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ABSTRACT

Models disagree on a significant number of responses to climate change, such as climate feedback, regional changes,
or the strength of equilibrium climate sensitivity.  Emergent constraints aim to reduce these uncertainties by finding links
between the inter-model spread in an observable predictor and climate projections. In this paper, the concepts underlying
this framework are recalled with an emphasis on the statistical inference used for narrowing uncertainties, and a review of
emergent constraints found in the last two decades. Potential links between highlighted predictors are explored, especially
those targeting uncertainty reductions in climate sensitivity, cloud feedback, and changes of the hydrological cycle. Yet the
disagreement across emergent constraints suggests that the spread in climate sensitivity can not be significantly narrowed.
This calls for weighting the realism of emergent constraints by quantifying the level of physical understanding explaining
the  relationship.  This  would  also  permit  more  efficient  model  evaluation  and  better  targeted  model  development.  In  the
context of the upcoming CMIP6 model intercomparison a growing number of new predictors and uncertainty reductions is
expected, which call for robust statistical inferences that allow cross-validation of more likely estimates.
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Article Highlights:

•  Emergent  constraints  aim  to  reduce  uncertainties  in  inter-model  climate  projections  by  relating  them  to  observational
predictors.
•  Tens of constraints that provide best estimates for several climate change signals have already been found, with various
level of credibility.
•  Emergent  constraints  for  equilibrium  climate  sensitivity  so  far  suggest  a  slight  shift  towards  high  values,  without
narrowing the spread.

 
 

1.    Introduction

For  more  than  two  centuries,  steadily  increasing  car-
bon  dioxide  (CO2)  concentrations  in  the  atmosphere  have
been warming the Earth.  Today it  is  0.8°C warmer than in
the  preindustrial  period  in  the  middle  of  the  19th  century
(Morice  et  al.,  2012).  Global  climate  models  project  how
this global warming will continue given the expected continu-
ous increase in human-made CO2 emissions. While models
agree  on  the  sign  of  a  number  of  climate  change  signals,
they often disagree on their amplitude (Flato et al., 2013). A
well-known  example  is  the  equilibrium  climate  sensitivity
(ECS),  i.e.,  the  equilibrium  global-mean  surface  temperat-
ure increase resulting from a sustained doubling of CO2 con-

centrations (Gregory et al., 2004). For decades, models have
exhibited  widely  differing  climate  sensitivities,  yet  with  a
range remaining roughly between 2°C and 5°C (Charney et
al., 1979; Bony et al., 2013). To correctly predict how much
the Earth will warm, one must know at least (1) how CO2 con-
centrations will evolve (Stocker et al., 2013), and (2) the cor-
rect value of climate sensitivity.

±
A doubling  of  the  CO2 concentration  would  warm the

Earth  by  1.2°C  0.1°C  (Dufresne  and  Bony,  2008).
However, this warming induces changes that can amplify or
dampen the initial temperature response through feedback pro-
cesses  (Bony  et  al.,  2006).  For  example,  the  CO2-induced
global warming allows the atmosphere to hold more water va-
por.  This  acts  as  a  positive  feedback on the  surface  warm-
ing, because water vapor itself is a powerful greenhouse gas
that,  like  CO2,  absorbs  and  re-emits  longwave  radiation
back  to  the  surface.  This  is  somewhat  compensated  by  the
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negative temperature lapse rate feedback that allows more out-
going  longwave  emission  to  be  emitted  out  of  the  atmo-
sphere. The initial warming also reduces the surface albedo
by melting snow and sea ice, which also constitutes a posit-
ive  feedback  because  snow  and  ice  are  effective  reflectors
of sunlight. Models agree on the sign and approximately the
amplitude  of  these  two  feedback  processes  (Ceppi  et  al.,
2017).  The  water  vapor,  lapse  rate,  and  ice-albedo  feed-
backs in isolation enhance the global warming due to increas-
ing  CO2 concentrations  to  around  +2.2°C  (Dufresne  and
Bony, 2008). Models disagree on the cloud response to sur-
face warming, which is primarily why they produce a wide
range of ECS values, e.g., between 2.1°C and 4.7°C for cli-
mate models participating in phase 5 of the Coupled Model
Intercomparison Project (CMIP5) (Flato et al., 2013). Since
clouds  have  dynamical  scales  in  the  order  of  tens  to  hun-
dreds of meters, climate models with grid boxes of hundred
of kilometers cannot explicitly resolve cloud processes. Em-
pirically based assumptions are thus used to relate unresolv-
able small-scale dynamics to properties (temperature, humid-
ity etc.)  on the models'  grid scale.  Those parameterizations
are  the  heart  of  biases  in  reproducing  the  present-day  cli-
mate  and  of  uncertainties  in  climate  change  projections
(e.g., Qu et al., 2014; Webb et al., 2015; Brient et al., 2016;
Geoffroy et al., 2017). This calls for new and efficient pro-
cess-oriented methods for understanding the leading causes
behind these uncertainties and for establishing better model
evaluation and development.

2.    Emergent constraints

2.1.    Definition

Recently,  a  methodology  called  "emergent  constraint"
has  been  developed  for  reducing  uncertainties  in  climate
change projections. This framework is based on:

(1)  Identifying  responses  to  climate  change  perturba-
tions in which models disagree (e.g., cloud feedback).

