010), where the ensemble spread indicates

Fig. 4. (a) Averaged typhoon track forecast errors of the five typhoon cases and all the lead times of the fore-
casts (6 h, 12 h, . . . , 120 h), for the control forecast and the orthogonal CNOPs–, SVs–, BVs–, and RPs–based
ensemble-mean forecasts, with β = 0.3×9 J kg−1. (b) Improvement of the ensemble-mean forecast against the
control forecast. The horizontal axis denotes the type of typhoon track, with the control (black) referring to
the control forecast and CNOPs (red), SVs (green), BVs (blue) and RPs (orange), respectively, referring to the
orthogonal CNOPs–, SVs–, BVs–, and RPs–based ensemble-mean forecasts. With the TC track forecast errors
of all cases and all lead times of the forecasts (6 h, 12 h, . . . , 120 h) as samples, a paired t-test is performed,
indicating that the improvement of the orthogonal CNOPs–based ensemble-mean forecast against those of the
other methods is statistically significant at the 99% confidence level.

Fig. 5. Typhoon track forecast errors of the control forecast and the orthogonal CNOPs–, SVs–, BVs–, and
RPs–based ensemble-mean forecasts for the five typhoon cases, where the lead times are 24 h, 48 h, 72 h, 96 h,
and 120 h, and the magnitudes of the initial perturbations are (a) β = 0.3×9 J kg−1 and (b) β = 0.3×4 J kg−1.
The dots denote the mean of the typhoon track forecast errors for all the typhoon cases; the error bars around
each mean represent the maximum and minimum track forecast errors for the five typhoon cases.
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the uncertainties of the ensemble forecast members (for the
calculation, refer to the Appendix). However, most ensemble
forecasting systems have the shortcoming of overly small en-
semble spreads and present much larger gaps between their
ensemble spreads and ensemble-mean forecast errors (Sten-
srud et al., 2000; Buckingham et al., 2010). The present study
has shown that the orthogonal CNOPs–based ensemble-mean
forecasts tend to possess higher forecast skills for TC tracks
than those based on the other methods (see Fig. 5). How-
ever, does the ensemble forecast generated by the orthogo-
nal CNOPs exhibit the smallest gap between its ensemble
spread and ensemble-mean forecast error? To clarify this, in
Fig. 6 we plot the average of the ensemble spreads for the
five TC track forecasts and the averages of the ensemble-
mean track forecast errors. It can be seen that the ensemble
spreads of the orthogonal CNOPs–based ensemble forecasts
are much larger than those of the orthogonal SVs–, BVs–
and RPs–based ensemble forecasts; furthermore, the cor-
responding differences between the ensemble spreads and
the ensemble-mean forecast errors are the smallest for the
orthogonal CNOPs–based ensemble forecast system. The
orthogonal CNOPs represent the optimal initial perturbations
in the nonlinear model, which have the largest developments
in their respective subspaces. As compared with orthogonal
SVs, orthogonal CNOPs consider the effects of nonlineari-
ties, which is essential for the nonlinear forecasts, especially
in the forecast period after two days. So, it is conceivable that
the ensemble forecast members generated by the orthogonal
CNOPs possess much larger ensemble spreads. Furthermore,
such a spread is shown to be closer to the ensemble-mean
forecast error, which indicates that the orthogonal CNOPs–
based ensemble forecast system provides a large but appro-
priate ensemble spread and overcomes the shortcoming of
the smaller spreads that most ensemble forecasting systems

Fig. 6. Time-dependent spread (dashed lines) of the ensemble
forecast members and the time-dependent forecast errors (solid
lines) of the ensemble-mean forecasts, where both the spread
and forecast error are estimated by calculating the means of the
five typhoon cases with β = 0.3×9 J kg−1. The relevant ensem-
ble forecast methods are the same as in Fig. 4 and are denoted
by the same colors as in Fig. 4.

exhibit for the forecast members. This may be one of the rea-
sons why the orthogonal CNOPs–based ensemble forecasts
have the highest forecast skills for the TC tracks.

