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ABSTRACT

Under the adiabatic, axisymmetric and steady assumption, a relationship between the saturated moist entropy structure
and the secondary circulation in a tropical cyclone (TC) is derived from the continuity equation. It is found that the isentropic
surfaces coincide with the streamlines, and the streamfunction can be expressed with saturated moist entropy. The secondary
circulation and the saturated moist entropy structure depend on each other. Thus, a method for diagnosing the secondary
circulation with the structure of saturated moist entropy is proposed. The method is verified with a simulated intense ideal-
ized TC with a highly axisymmetric structure. The diagnosed secondary circulation reproduces well the moist inflow in the
boundary layer and the moist updraft in the eyewall. This method facilitates secondary circulation diagnosis in theoretical or
mature TCs that satisfy the adiabatic, axisymmetric and steady approximations.

Key words: tropical cyclone, saturated moist entropy structure, secondary circulation, diagnosis method

Citation: Huang, Y. W., Y. H. Duan, J. C. L. Chan, and X. W. Bao, 2019: A method for diagnosing the secondary circulation
with saturated moist entropy structure in a mature tropical cyclone. Adv. Atmos. Sci., 36(8), 804–810, https://doi.org/10.1007/

s00376-019-9054-5.

Article Highlights:

• With the steady, adiabatic and axisymmetric assumptions, a method for diagnosing the secondary circulation from entropy
is proposed.
• The diagnosis method is simpler than the Sawyer–Eliassen equation.

1. Introduction
A mature tropical cyclone (TC) is a highly axisymmet-

ric convective system, which is usually decomposed into
an annular vortex (primary circulation) and an in-up-and-
out circulation (secondary circulation) in studies of TC dy-
namics. To the first order, the primary circulation satis-
fies gradient wind balance and hydrostatic balance. With
this premise, the secondary circulation can be diagnosed
from the heat source field and momentum source field
in a single equation, which is the well-known Sawyer–
Eliassen (SE) equation (Eliassen, 1951). This equation has
been applied in many theoretical studies (Willoughby, 1979;
Schubert and Hack, 1982; Shapiro and Willoughby, 1982;
Holland and Merrill, 1984; Hack and Schubert, 1986;
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Pendergrass and Willoughby, 2009; Fudeyasu and Wang,
2011; Smith et al., 2018). In the general form of the SE
equation, the heat and momentum sources contain diabatic
heating, eddy heat flux, friction forcing and eddy momen-
tum flux (Fudeyasu and Wang, 2011). Since the SE equa-
tion is linear, the contribution of the heating and momentum
forcing to the forced secondary circulation can be diagnosed
separately. However, to solve the SE equation, the heat and
momentum sources have to be either prescribed (Pendergrass
and Willoughby, 2009) or given by the azimuthal mean from
a simulation (Fudeyasu and Wang, 2011).

Emanuel proposed a simple steady-state axisymmetric
TC model (Emanuel, 1986, 1988, 1995) in which the air
was assumed to be slantwise neutral and inviscid above the
boundary layer. The axisymmetric, adiabatic and steady-state
assumption is generally acceptable for the main circulation
above the boundary layer in a mature TC. In Emanuel’s
model, the axisymmetric structure of the saturated entropy
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(or angular momentum) above the boundary layer was estab-
lished. With a simple boundary layer model, the vertical ve-
locity at the top of the boundary layer and the mean radial ve-
locity within the boundary layer were also derived. However,
the secondary circulation was not completely constructed in
Emanuel’s model, as the radial and vertical velocities above
the boundary layer were not given. This hinders studies on the
secondary circulation in the theoretical TC model. To obtain
the secondary circulation with the SE equation, one has to
retrieve the potential heat distribution from the entropy struc-
ture, which would make the calculation a bit fussy.

This study proposes a secondary circulation diagnosis
method with saturated entropy structure in a steady-state ax-
isymmetric TC under the adiabatic and inviscid assumptions,
in order to facilitate the derivation of the secondary circu-
lation in a theoretical or mature TC. The theoretical deriva-
tion of the diagnosis method is given in section 2. In section
3, a simulated idealized TC is used to verify the diagnosis
method. The main results are summarized in section 4, along
with some discussion.