(2)  Relating  the  intermodel  spread  in  the  climate
change  responses  to  present-day  biases  or  short-term  vari-
ations that can be observed.

This could be achieved by identifying an empirical rela-
tionship between the intermodel spread of an observable vari-
able (hereafter named A) and spread of a response to a giv-
en  perturbation  (B).  The  variable A is  called  the  predictor
and the variable B the predictand. Because observed measure-
ments  of  the  predictor A can  then  be  used  to  constrain  the
models'  responses, B,  the  relationship  between A and B is
called  an  emergent  constraint  (Klein  and  Hall,  2015).  The
variable A may represent a metric that characterizes the cli-
mate system (e.g., humidity, winds) or some natural variabil-
ity (e.g., in the seasonal cycle, or from year to year). The re-
sponse B can be the global-mean response of the climate sys-
tem (e.g., ECS) or a local response to perturbations (e.g., a re-
gional climate feedback). Therefore, the goal is to find a pre-
dictor that, given its relation to a climate response, emerges
as a constraint on future projections.

Once variable A is estimated observationally, the emer-
gent constraint can be used to assess the realism of models
and to eventually narrow the spread of climate change projec-
tions. As an idealized example, Fig. 1 shows a randomly gen-
erated relationship between a predictor A simulated by 29 cli-
mate models and a projection of future climate changes (in
principle, any climate change response may be considered).
The green distribution represents an observational measure-
ment and its uncertainties. We see that differences in A are sig-
nificantly associated with differences in B, here with a correla-
tion coefficient of r = 0.83. By constraining A through poten-
tial observations (green distribution), this example suggests
that some models are more realistic and, by inference, are as-
sociated  with  a  more  realistic  predictand.  The  degree  to
which  the  models' A deviates  from  the  observed A can  be
used  to  derive  weights  for  the  models  to  compute  a
weighted  average  of  the  models'  response, B (see  section
2.2.3).

2.2.    Criterion and uncertainties

2.2.1.    Physical understanding

An  emergent  constraint  can  be  trusted  if  it  meets  cer-
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Fig.  1.  Idealized  relationship  between  a  predictor  and  a
predictand. The 29 models (dots) are associated with randomly
generated values of the predictor A ( x-axis, between 0 and 3).
The  predictand B, on  they-axis  follows  the  idealized
relationship ,  with a =  1  and b =  2,  plus  a  random
deviation  following a normal distribution with  = 2 [such as

].  The  dashed  lines  and  blue  shades  represent  the
90%  prediction  limits  and  the  90%  confidence  limits  of  the
slope,  respectively.  The  green  distribution  on  the x-axis
represents  an  idealized  observed  distribution  of  the  predictor,
assuming  a  normal  distribution  (here  with  =  1.98  and  =
0.3).  Prior  and  posterior  distributions  of  the  predictand  are
represented  as  vertical  lines  in  the  left  part,  with  the  mode
(circle),  66%  (thick)  and  90%  (thin)  confidence  intervals.
Black lines represent the prior distribution, red lines represent
the  posterior  distribution  obtained  by  a  weighted  average  of
the  climate  models  through  a  Kullback–Leibler  divergence,
and blue lines are the distribution inferred using the slope and
its uncertainties. In this randomly generated example, posterior
estimates are sensitive to the way inference is computed.
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tain criteria. The most important one is an understanding of
physical mechanisms underlying the empirical relationship,
which is the key to increasing the plausibility of a proposed
emergent constraint. Several methods have recently been sug-
gested  to  verify  the  level  of  confidence  in  emergent  con-
straints  (Caldwell  et  al.,  2018; Hall  et  al.,  2019).  One  of
these methods consists of checking the reliability of an emer-
gent  constraint  by  developing  sensitivity  tests  that  would
modify A for some models (if there is a straightforward way
of  manipulating A).  For  accurate  model  comparison,  this
would require coupled model simulations with global-mean
radiative balance as performed in CMIP. If the models' beha-
vior after the modification deviates from that expected from
the  emergent  constraint,  the  relationship  may  have  been
found by chance. A study showed that this risk is not negli-
gible (Caldwell et al., 2014), primarily because climate mod-
els are not independent, often being derived from each oth-
er (Masson and Knutti,  2011; Knutti et al.,  2013). Keeping
only  models  with  enough  structural  differences  often  re-
duces the reliability of identified emergent constraints. The
search for correlations with no obvious physical understand-
ing could lead to such spurious results. Conversely, if those
sensitivity tests confirm the intermodel relationship, the cred-
ibility  of  assumed  physical  mechanisms  and  observational
constraints  on  climate  change  projections  increases.  Those
tests  could  be  performed  through  an  ensemble  of  simula-
tions over which either parameterizations or uncertain para-
meters are modified. This would help (1) disentangle structur-
al and parametric influence on the multimodel spread in pre-
dictor A and  (2)  highlight  underlying  processes  explaining
the empirical relationship (Kamae et al., 2016).