In addition, we have investigated the spatial distributions
of the ensemble members generated by the different methods
(Fig. 7). The results show that the ensemble forecast mem-
bers generated by the orthogonal CNOPs tend to be located
on the two sides of the observed TC track, while those gen-
erated by the other methods are more concentrated and leave
the observed TC track at the edges or outside of the ensemble
members. Obviously, the orthogonal CNOPs–based ensem-
ble forecast members often include the observed TC track and
are more useful for creating the ensemble-mean forecasts to
capture the observed TC track and possess the highest skill.

5. Discussion
5.1. Reason for the lower forecast skills of the orthogonal

CNOPs–based ensemble-mean forecasts at the lead
time of 24 h

As stated in section 4, the orthogonal CNOPs–based
ensemble-mean forecasts present lower forecast skills at the
lead time of 24 h. In this section, we analyze the reason.

The orthogonal CNOPs represent the initial perturbations
that have the largest growth in their respective phase sub-
spaces at the final point of the optimization time period (i.e.,
24 h). Therefore, at the final point of the optimization pe-
riod, the ensemble members generated by the orthogonal
CNOPs should have the largest ensemble spreads. Indeed, we
find that the ensemble members generated by the orthogonal
CNOPs show ensemble spreads with maximum uncertainties
that can reach 274.88 km, while the averaged track forecast
errors of the control forecasts of the five TC cases at 24 h is
only 125.54 km (see Fig. 6). It is obvious that the spread of
the ensemble members generated by the orthogonal CNOPs
at a lead time of 24 h overestimates the uncertainties of the
control forecast, which causes the ensemble-mean forecasts
at the lead time of 24 h to present forecast errors even larger
than those of the control forecasts.

But why do the ensemble members possess large spreads
and overestimate the uncertainties of the control forecast at
the lead time of 24 h? To address this question, we investi-
gate the effects of the magnitude of the initial perturbations
on the forecast skills of the ensemble-mean forecasts at the
lead time of 24 h. Here, we choose the constraint conditions
xxxT

0CCC1xxx0 6 β with β = 0.3×4 J kg−1 and β = 0.3×9 J kg−1 to
compute the orthogonal CNOPs for the optimization time of
24 h. Then, we compare the forecast skills of the orthogonal
CNOPs-based ensemble-mean forecasts for these two con-
straint conditions. Figure 5b plots the ensemble-mean fore-
cast error of the TC track when using β = 0.3× 4 J kg−1 to
constrain the initial perturbations for the ensemble forecasts
based on the different methods. It is shown that the orthogo-
nal CNOPs–based ensemble-mean forecast still tends to show
much higher forecast skills than those of the other methods at
longer lead times. However, when comparing the results be-
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Fig. 7. Distributions of the typhoon best track (black line with plus signs) and the tracks of the control forecast (black line with
solid circles), ensemble-mean forecast (red line with solid circles), and perturbed forecasts (green lines). The numbers 1–4 at
the top of the subfigures represent the orthogonal CNOPs–, SVs–, BVs–, and RPs–based ensemble forecast techniques, with
β = 0.3×9 J kg−1, and the letters a, b, c, d and e denote the typhoon cases of STY Matsa (2005), STS Bilis (2006), Super TY
Sepat (2007), TY Morakot (2009) and STS Fungwong (2014), respectively.

tween β = 0.3× 4 J kg−1 and β = 0.3× 9 J kg−1, we find that
the former shows smaller forecast errors at the lead time of
24 h, increasing the forecast skill of the ensemble-mean fore-
cast for the TC track with β = 0.3×9 J kg−1 during the early
period, but decreasing it during the later period. This shows
that it is the large magnitude of orthogonal CNOPs that plays

negative roles in improving the forecast skill of the ensemble-
mean forecast during the earlier periods of the forecast, which
may interpret why the orthogonal CNOPs–based ensemble-
mean forecasts show lower forecast skills at the lead time of
24 h. It is therefore inferred that the forecast skills of the
orthogonal CNOPs–based ensemble-mean forecasts are re-
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lated to the magnitude of the initial perturbations. Combining
the results for β = 0.3× 4 J kg−1 and β = 0.3× 9 J kg−1, we
would suggest that the orthogonal CNOPs–based ensemble-
mean forecasts use small CNOP initial perturbations to gen-
erate the ensemble members for short-period forecasts, such
as for less than three days; otherwise, they should adopt much
larger CNOP initial perturbations. The exact magnitude of
the CNOPs for ensemble forecasts remains to be explored in
depth by future studies.