2. Derivation of the diagnosis method
2.1. Theory

Assume that the mature TC is steady, adiabatic and ax-
isymmetric. According to the second law of thermodynam-
ics:

dS ∗

dt
= Q , (1)

where S ∗ is the saturated moist entropy and Q is the diabatic
heat source. For the adiabatic process, Q = 0, and S ∗ is con-
served. For an axisymmetric and steady-state system, the par-
tial derivatives with respect to time and azimuthal coordinate
are zero. The total derivative can be written

d
dt

= u
∂

∂r
+ w

∂

∂z
, (2)

where u and w are the radial and vertical velocity, respec-
tively. So, Eq. (1) can be written for Q = 0,

u
∂S ∗

∂r
+ w

∂S ∗

∂z
= 0 , (3)

where r and z are the radius and height. And then, a relation-
ship between u and w can be constructed:

u
w

=

(
∂r
∂z

)
S ∗
. (4)

Physically, when the TC circulation is axisymmetric and
adiabatic, S ∗ is conserved and the air moves along the S ∗ sur-
face. The ratio of u to w equals the slope of the S ∗ surface.
Substituting Eq. (4) into Eq. (2), we have

d
dt

= u
(

∂

∂r

)
S ∗

= w
(

∂

∂z

)
S ∗
. (5)

The continuity equation can be written as

1
r

∂(ru)
∂r

+
∂w
∂z

= −
dlnρ

dt
, (6)

where ρ is the air density. Substituting Eqs. (4) and (5) into
Eq. (6),

1
r

∂

∂r

[
rw

(
∂r
∂z

)
S ∗

]
+

∂w
∂z

= −w
(

∂ lnρ
∂z

)
S ∗
. (7)

Dividing Eq. (7) by w, and expanding the first term, we
get

∂

∂r

(
∂r
∂z

)
S ∗

+
∂ ln(rw)

∂r

(
∂r
∂z

)
S ∗

+
∂ lnw

∂z
= −

(
∂ lnρ

∂z

)
S ∗
. (8)

For the left-hand side, we have

∂

∂r

(
∂r
∂z

)
S ∗

=

(
∂

∂z

)
S ∗

ln
(

∂r
∂S ∗

)
z
, (9)

∂ ln(rw)
∂r

(
∂r
∂z

)
S ∗

+
∂ lnw

∂z
=

(
∂

∂z

)
S ∗

ln(rw) . (10)

The derivations of Eq. (9) and Eq. (10) are shown in Ap-
pendix A and B, respectively. Substituting Eq. (9) and (10)
into Eq. (8), we have(

∂

∂z

)
S ∗

ln
[
ρrw

(
∂r

∂S ∗

)
z

]
= 0 . (11)

This implies that the term inside the square brackets is a
constant along an S ∗ surface. Assuming that

λ = ρrw
(

∂r
∂S ∗

)
z
, (12)

then λ is a function of S ∗, which is constant along the S ∗

surface,

w =
λ

ρr

(
∂S ∗

∂r

)
z
, (13)

and then

u = w
(

∂r
∂z

)
S ∗

= −
λ

ρr

(
∂S ∗

∂z

)
r
. (14)

Assuming that

Λ
(
S ∗

)
=

∫ S ∗

S ∗0

λdS ∗ , (15)

then S ∗0 is the value of an initial S ∗ surface, e.g., the inner
edge of the eyewall, or the axis of the TC. Λ is also constant
along the S ∗ surface. Then, Eqs. (13) and (14) can be written
as:

w =
1
ρr

dΛ

dS ∗

(
∂S ∗

∂r

)
z

=
1
ρr

∂Λ

∂r
, (16)

u = −
1
ρr

dΛ

dS ∗

(
∂S ∗

∂z

)
r

= −
1
ρr

∂Λ

∂z
. (17)

Equations (16) and (17) have the form of a streamfunc-
tion. Thus, Λ is a streamfunction in a steady-state, adiabatic
and axisymmetric TC, and the S ∗ surfaces coincide with the
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streamlines. All the equations above can be easily changed to
isobaric coordinates by simply replacing z and w with p and
ω, which are the pressure and the vertical velocity in isobaric
coordinates respectively.

With the steady-state, adiabatic and axisymmetric as-
sumption, the radial and vertical components of the sec-
ondary circulation in TC can be expressed with a function
of saturated moist entropy in simple forms. This indicates
that the secondary circulation and the structure of the satu-
rated moist entropy depend on each other. With the structure
of saturated moist entropy, it is possible to diagnose the sec-
ondary circulation.