2.2.2.    Observation uncertainties

The second criterion is related to the correct use of obser-
vations. Uncertainties tied to the observation of the predict-
or must be small enough so that not all models remain consist-
ent with the data. This criterion may not be satisfied if obser-
vations are available only over a short time period [as is the
case for the vertical structure of clouds, (e.g.,Winker et al.,
2010)], or if the predictor is defined through low-frequency
variability (trends,  decadal  variability),  or  if  there is  a  lack
of  consistency among available  datasets  [as  in  the  case  for
global-mean precipitation and surface fluxes, (e.g.,Găinuşă-
Bogdan  et  al.,  2015)].  Finally,  some  observational  con-
straints  rely  on  parameterizations  used  in  climate  models,
e.g., reanalysis data that use sub-grid assumptions for repres-
enting  clouds  (e.g.,Dee  et  al.,  2011)  or  data  products  for
clouds that use sub-grid assumptions for radiative transfer cal-
culations (Rossow and Schiffer, 1999).

2.2.3.    Statistical inference

Emergent constraints can allow us to narrow uncertain-
ties  and  quantify  more  likely  estimates  of  climate  projec-
tions,  i.e.,  a  constrained posterior  range of  a  prior  distribu-
tion. However, not all emergent constraints should be given
the  same  trust. Hall  et  al.  (2019) suggested  to  relate  this
trust  to  the level  of  physical  understanding associated with

the  emergent  relationship.  This  means  making  predictions
only for confirmed emergent constraints.

Posterior estimates are influenced by the way the statistic-
al  inference  has  been  performed.  However,  no  consensus
has yet emerged for this inference. A first method for quanti-
fying this constraint is to directly use uncertainties underly-
ing the observational predictor and project it onto the vertic-
al axis using the emergent constraint relationship. This meth-
od takes into account uncertainties in both observations and
the  estimated  regression  model,  through  bootstrapping
samples for instance (Huber et al.,  2011). Most studies use
this  straightforward  framework.  In  our  idealized  example,
this  would  give  a  posterior  estimate  that  is  slightly  larger
and narrower than the prior estimate (Fig. 1). However, sever-
al  problems  with  this  kind  of  inference  might  be  high-
lighted, as suggested by Schneider (2018):

● Most fundamentally, the inference generally revolves
around  assuming  that  there  exists  a  linear  relation-
ship, and estimating parameters in the linear relation-
ship  from  climate  models.  However,  it  is  not  clear
that such a linear relationship does in fact exist, and es-
timating parameters in it is strongly influenced by mod-
els  that  are  inconsistent  with  the  observations  (ex-
treme  values).  In  other  words,  the  analysis  neglects
structural  uncertainty  about  the  adequacy  of  the  as-
sumed  linear  model,  and  the  parameter  uncertainty
the  analysis  does  take  into  account  is  strongly  re-
duced by models that are "bad" according to this mod-
el–data mismatch metric. Thus, outliers strongly influ-
ence the result. However, the influence of models con-
sistent with the data but off the regression line is dimin-
ished.  Given  that  there  is  no  strong  a  priori  know-
ledge about  any linear  relationship  (this  is  why it  is
an  "emergent"  constraint),  it  seems  inadvisable  to
make  one's  statistical  inference  strongly  dependent
on  models  that  are  not  consistent  with  the  data  at
hand.

● Often,  analysis  parameters  are  chosen  so  as  to  give
strong  correlations  between  the  response  of  models
to perturbations and the predictor. This introduces se-
lection bias in the estimation of the regression lines.
This leads to underestimation of uncertainties in para-
meters,  such  as  the  slope  of  the  regression  line,
which  propagates  into  underestimated  uncertainties
in the inferred estimate.

● When  regression  parameters  are  estimated  by  least
squares,  the  observable  on  the  horizontal  axis  is
treated as being a known predictor, rather than as be-
ing  affected  by  error  (e.g.,  from  sampling
variability). This likewise leads to underestimation of
uncertainties in regression parameters. This problem
can  be  mitigated  by  using  errors-in-variables  meth-
ods.

A second method consists of estimating a posterior distri-
bution  by  weighting  each  model's  response  by  the  likeli-
hood of  the  model  given  the  observations  of  the  predictor.
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This can be accomplished by a Bayesian weighting method
(e.g.,Hargreaves et al., 2012) or through information theory
(e.g.,Brient and Schneider, 2016), such as the Kullback–Lei-
bler  divergence  or  relative  entropy  (Burnham  and  Ander-
son, 2003). This method does not use linear regression for es-
timating the posterior distribution and therefore favors realist-
ic models and de-emphasizes outliers inconsistent with obser-
vations.  For  instance,  the  Kullback–Leibler  divergence  ap-
plied to our idealized example (assuming an identical stand-
ard  deviation  between  observation  and  each  model)  sug-
gests a posterior estimate lower and narrower than the prior
estimate (Fig. 1).

This more justifiable inference still suffers from sever-
al  shortcomings  (Schneider,  2018).  For  example,  it  suffers
from selection bias, and it treats the model ensemble as a ran-
dom sample (which it is not). It also only weights models, sug-
gesting  that  climate  projections  far  outside  the  range  of
what  current  models  produce  will  always  come  out  as  be-
ing very unlikely. Given uncertainties underlying each meth-
od, posterior estimates should thus be quantified using differ-
ent methods [as previously done in Hargreaves et al. (2012),
for instance], which must be explicitly described.