5.2. Forecast skills of the orthogonal CNOPs–based
ensemble-mean forecasts for different TC cases

The above results are derived by evaluating the average
forecast error of the five TC cases, and demonstrate that
the orthogonal CNOPs are more favorable than the orthog-
onal SVs, RPs, and BVs for improving the ensemble forecast
skills. Next, we investigate the forecast skills of the orthogo-
nal CNOPs–based ensemble-mean forecasts for different TC
cases. Figure 8 illustrates the evolution of the TC track fore-
cast errors of the control forecasts and the ensemble-mean
forecasts for each TC case, and Fig. 9a shows the means of
the corresponding forecast errors of all the lead times (6 h, 12
h, . . . , 120 h) for each TC case. Specifically, for STY Matsa
(2005), Super TY Sepat (2007) and TY Morakot (2009), the
orthogonal CNOPs–based ensemble-mean forecasts improve
their control forecast, and the improvement is much larger

than those of the orthogonal SVs-, RPs-, and BVs–based
ensemble-mean forecasts. For STS Fungwong (2014), al-
though the orthogonal CNOPs–based ensemble-mean fore-
cast has a skill slightly lower than that of the orthogonal
BVs–based ensemble-mean forecast, the skill is higher than
those of the orthogonal SVs– and RPs–based ensemble-mean
forecasts. However, for STS Bilis (2006), all the orthogo-
nal CNOPs–, SVs–, RPs–, and BVs–based ensemble-mean
forecasts fail to improve the control forecast skill, and the
orthogonal CNOPs–based ensemble-mean forecast has the
lowest skill. Why, then, does the orthogonal CNOPs–based
ensemble-mean forecast show the lowest skill for STS Bilis
(2006)?

One possible reason is related with the magnitude of the
initial perturbations. Figure 9b shows the results of the ex-
periment with β = 0.3×4 J kg−1. It is shown that the track er-
ror of the orthogonal CNOPs–based ensemble-mean forecast
for STS Bilis (2006) is largely reduced when the magnitude
of the initial perturbations is reduced to β = 0.3× 4 J kg−1.
Therefore, this result can be seen as evidence of the state-
ment that the poor performance of the orthogonal CNOPs–
based ensemble-mean forecast for STS Bilis (2006) is possi-
bly due to the overly large initial perturbations. In fact, for
a given reference state, the difference between the nonlinear
evolution and the linear evolution of the initial perturbation
increases with the magnitude of the initial perturbation, i.e.,

Fig. 8. Time-dependent forecast errors of the typhoon tracks for the control forecast (black line) and the orthogonal CNOPs
(red line)–, SVs (green line)–, BVs (blue line)–, and RPs (orange line)–based ensemble-mean forecasts, with β = 0.3×9 J kg−1,
for the typhoon cases of (a) STY Matsa (2005), (b) STS Bilis (2006), (c) Super TY Sepat (2007), (d) TY Morakot (2009), and
(e) STS Fungwong (2014).
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2014 Fungwong

2014 Fungwong

Fig. 9. Mean forecast errors of the control forecast (black) and the orthogonal CNOPs–based (red), SVs–based (green), BVs–
based (blue), and RPs–based (orange) ensemble-mean forecasts for the five typhoon cases and all lead times (6 h, 12 h, . . . , 120
h), and initial-perturbation magnitudes of (a) β = 0.3×9 J kg−1 and (b) β = 0.3×4 J kg−1.