2.2. Specific feature of the theory
Considering the annular air column between two isen-

tropic surfaces S ∗1 and S ∗2, if the air density and vertical ve-
locity, or the product of them (ρw), are horizontally homoge-
neous, the horizontal integration of Eq. (13) from S ∗1 to S ∗2
is

ρw
(
r2

2 − r2
1

)
= 2

∫ S ∗2

S 2
1

λdS ∗ = 2
[
Λ

(
S ∗2

)
−Λ

(
S ∗1

)]
= const ,

(18)
where r1 and r2 are the radii of the isentropic surfaces S ∗1
and S ∗2 respectively. For a small piece of the annular air col-
umn moving between the two S ∗ surfaces, its mass is constant
when the entrainment effect is ignored:

m = ρπ
(
r2

2 − r2
1

)
H = const , (19)

where H is the vertical thickness of the air piece. Multiplying
Eq. (18) by π/m, we get

w
H

=
2π

[
Λ
(
S ∗2

)
−Λ

(
S ∗1

)]
m

= const . (20)

Equations (18) and (20) indicate the relationship between
the variation of the vertical velocity and the volume change in
vertical and horizontal components. The variation of ρ repre-
sents the volume change effect of the air piece during its ver-
tical movement, and the variation of (r2

2−r2
1) and H represent

the change of the horizontal area and vertical thickness of the
air piece, which are the horizontal and vertical components
of the volume change respectively. For an upward moving
air piece, the volume expands as a result of pressure decline
and latent heating. When the vertical velocity increases, the
vertical thickness of the air piece increases, and then the hori-
zontal area decreases or its expansion is partly cancelled. The
physics is that the vertical acceleration (deceleration) leads
to a vertical stretching (compression), which would affect the
horizontal area when accompanying a volume change. On
the other hand, when the variation of the horizontal area is
constrained under some kind of dynamical balance (e.g., the
slope of S ∗ surfaces is constrained by the thermal wind bal-
ance in Emanuel’s theoretical TC model), then the variation
of vertical velocity is controlled by the volume change, which
is determined by the gas state equation. The relationship be-
tween vertical velocity and horizontal area comes from the
constraint of the continuity equation.

2.3. Physical meaning of λ and Λ
Equation (12) can be written as

λ =
1

2π
ρw

[
∂(πr2)
∂S ∗

]
z
. (21)

In cylindrical coordinates, [∂(πr2)/∂S ∗]z means the area
between two S ∗ surfaces with difference of unit S ∗. So,
ρw[∂(πr2)/∂S ∗]z indicates the mass that passes through the
horizontal area between the two S ∗ surfaces with difference
of unit S ∗ in unit time, and the physical meaning of λ is the
passing mass in units of radians.

According to Eq. (15), Λ is the integral of λ from the S ∗0
surface to the S ∗ surface. So, the physical meaning of Λ is
that the mass passes through the horizontal area between two
surfaces, S ∗ and S ∗0, in units of time and units of radians.

2.4. Diagnosis method
In order to diagnose the secondary circulation of the

steady axisymmetric TC, the values of λ have to be computed
for each S ∗ surface using a reference level (e.g., the top of the
boundary layer) first:

λ = ρ0r0w0

(
∂r

∂S ∗

)
z0

. (22)

The value of w on the reference level is needed here. In a
theoretical TC model, this can be closed by inducing a bound-
ary layer model, which can provide the radial profile of the
vertical velocity on the top of the boundary layer (Emanuel,
1986; Kepert, 2001; Smith et al., 2018). Since (∂r/∂S ∗)z0 is
the reciprocal of the radial gradient of S ∗, the level with low
radial gradient of S ∗ (i.e., the S ∗ surfaces are almost horizon-
tal) would induce large error to the computation of λ. Be-
sides, the low vertical velocity would make the value of λ
very sensitive to asymmetry. Thus, the reference level should
avoid the area with low radial gradient of S ∗ and low vertical
velocity on the main channel of the secondary circulation.

When the value of λ is computed on the reference level,
the value of S ∗ is the only clue to finding the value of λ for
points on the other levels. Thus, the distribution of S ∗ on
the reference level should be monotonic. The portion with re-
peated values of S ∗ on the reference level has to be skipped.
The surfaces with the same S ∗ value but not originated from
the reference level also have to be excluded because the cor-
responding values of λ may be different. Usually, the main
channel of the secondary circulation is left after the exclu-
sion. With the distribution of S ∗ in the r–z plane, the radial
and vertical gradient of S ∗ and the value of λ for each avail-
able point can be obtained, then the radial and vertical com-
ponents of the secondary circulation can be calculated with
Eq. (16) and (17).