Figure 2 provides a tangible example for explaining the
importance  of  statistical  inference.  It  shows  the  relation  in
29  current  climate  models  between  ECS  and  the  strength

with which the reflection of sunlight in tropical low-cloud re-
gions  covaries  with  surface  temperature  (Brient  and
Schneider, 2016). That is, the horizontal axis shows the per-
centage change in the reflection of sunlight per degree of sur-
face  warming,  for  deseasonalized  natural  variations.  It  is
clear  that  there  is  a  strong  correlation  (correlation  coeffi-
cient  of  about  −0.7)  between  ECS on  the  vertical  axis  and
the  natural  fluctuations  on  the  horizontal  axis.  The  green
line on the horizontal  axis  indicates  the probability  density
function  (PDF)  of  the  observed  natural  fluctuations.  What
many previous  emergent-constraint  studies  have  done is  to
take such a band of observations and project it onto the vertic-
al  ECS  axis  using  the  estimated  regression  line  between
ECS and the natural fluctuations, taking into account uncer-
tainties in the estimated regression model. If we do this with
the  data  here,  we  obtain  an  ECS that  likely  lies  within  the
blue band: between 3.1 and 4.2 K, with a most likely value
of 3.6 K. Simply looking at the scatter of the 29 models in
this  plot  indicates  that  this  uncertainty  band  is  too  narrow.
For  example,  model  7  is  consistent  with  the  observations,
but has a much lower ECS of 2.6 K. The regression analys-
is  would  imply  that  the  probability  of  an  ECS  this  low  or
lower is less than 4%. Yet, this is one of 29 models, and one
of  relatively  few  (around  9)  that  are  likely  consistent  with
the  data.  Obviously,  the  probability  of  an  ECS  this  low  is
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Fig.  2.  (a)  Scatterplot  of  ECS  versus  deseasonalized  covariance  of  marine
tropical  low-cloud  reflectance  with  surface  temperature T in  CMIP5
models (numbered in order of increasing ECS). Gray lines represent a robust
regression line (solid),  with the 90% confidence interval  of  the fitted values
(dashed) estimated by a bootstrap procedure. The green line at the lower axis
indicates the PDF of the αc variation with T inferred from observations. The
vertical  green  band  indicates  the  66%  band  of  the  observations.  The  blue
circle  and  horizontal  band  show  the  mode  and  the  likely  (66%)  ECS  range
inferred from a linear regression procedure, respectively, taking into account
uncertainties  estimated  by  bootstrapping  predictions  with  estimating
regression models. (b) Posterior PDF of ECS (orange) obtained by a weighted
average of the climate models,  given the observations. The bars with circles
represent  the mode and confidence intervals  (66% and 90%) implied by the
posterior  (orange)  PDF and  the  prior  (gray)  PDF.  Adapted  from Brient  and
Schneider (2016).
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much larger than what the regression analysis implies. As ex-
plained  before,  these  flaws  could  be  reduced  by  weighting
ECS by the likelihood of the model given the observations.
Models  such  as  numbers  2  and  3,  which  are  inconsistent
with observations, would receive essentially zero weight (un-
like in  the regression-based analysis,  they do not  influence
the  final  result).  No  linear  relationship  is  assumed  or  im-
plied,  so  models  such  as  7  receive  a  large  weight  because
they are consistent with the data, although they lie far from
any regression line. The resulting posterior PDF for ECS is
shown by the  orange  line  in Fig.  1b.  The  most  likely  ECS
value  according  to  this  analysis  is  4.0  K.  It  is  shifted  up-
ward  relative  to  the  regression  estimate,  toward  the  values
in the cluster of models (around numbers 25 and 26) with rel-
atively  high  ECS that  are  consistent  with  the  observations.
The likely ECS range stretches from 2.9 to 4.5 K. This is per-
haps  a  disappointingly  wide  range.  It  is  50%  wider  than
what the analysis based on linear regressions suggests,  and
it  is  not  much  narrower  than  what  simple-minded  equal
weighting  of  raw  climate  models  gives  (gray  line  in Fig.
1b).  It  is,  however,  a  much  more  statistically  defensible
range.

In order to generalize the sensitivity of  inferred estim-
ates to the statistical methodology, 104 random emergent rela-
tionships are generated. Figure 3 shows the statistics of infer-
ences (mode, confidence intervals) as a function of correla-
tion coefficients. Averaged modes and confidence intervals

obtained  from  the  two  inference  methods are  consistent
with each other. However, the variance of inferred best estim-
ates (modes) using the weighting method is larger than the
one using the inference method. This is in agreement with res-
ults  obtained  from  the  tangible  example  from Brient  and
Schneider  (2016),  which  show different  most-likely  values
(Fig. 2). Therefore, this suggests the best estimate is signific-
antly  influenced  by  the  way  statistical  inference  is  per-
formed.