the initial perturbations of large magnitude evolve more non-
linearly than those of small magnitude. In the present study,
for all the TC cases, the orthogonal CNOPs are calculated
with the same magnitude. Therefore, the orthogonal CNOPs
for STS Bilis (2006) could be too large and then overesti-
mate the nonlinearities existing in the control forecasts. Note
that the orthogonal CNOPs represent the fastest growing ini-
tial perturbations in their relevant subspaces and have much
larger perturbation growths than those of the BVs and SVs.
This encourages BVs and SVs to show much weaker non-
linear behaviors and be more likely to depict the nonlinear
behavior of STS Bilis (2006), and to show higher skill in
the ensemble-mean forecast for STS Bilis (2006) than the
orthogonal CNOPs–based ensemble-mean forecasts. In ad-
dition, we notice that for STS Bilis (2006), when the mag-
nitude of the initial perturbations is reduced to β = 0.3× 4 J
kg−1, the track errors of the orthogonal SVs– and RPs–based
ensemble-mean forecasts change negligibly, but the track er-
rors of the BVs– and CNOPs–based ensemble-mean forecasts
are obviously reduced, with the latter reduction being more
significant. This indicates that the sensitivity of ensemble
forecasts (especially the CNOPs-based ensemble forecasts)
to initial perturbation magnitudes also influences its skill.
Therefore, an appropriate magnitude of initial perturbations
helps achieve a much higher forecast skill for ensemble fore-
casts, which also sheds light on why the CNOPs-based en-
semble forecasts show much lower forecast skill for STS Bilis
(2006).

Another possible reason is related with the model errors.
We compare the values of the cost functions [as shown in Eq.
(1)] corresponding to the first five CNOPs for the different
TC cases (see Table 2). It is found that the values of the cost
function of the CNOPs for STS Bilis (2006) are the small-
est of those for the considered TC cases, despite the CNOPs
having the same amplitude for different TC cases. This in-

dicates that STS Bilis (2006) is the least sensitive to initial
perturbations among our investigated TC cases. This implies
that the forecast for STS Bilis (2006), compared with those of
other TC cases, is greatly influenced by model errors. Despite
the ensemble forecast members generated by the RPs, BVs,
and SVs, compared with those generated by the orthogonal
CNOPs, estimating more appropriately the nonlinear growth
of the initial analysis errors, they cannot capture the effect of
the model errors on the forecast for STS Bilis (2006). All
these aspects may explain why all the above ensemble-mean
forecasts fail to show high forecast skill for STS Bilis (2006).
It is therefore inferred that the skill of the ensemble forecasts
for STS Bilis (2006) may be greatly improved by considering
ensemble forecasts associated with model errors.

5.3. Ensemble forecast skill for TC intensity
In addition to the TC-track forecast, we also analyze the

skills of the ensemble forecasts for TC intensity based on the
different methods. Figure 10 illustrates the evolution of the
minimum sea level pressure of the control forecasts and the
ensemble-mean forecasts for each TC case. The results show
that the TC intensities simulated by MM5 are often signifi-
cantly underestimated when they are strong but overestimated
when they are weak. This may be due to the model horizontal
resolution in this work not being fine enough to describe the
TC structure and intensity realistically, and MM5 has model
errors such as inaccurate descriptions of physical processes.

Notably, there are huge gaps between the observed and
modeled initial intensity of STS Bilis (2006), Super TY Sepat
(2007), and STS Fungwong (2014) in Fig. 10. In the present
study, we use NCEP FNL data to generate the initial condi-
tions. It has been revealed previously that these data possess
large differences with observations of TC intensity for TC
cases (Zhou et al., 2016). Thus, when using the FNL data to
generate the initial conditions, the modeled initial intensity of
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Table 2. The values of the cost function [as in the Eq. (1)] corresponding to the first five CNOPs for the five typhoon cases.

CNOP
Case

2005 STY Matsa 2006 STS Bilis 2007 Super TY Sepat 2009 TY Morakot 2014 STS Fungwong

1 279.09 81.69 119.76 104.40 116.42
2 221.25 72.42 99.61 97.80 93.02
3 195.97 70.69 96.67 83.94 82.20
4 149.64 63.37 90.47 82.39 80.75
5 149.62 63.10 81.96 77.82 72.74

Fig. 10. Time-dependent minimum sea level pressure for the observation (black line with plus signs), control forecast (black
line with solid circles), and the orthogonal CNOPs (red line with solid circles)–, SVs (green line with solid circles)–, BVs (blue
line with solid circles)–, and RPs (orange line with solid circles)–based ensemble-mean forecasts, with β = 0.3×9 J kg−1, for
the typhoon cases of (a) STY Matsa (2005), (b) STS Bilis (2006), (c) Super TY Sepat (2007), (d) TY Morakot (2009), and (e)
STS Fungwong (2014).

the TCs will have obvious bias compared with observations.
That is, the huge gaps between the observed and modeled ini-
tial intensity in the present study may be caused by the FNL
data. Zhou et al. (2016) showed that when the initial TC in-
tensity error is sizeable, the TC-track forecast skill can be
greatly increased by improving the geopotential height and
wind fields in and around the TC center at the initial time
(i.e., improving the model initial intensity of TCs). There-
fore, we infer that the TC-track forecasts in the present study
can be further improved if the initial intensity is better de-
scribed by the model. However, MM5, together with FNL
data, cannot estimate the TC intensities well. It is therefore
expected that future work can improve the forecast skill of
the TC intensity forecast and then further increase the skill of
the TC-track forecasts.