3. Verification with idealized simulation
To verify the validation of the diagnosis method, a simu-

lated idealized TC on an f -plane is used in this section. The
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Weather Research and Forecasting model, version 3.5.1, is
used. The profile of the ambient atmosphere is given by the
climatic mean of the NCEP reanalysis data over the tropi-
cal area of the western North Pacific (6◦–20◦N, 125◦–160◦E)
in the typhoon season (from June to September). The initial
vortex is the same as the one described in Wong and Chan
(2004). The idealized TC is simulated in a nested grid with
three domains with a resolution of 15, 5 and 1.67 km respec-
tively. WSM6 (Hong et al., 2006) and the Yonsei University
PBL scheme (Hong et al., 2006) are employed. The radiation
scheme is switched off and no cumulus scheme is used. Since
the upward motion is pseudo-adiabatic in the simulated TC
and the corresponding conserved quantity is equivalent po-
tential temperature, the structure of equivalent potential tem-
perature is used for diagnosis in this section instead of satu-
rated moist entropy.

The intensity of the idealized TC increases to 95 m s−1

and the TC becomes highly axisymmetric after 96 h of in-
tegration. The azimuthal mean structure of the equivalent
potential temperature (θe) in the r–z plane is shown in Fig. 1
(black solid contours), along with the vertical velocity (color
fill) and the 95% relative humidity (RH, red dashed contours).
The less saturated portion with RH < 95% in the updraft
channel implies that dry air may intrude into the updraft and
evaporation may happen, or there may be downward motion
when computing the azimuthal mean in the updraft channel.
The former situation breaks the adiabatic assumption, while

Fig. 1. Azimuthal mean structure of θe (units: K; black con-
tours; interval: 2 K) and w (units: m s−1; color fill; interval: 2
m s−1; values < 1 m s−1 are not shown) of the simulated ideal
TC in the r–z plane. The contour of RH = 95% is also shown
(red dashed lines).

the latter breaks the axisymmetric assumption. Therefore, the
less saturated portion will be excluded when diagnosing the
secondary circulation. This exclusion also helps to exclude
the surfaces with the same θe value but not originated from
the reference level. The level of 2 km is chosen as the refer-
ence level. The values of λ within the monotonic portion are
calculated. The diagnosed radial and vertical velocities along
the main updraft are shown in Fig. 2 and Fig. 3.

In the vertical component (w), there are three peaks in
the simulation, and the diagnosed result captures this feature
well (Fig. 2a). The relative difference between the diagno-
sis and the simulation is defined as dwrela = (wdiag −w)/w
for quantitative validation. The relative differences over
the peaks are between −0.2 to 0.2, indicating good esti-
mations (Fig. 2b). There are some large biases at the edge
of the updraft. These bias may be caused either by the θe
surfaces with different origin, which is not excluded com-
pletely with RH < 95%, or by the effect of asymmetry on

Fig. 2. (a) Simulated (contours; interval: 2 m s−1) and diag-
nosed (color fill; values < 1 m s−1 not shown) vertical veloc-
ity (units: m s−1). (b) Relative difference of vertical velocity,
dwrela = (wdiag −w)/w.
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Fig. 3. As in Fig. 2, but for radial velocity (units: m s−1).

the radial gradient of θe. Note that there is a drastic variation
in the radial gradient of θe on the inner edge of the eyewall
above 4 km (Fig. 1), which makes the radial gradient of θe
highly sensitive to the asymmetry of the eyewall radius. This
area corresponds well with the large-error area at the upper
inner side of the eyewall (Fig. 2b).

There are also three peaks for the simulated positive ra-
dial velocity (u) area (Fig. 3a). However, the diagnosis covers
only two of them: the mid-level one and the low-level one.
Errors are small in the two peak areas, but become large be-
low 6 km on the inner edge of eyewall (Fig. 3b). Unlike the
radial gradient of θe, the drastic variation in the vertical gra-
dient of θe happens in the vicinity where the slopes of the θe
surfaces turn from vertical to slantwise or from slantwise to
vertical, e.g., the inner edge of the eyewall between 1 and 6
km (Fig. 1). Asymmetry in this area could easily induce error
to the vertical gradient of θe, and then to the diagnosed re-
sult. The diagnosed values of u within the boundary layer are
also shown. Note that the adiabatic assumption is not fully
satisfied since there is a diabatic heat source contributed by

sensible heating. However, the inflow is reproduced well by
the diagnosis, except that the values are underestimated in
the main channel and overestimated on the top and near the
surface right below the eyewall.