Finally,  uncertainties  underlying  these  estimates  may
be influenced by the level of structural similarity between cli-
mate models. Indeed, adding models with only weak structur-
al  differences  (e.g.,  model  versions  with  different  resolu-
tion, interactive chemistry) can artificially strengthen the cor-
relation coefficient of the empirical relationship and the in-
ferred  best  estimate  (Sanderson  et  al.,  2015).  This  coeffi-
cient is usually the first criterion that quantifies the statistic-
al credibility of an emergent constraint, i.e., the larger the cor-
relation  coefficient,  the  more  trustworthy  the  regression-
based inference will be. However, it remains unknown what
level  of  statistical  significance  justifies  an  emergent  con-
straint and whether these correlations best characterize their
credibility.

3.    Pioneering studies

In  the  following  sections,  emergent  constraints  that
 

 

Fig. 3.  Relationship between modes and correlation coefficient (r) of 104

randomly  generated  emergent  constraints,  as  per  the  example  shown  in
Fig.  1.  Thick  lines,  dashed  lines  and  shades  represent  the  average  mode,
the  average  66%  confidence  interval  and  the  standard  deviation  of  the
mode across the set of emergent relationships. Characteristics of the prior
distributions  are  represented  in  black  color.  Posterior  estimates  using  the
slope inference or the weighting averaging are represented in blue and red,
respectively,  using  an  idealized  observed  distribution  of  the  predictor  as
defined in Fig.  1.  The PDF of  correlation coefficients  is  shown as  a  thin
black  line  on  the x-axis.  This  figure  shows  that  average  modes  and
confidence intervals remain independent of the inference method, but the
uncertainty of the mode value is larger for the weighting method.

JANUARY 2020 BRIENT 5

 

  



have been highlighted within the last two decades are listed
and  described. Table  1 summarize  them,  along  with  prior
and  posterior  estimates  of  the  models'  predictands.  The
mean  and  uncertainties  (one  standard  deviation)  are  based
on  the  inference  provided  in  the  reference  if  available,  or

roughly derived through their empirical relationship and ob-
servational uncertainties (for qualitative assessment).

In  the  late  1990s,  signs  of  climate  feedback  started  to
be constrained from climate models and observations (e.g.,
Hall and Manabe, 1999). Usually analyzing one unique mod-

Table 1.   List of 45 published emergent constraints, the predictand they constrain, and the original and constrained ranges. The mean and
standard deviations of prior and posterior estimates are listed where available. An asterisk signifies that the moments of the distribution
are not directly quantified in the reference paper but derived from their emergent relationship and the observational constraint, and thus
should be understood only as a qualitative assessment.  Letters correspond to groups of emergent constraints with related predictands.

Reference Predictand Original Constrained

A Covey et al. (2000) ECS (K) 3.4±0.8 –
A Volodin (2008) (RH) ECS (K) 3.3±0.6 3.4±0.3
A Volodin (2008) (cloud) ECS (K) 3.3±0.6 3.6±0.3
A Trenberth and Fasullo (2010) ECS (K) 3.3±0.6 >4.0
A Huber et al. (2011) ECS (K) 3.3±0.6 3.4±0.6
A Fasullo and Trenberth (2012) ECS (K) 3.3±0.6 4.1±0.4*

A Sherwood et al. (2014) ECS (K) 3.4±0.8 4.5±1.5*

A Su et al. (2014) ECS (K) 3.4±0.8 >3.4
A Zhai et al. (2015) ECS (K) 3.4±0.8 3.9±0.5
A Tian (2015) ECS (K) 3.4±0.8 4.1±1.0*

A Brient and Schneider (2016) ECS (K) 3.4±0.8 4.0±1.0*

A Lipat et al. (2017) ECS (K) 3.4±0.8 2.5±0.5*

A Siler et al. (2018) ECS (K) 3.4±0.8 3.7±1.3
A Cox et al. (2018) ECS (K) 3.4±0.8 2.8±0.6
B Qu et al. (2014) Low-cloud amount feedback (% K−1) −1.0±1.5 −
B Gordon and Klein (2014) Low-cloud optical depth feedback (K−1) 0.04±0.03 −
B Brient and Schneider (2016) Low-cloud albedo change (% K−1) −0.12±0.28 −0.4±0.4*

B Siler et al. (2018) Global cloud feedback (% K−1) 0.43±0.30 0.58±0.31
C Allen and Ingram (2002) Global-mean precipitation − −
C O’Gorman (2012) Tropical precipitation extremes (% K−1) 2−23 6−14
C DeAngelis et al. (2015) Clear-sky shortwave absorption (W m2 K−1) 0.8±0.3 1.0±0.1
C Li et al. (2017) Indian monsoon rainfall changes (% K−1) 6.5±5.0 3.5±4.0
C Watanabe et al. (2018) Hydrological sensitivity (% K−1) 2.6±0.3 1.8±0.4
D Cox et al. (2013) Tropical land carbon release (GtC K−1) 69±39 53±17
D Wang et al. (2014) Tropical land carbon release (GtC K−1) 79±43 70±45*