As discussed above, the model horizontal resolution in

this work is not suitable to discuss TC intensity. The results
show that all the methods, including the orthogonal CNOPs–
based method cannot effectively improve the forecast skill of
TC intensity. In other words, the ensemble forecasts with
only the initial perturbations in this work do not increase the
forecast skill of TC intensity. This may be related to both the
coarse model horizontal resolution used in this work and the
model error. In fact, previous studies (Zhao et al., 2007; Zhao
and Wang, 2008) have also shown that large differences exist
between the sea level pressures forecasted by MM5 and those
observed, indicating the role of model errors in forecasting
the TC intensity. In addition, as TCs originate and absorb
energy from the ocean and stay over the ocean during most
of their lifetime, the ocean will influence the development of
TCs considerably. Therefore, ocean–typhoon feedbacks are
essential to the forecasting of TCs. However, MM5 does not
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sufficiently consider the effects of ocean–typhoon feedbacks
and involves model errors. These model errors encourage us
to consider the ensemble forecasts with multiple models or
model perturbations. For the latter, the nonlinear forcing sin-
gular vectors (NFSVs) method has been proposed by Duan
and Zhou (2013). NFSVs describe the model tendency errors
that have the largest impact on the forecast results in nonlin-
ear models (Duan and Zhou, 2013; Duan and Zhao, 2015).
Therefore, when the model horizontal resolution is increased
to be suitable for the simulation of TC intensity, model per-
turbations with NFSVs may improve the forecasting of TC
intensity, and it is expected that ensemble forecasts with both
orthogonal CNOPs and NFSVs can increase the ensemble
forecast skill of not only TC track but also TC intensity.

6. Summary
Following the simple Lorenz-96 model in Duan and Huo

(2016), the present study further applies orthogonal CNOPs
in a much more realistic model, MM5, for the ensemble fore-
casting of TC tracks. As shown in the comparisons among
the orthogonal CNOPs and SVs, BVs, and RPs, the orthogo-
nal CNOPs–based ensemble forecasting technique possesses
the highest skill in forecasting the TC track. By identifying
the reasons for this, the results of this work show that the
orthogonal CNOPs–based ensemble forecasting technique,
compared with those based on other methods, exhibits an
ensemble spread that is much larger but often includes the
real TC track within the members. This makes it more likely
for the resultant ensemble spread of the orthogonal CNOPs
to be closer to the ensemble-mean forecast error, and makes
the orthogonal CNOPs–based ensemble forecasts show much
higher forecast skills.

The results show that the lower forecast skills of the or-
thogonal CNOPs–based ensemble-mean forecasts at 24 h are
related to the overly large initial perturbations. In addition,
the present study also demonstrates that the decreased mag-
nitudes of the initial perturbations may help increase the skill
of the orthogonal CNOPs–based ensemble-mean forecasts in
the early forecast period, but greatly reduce it in the latter
period. This suggests that orthogonal CNOPs of small mag-
nitude are useful for yielding ensemble-mean forecasts with
higher skill for short-period forecasts; on the contrary, those
of large magnitude are feasible for much longer-period fore-
casts. It is therefore inferred that, if one wants to achieve
an ensemble-mean forecast with acceptable skill during both
the early and later periods, orthogonal CNOPs of different
magnitude should be adopted to derive the initial ensemble
perturbations. Thus, more experiments should be conducted
in the future to reveal a rule to determine the magnitude of
the orthogonal CNOPs in the ensemble forecasts. In addi-
tion, the optimization time to yield the orthogonal CNOPs
may also influence the skill of the ensemble forecasts. There-
fore, more studies are also needed to explore whether there
exists an optimal combination of initial perturbation magni-
tudes and optimization times to achieve the highest skill for
the ensemble forecasts.