4. Summary and discussion
With the steady, adiabatic and axisymmetric assumptions,

the relationship between saturated moist entropy and sec-
ondary circulation is derived from the continuity equation. It
is found that the isentropic surfaces coincide with streamlines
and the streamfunction can be expressed with entropy. The
secondary circulation and the structure of entropy in the r–z
plane are dependent on each other. Then, a method for diag-
nosing the secondary circulation with saturated moist entropy
structure in a steady, adiabatic and axisymmetric TC is pro-
posed. With the profile of the vertical velocity on a reference
level (e.g., a level slightly higher than the top of the boundary
layer), and the structure of saturated moist entropy (or equiv-
alent potential temperature for pseudo-adiabatic assumption)
in the r–z plane, the secondary circulation can be diagnosed.
The application is shown with a simulated intense idealized
TC with a highly axisymmetric structure. Compared with the
azimuthal mean of the simulation, the diagnosed result repro-
duces well the moist inflow within the boundary layer and the
moist updraft within the eyewall.

Compared with the SE equation, this diagnosis method
is simpler. The prescribed fields needed in the method are
density, entropy and vertical velocity on the reference level,
which are easy to obtain from simulations and a theoretical
TC model (e.g., Emanuel, 1986). Although the prescribed
fields on the reference level are limited in the monotonic por-
tion, they cover the main secondary circulation channel in
a simulated TC. The limitation is not a problem in a theo-
retical TC model because the entropy is monotonic at any
level above the boundary layer (see Emanuel, 1986). Unlike
the SE equation, this diagnosis method does not need pre-
set proper boundary conditions or to satisfy an elliptical dis-
criminant condition (Fudeyasu and Wang, 2011). The ther-
mal wind balance is not necessary for the diagnosis method
and the application is valid in the boundary layer. Thus, the
method proposed in this study facilitates the diagnosis of the
secondary circulation in a simulated mature TC, especially in
a theoretical TC model.

This diagnosis method comes from constraint of the con-
tinuity equation with adiabatic, axisymmetric, steady-state
assumptions. These assumptions are shared in Emanuel’s
theory (Emanuel, 1986). The dynamics constraining the en-
tropy structure above the boundary layer in Emanuel’s theory
are the gradient wind balance and the hydrostatic balance,
which came from the first order (or zero order in Willoughby,
1979) approximation of the horizontal and vertical momen-
tum equations respectively. However, the constraint of the
continuity equation is not introduced in that theory. Emanuel
brought in a slantwise neutral assumption to exclude the am-
bient convective available potential energy, which implied
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that the air is neutrally buoyant when ascending along sur-
faces of constant angular momentum and there is no upward
acceleration. However, the vertical velocity should decrease
when air parcels approach the top layer of the TC (Camp and
Montgomery, 2001). The diagnosis method proposed in this
study provides a chance to determine how the dynamic bal-
ances constrain the secondary circulation in a theoretical TC
model.
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APPENDIX A

Derivation of Eq. (9)

∂/∂r and ∂/∂z can be written as [∂/(∂r)]z and (∂/∂z)r. The
left-hand side of Eq. (9) can transform as below:(

∂

∂r

)
z

(
∂r
∂z

)
S ∗

=

(
∂S ∗

∂r

)
z

(
∂

∂S ∗

)
z

(
∂r
∂z

)
S ∗
. (A1)

Since (
∂

∂S ∗

)
z

(
∂r
∂z

)
S ∗

=

(
∂

∂z

)
S ∗

(
∂r

∂S ∗

)
z
, (A2)

and (
∂S ∗

∂r

)
z

=
1(

∂r
∂S ∗

)
z

, (A3)

Eq. (A1) can be written as(
∂

∂r

)
z

(
∂r
∂z

)
S ∗

=

(
∂

∂z

)
S ∗

ln
(

∂r
∂S ∗

)
z
. (A4)

APPENDIX B

Derivation of Eq. (10)

Along the r surface, lnr is constant. So, there is

∂ lnr
∂z

= 0 . (B1)

Adding ∂ lnw/∂z on both sides, we get

∂ lnr
∂z

+
∂ lnw

∂z
=

∂ lnw
∂z

. (B2)

Combining the two terms on the left-hand side gives

∂ ln(rw)
∂z

=
∂ lnw

∂z
. (B3)

For a continuously differentiable variable f , there is

∂ f
∂r

(
∂r
∂z

)
S ∗

+
∂ f
∂z

=

(
∂ f
∂z

)
S ∗
. (B4)

When f = ln(rw), Eq. (B4) can be written as

∂ ln(rw)
∂r

(
∂r
∂z

)
S ∗

+
∂ ln(rw)

∂z
=

(
∂

∂z

)
S ∗

ln(rw) . (B5)

Substituting Eq. (B3) into Eq. (B5),

∂ ln(rw)
∂r

(
∂r
∂z

)
S ∗

+
∂ lnw

∂z
=

(
∂

∂z

)
S ∗

ln(rw) . (B6)
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