D Wenzel et al. (2014) Tropical land carbon release (GtC K−1) 49±40 44±14
D Hoffman et al. (2014) CO2 concentration in 2100 (ppm) 980±161 947±35
D Wenzel et al. (2016) Gross primary productivity (%) 34±15 37±9
D Kwiatkowski et al. (2017) Tropical ocean primary production (% K−1) −4.0±2.2 −3.0±1.0
D Winkler et al. (2019) Gross primary production (PgC yr−1) 2.1±1.9 3.4±0.2
E Plazzotta et al. (2018) Global-mean cooling by sulfate [K (W m−2)−1] 0.54±0.33 0.44±0.24
F Hall and Qu (2006) Snow-albedo feedback (% K−1) −0.8±0.3 −1.0±0.1*

F Qu and Hall (2014) Snow-albedo feedback (% K−1) −0.9±0.3 −1.0±0.2*

F Boé et al. (2009) Remaining Arctic sea-ice cover in 2040 (%) 67±20* 37±10*

F Massonnet et al. (2012) Years of summer Arctic ice-free (2029–2100) (2041–2060)
F Bracegirdle and Stephenson (2013) Arctic warming (°C) ~2.78 <2.78
G Kidston and Gerber (2010) Shift of the Southern Hemispheric jet (°) −1.8±0.7 −0.9±0.6
G Simpson and Polvani (2016) Shift of the Southern Hemispheric jet (°) ~−3 ~−0.5* (winter)
G Gao et al. (2016) Shift of the Northern Hemispheric jet (°) ~0 ~−2 (winter)
G Gao et al. (2016) Shift of the Northern Hemispheric jet (°) ~+1.5 ~−1 (spring)
G Douville and Plazzotta (2017) Summer midlatitude soil moisture − −
G Lin et al. (2017) Summer US temperature changes (°C) 6.0±0.8 5.2±1.0*

G Donat et al. (2018) Frequency of heat extremes (−) − −
H Hargreaves et al. (2012) ECS (K) 3.1±0.9 2.3±0.9
H Schmidt et al. (2013) ECS (K) 3.3±0.8 3.1±0.7
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el,  these  studies  improved  our  understanding  of  physical
mechanisms driving climate feedback. However, the lack of
intermodel comparisons in these studies did not allow quanti-
fying the relative importance of feedbacks in driving uncer-
tainties in climate change projections. Model intercomparis-
ons during this period identified the cloud response to glob-
al  warming  as  being  the  key  contributor  of  intermodel
spread in climate projections (Cess et al., 1990, 1996). Both
types of studies pave the way toward process-oriented analys-
is for understanding intermodel differences in climate projec-
tions.

To the best of my knowledge, the first attempt at introdu-
cing  the  concept  of  emergent  constraints  was  made by Al-
len  and  Ingram  (2002).  The  authors  tried  to  constrain  the
spread  in  global-mean  future  precipitation  change  simu-
lated  by  the  set  of  climate  models  participating  in  CMIP2
(Meehl et al., 2000) through observable temperature variabil-
ity and a simple energetic framework. Despite the inability
to  robustly  narrow future  precipitation changes,  they intro-
duced  the  concepts  that  establish  emergent  constraints:  the
need for physical understanding and the ability of observa-
tions to constrain the model predictor.

An  early  application  of  emergent  constraints  concerns
the snow-albedo feedback. Hall and Qu (2006) showed that
differences  among  models  in  seasonal  Northern  Hemi-
sphere surface albedo changes are well correlated with glob-
al-warming  albedo  changes  in  CMIP3  models.  The  three
main criteria  for  a  robust  emergent  constraint  are  satisfied:
the physical mechanisms are well understood, the statistical
relationship between the quantities of interest is strong, and
uncertainties  in  the  observed variations  are  weak,  allowing
the authors  to  constrain the Northern Hemisphere snow-al-
bedo feedback under global warming. Despite this success-
ful  application,  the  generation  of  models  that  followed
(CMIP5) continued to exhibit a large spread in seasonal vari-
ability  of  snow-albedo  changes  (Qu  and  Hall,  2014).  This
could be narrowed through targeted process-oriented model
development  based  on  the  evaluation  of  snow  and  vegeta-
tion  parameterizations  (Thackeray  et  al.,  2018).  Yet,  this
study  can  be  seen  as  the  first  confirmed  emergent  con-
straint (Klein and Hall, 2015; Hall et al., 2019).

The success of the Hall and Qu (2006) study led a num-
ber of studies to seek emergent constraints able to narrow cli-
mate change responses. In the following sections, these stud-
ies  aimed  at  constraining  ECS,  cloud  feedback,  or  various
changes in Earth system components, such as the hydrologic-
al cycle or the carbon cycle, are described.

4.    Model biases and ECS

Uncertainties in ECS usually scale with uncertainties in
regional  climate  changes  (Seneviratne  et  al.,  2016).  There-
fore, constraining ECS would help in better estimating region-
al responses to climate change, which matter the most for im-
pact studies and risk assessment. Therefore, most emergent
constraints  prioritize  providing  a  better  range  for  ECS,  as

shown in Table 1.
The  main  predictors  used  to  constrain  the  spread  in

ECS consist  of  observable  climatological  characteristics  of
the current climate. The first study using this approach was
Volodin (2008), which found that CMIP3 models with large
ECS are more likely to exhibit (1) large differences in cloud
cover  between the  tropics  and the  extratropics  and (2)  low
tropical relative humidity.