The present study also discusses the forecasting of TC
intensity. Unfortunately, all of the abovementioned ensem-
ble forecast techniques cannot improve these results effec-
tively, and even reduce the forecast skill of the TC intensity.
Since these ensemble forecast techniques are related to per-
turbing the initial conditions, the reduced ensemble forecast
skill for TC intensity may indicate that the forecasting of TC
intensity may be related to both the coarse model horizon-
tal resolution and the model error. As such, model perturba-
tions such as those described by the tendency perturbations
of the NFSV structures could be necessary to improve fore-
casts of TC intensity when the model horizontal resolution
is increased to be suitable for the simulation of TC intensity.
The forecast may be influenced by not only the initial errors,
but also model errors. Therefore, in ensemble forecasts, one
should perturb both the initial conditions and the model it-
self to estimate the uncertainties induced by the initial er-
rors and model errors, ultimately achieving a much higher
forecast skill. Tracton et al. (1998) and Hou et al. (2001)
also showed similar perspectives and proposed that ensem-
ble forecasts with only initial perturbations, rather than those
with both initial perturbations and multimodel or multiphys-
ical parameterization schemes or model perturbations, show
much lower forecast skill. Thus, it is expected that ensem-
ble forecasts with both orthogonal CNOPs and NFSVs can
be used to increase the ensemble forecast skill of not only the
TC track, but also the TC intensity, when the model horizon-
tal resolution is increased to be suitable for the simulation of
TC intensity.

The above results are derived from five TC cases and
are only indicative. The orthogonal CNOPs method is new
and the related computation is presently time-consuming. A
highly efficient solver is therefore expected to be developed,
and then more TC cases can be adopted to investigate the
orthogonal CNOPs–based ensemble forecast technique and
validate the results in the present study. Operational sugges-
tions can then be provided. In addition, the objective function
used to calculate the orthogonal CNOPs is the dry energy of
the perturbation at the end of the optimization period, which
cannot directly reflect the forecast of the TC track and inten-
sity. So, what about an objective function that is defined as
the moist energy of the perturbation or the forecast error of
the TC intensity? Only 11 ensemble members are used in the
present study. Thus, what about the ensemble forecast skill
for more ensemble members? The above questions are all
worthy of future investigation.
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APPENDIX

Forecast errors of TC track

The TC tracks are identified by the TC center locations,
which are identified by the locations where the sea level pres-
sures are minimal. The forecast error of the TC track is that
of the TC center locations, which is determined by the great-
circle distance between the two points on the Earth. Assume
that F = (af ,yf) is the central location of the forecast TC and
A = (ao,yo) is that of the observed TC, where af and ao are the
longitudes and yf and yo are the latitudes. Then, the forecast
error of the TC track at some forecast time can be expressed
as

|F −A| = 111.11cos−1[sinyo sinyf +

cosyo cosyf cos(ao−af)] . (A1)

Ensemble spread
The ensemble spread is the RMSE of the ensemble

forecast members with respect to the ensemble mean, i.e.,

δ =

√
1
N

∑N
i=1 |Fi−F|2, where F = 1

N
∑N

i=1 Fi is the ensemble

mean, and |Fi − F| is the great-circle distance between en-
semble member Fi and ensemble-mean F. A good ensemble
forecast system should have a suitable ensemble spread. If
the ensemble spread is too small, one cannot effectively es-
timate the forecast uncertainty and it causes the true state to
be located outside of the forecast ensemble, in turn causing a
low forecast skill for the true state. If the ensemble spread is
too large, additional errors are easily introduced, thus bring-
ing about negative influences on the forecast results.

Improvement
Improvement of the ensemble-mean forecast over the

control forecast is described by s:

s =
Ec−Ee

Ec
×100% , (A2)

where Ec is the forecast error of the control forecast and Ee
is the forecast error of the ensemble-mean forecast. The
ensemble-mean forecast improves the skill of the control
forecast when s > 0. Otherwise, the ensemble-mean forecast
does not increase the skill of the control forecast. The larger
the value of s, the higher the skill of the ensemble-mean fore-
cast.
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