Using  a  cloud  climatology  from  geostationnary  satel-
lites, Volodin (2008) provides a first more likely ECS range
of 3.6±0.3 K. This range is slightly higher than the multimod-
el average, with a reduced variance (Table 1). However this
study  does  not  address  the  physical  understanding  of  links
between clouds, moisture, and climate feedbacks, which re-
duce  the  credibility  of  this  estimate.  A  more  recent  study,
Siler et al. (2018), provides a physical interpretation underly-
ing this cloud constraint. They hypothesize that the need for
a  global-mean  radiative  balance  (through  model  tuning)
forces a link between warm and cold regions, i.e., models hav-
ing fewer clouds in the tropical  area will  very likely simu-
late more extratropical clouds in the current climate. Given
that  global  warming  will  expand  tropical  warm  regions  at
the expense of extratropical cold regions, these models will
increase the spatial coverage of areas with weak cloudiness
relative  to  the  multimodel  mean,  leading  to  more  positive
low-cloud feedback and high climate sensitivity. Using obser-
vations  for  characterizing  the  spatial  coverage  of  cloud  al-
bedo, Siler  et  al.  (2018) found  a  best  ECS  estimate  of
3.7±1.3 K, in agreement with Volodin (2008). However, the
credibility of this estimate is questionable, because physical
mechanisms explaining the emergent relationships are not test-
able (Caldwell et al., 2018).

The second estimate suggested by Volodin (2008) is re-
lated  to  relative  humidity  and  uses  reanalysis  outputs  to
provide a more likely ECS range of 3.4±0.3 K. In CMIP3,
models  with  the  largest  zonal-mean  relative  humidity  over
the subtropical free troposphere are those with the lowest cli-
mate  sensitivity.  Given  that  models  generally  overestimate
this predictor, this suggests the highest ECS values are more
realistic.  This  is  in  agreement  with Fasullo  and  Trenberth
(2012), who found the same relationship and a best ECS es-
timate of around 4 K (Table 1). This emergent relationship
is explained to a certain extent by the broadening of the tropic-
al dry zones with global warming, which implies a drying of
the subsiding branches. Thus, the drier the free troposphere
in the current climate, the stronger the boundary-layer dry-
ing and cloud feedback with global warming. This mechan-
ism may also explain the positive low-cloud feedback in cli-
mate  models,  e.g.,  the  IPSL-CM5A  (Brient  and  Bony,
2013). Conversely, Volodin (2008) hypothesized that the rela-
tionship is related to the role of relative humidity in convect-
ive  parameterization.  These  different  physical  interpreta-
tions suggest that emergent constraints arise from intermod-
el differences in structural (local) uncertainties, (remote) bi-
ases  in  large-scale  dynamics,  and  the  interactions  between
them.
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This dichotomy is addressed by Sherwood et al. (2014).
They  quantified  the  low-tropospheric  convective  mixing
through the sum of two metrics : an index related to small-
scale mixing and an index linked to large-scale mixing. The
former  aims  to  represent  errors  in  parameterized  processes
such  as  shallow  convection,  turbulence,  or  precipitation.
The latter quantifies model errors in reproducing the tropic-
al dynamical circulation, which can also be affected by para-
meterizations  of  deeper  convection  remotely  affecting  low
clouds. The CMIP3 and CMIP5 intermodel spread of this pre-
dictor  is  well  correlated  to  uncertainties  in  ECS.  Observa-
tions (here, reanalysis) suggest that most models underestim-
ate  this  large-scale  mixing,  indicating  a  most  likely  ECS
value larger than 3 K (Table 1). The level of confidence in
this  estimate  is  related  to  the  trust  one  gives  to  the  link
between  the  low-tropospheric  characteristics  these  indices
aim to quantify and the low-cloud feedback, which primar-
ily controls the intermodel spread in ECS. In that regard, Cald-
well et al. (2018) suggest that constraints suggested by Sher-
wood et al. (2014) are only partly credible and metrics need
to  be  studied  separately.  The  observational  constraint
should also be viewed with caution since it is based on reana-
lysis data and hence is influenced by parameterizations.

The  mixing  indexes  suggested  by Sherwood  et  al.
(2014) highlight  that  errors  in  representing  the  coupling
between low clouds and tropical dynamics explain a signific-
ant  part  of  the  spread  in  ECS,  in  agreement  with Volodin
(2008) and Fasullo  and  Trenberth  (2012).  This  was  con-
firmed by follow-up studies that suggested significant correla-
tions  between  ECS  and  indexes  of  the  tropical  dynamics,
such as the strength of the double-ITCZ bias (Tian, 2015) or
the strength of the Hadley circulation (Su et al., 2014). Both
show that models better representing the tropical large-scale
dynamics  are  those  with  the  highest  climate  sensitivities
(≈4 K). However, the lack of robust physical mechanisms ex-
plaining these emergent constraints reduces the trustworthi-
ness of these inferences, but it also prompts for better theoret-
ical  understanding  of  links  between  cloud  and  circulation.
This question can be investigated by analyzing the driving in-
fluence  of  clouds  on  the  energetic  balance  of  the  atmo-
sphere for explaining large-scale dynamical biases, whether
clouds are located in the Southern Hemisphere (Hwang and
Frierson,  2013)  or  in  the  tropical  subsiding regions  (Adam
et al., 2016, 2017). Together, these studies suggest hidden re-
lationships between low clouds, circulation, and climate sens-
itivity, which remain to be clarified.

The spread in ECS can also be constrained through the
past variability in global-mean temperature, as suggested by
Cox  et  al.  (2018).  Observations  suggest  that  most  models
overestimate temperature variations and year-to-year autocor-
relation,  providing a  most  likely posterior  ECS estimate  of
2.8±0.6 K (Table 1). Contrary to most emergent constraints,
this study thus suggests a relative low best estimate for cli-
mate sensitivity. The absence of links between the mathemat-
ical framework used to build the predictor and clouds might
reduce the confidence in this  estimate,  despite the fact  that
Cox  et  al.  (2018) constraint seems  strongly  dominated  by

the  spread  in  shortwave  cloud  feedback  (Caldwell  et  al.,
2018).  Given  that  the  low-frequency  natural  variability  of
tropical  temperature  is  partly  related  to  cloud  variability
(e.g., Zhou et al., 2016), it cannot be excluded that all these
emergent constraints are related to each other through cloud
processes.  Process-oriented  cross-metric  analysis  would  be
necessary to support this hypothesis (e.g., Wagman and Jack-
son, 2018).

5.    Cloud feedback

The  spread  of  climate  sensitivity  is  significantly  re-
lated to the spread in cloud feedback, and mostly to uncertain-
ties  in  low-cloud  responses.  It  therefore  appears  obvious
that  constraining  how low clouds  respond to  global  warm-
ing would very likely reduce the spread of climate sensitiv-
ity  among  models,  and  that  many  emergent  constraints  on
ECS  can  be  understood  as  encoding  properties  of  short-
wave  low-cloud  feedbacks  (Qu  et  al.,  2018).  Conversely,
emergent  constraints  that  are  only  indirectly  related  to
clouds should be viewed with caution.

A  number  of  studies  have  highlighted  relationships
between  low-cloud  amount  changes  under  global  warming
and modeled variations of low clouds with changes in specif-
ic meteorological conditions, such as surface temperature, in-
version  strength,  or  subsidence  (Myers  and  Norris,  2013,
2015; Qu  et  al.,  2014, 2015; Brient  and  Schneider,  2016).
These studies suggest two robust low-cloud feedbacks: a de-
crease  in  low-cloud  amount  with  surface  warming  (related
to increasing boundary-layer ventilation) and an increase in
low-cloud amount with inversion strengthening (related to a
reduced cloud-top entrainment of dry air). Models show that
the former feedback mostly dominates the latter under glob-
al  warming,  and  that  the  more  realistic  models  exhibit  lar-
ger  low-cloud  feedback  (Qu  et  al.,  2014, 2015; Brient  and
Schneider,  2016).  The convergence of  studies  using differ-
ent  methodologies  and  different  observations  increases  our
confidence that low-cloud amount feedback more likely lies
in the upper range of simulated estimates. Given the credibil-
ity of physical mechanisms explaining cloud feedback emer-
gent  relationships,  reproducibility  with  the  CMIP6  models
is expected but yet to be confirmed.

Given  that  the  strength  of  low-cloud  amount  feedback
strongly  correlates  with  ECS,  temporal  variations  in  low-
cloud albedo appears to be one of the most credible metrics
for  constraining  ECS (Caldwell  et  al.,  2018).  Observations
suggest  most  likely  ECS estimates  of  around 4  K,  roughly
identical  for  different  temporal  frequencies  of  cloud  vari-
ations (Zhai et al., 2015; Brient and Schneider, 2016). Des-
pite  this  robustness,  these  conclusions  are  sensitive  to  the
short  time  period  (around  a  decade)  over  which  observa-
tions provide accurate enough characteristics of low clouds.
Low-cloud  short-term  variations  might  only  partly  reflect
long-term  feedback  (Zhou  et  al.,  2015),  likely  because  of
slow-evolving  spatial  patterns  of  surface  temperature  that
delay inversion changes and cloud feedback in subsiding re-
gions (Ceppi and Gregory, 2017; Andrews et al., 2018).
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Although  low-cloud  amount  feedback  is  the  main
driver of uncertainties in climate sensitivity, other cloud re-
sponses contribute to the spread as well. One of them is the
low-cloud optical feedback, which is defined by the radiat-
ive  influence  of  changes  in  optical  properties  given  un-
changed  cloud  amount  and  altitude. Gordon  and  Klein
(2014) show that the natural variability of midlatitude cloud
optical  depth  with  temperature  is  well  correlated  with  its
changes with global warming. This relationship stems from
fundamental thermodynamics, i.e., the increase in water con-
tent with warming (Betts and Harshvardhan, 1987), and mi-
crophysical changes, i.e., the relative increase in liquid con-
tent relative to ice within clouds (Mitchell et al., 1989). This
supports a robust negative cloud optical feedback with warm-
ing.  Observations  suggest  that  models  are  usually  biased
high,  thus  overestimating  the  negative  midlatitude  low-
cloud optical feedback. A misrepresentation of mixed-phase
processes within these extratropical clouds may explain this
bias (McCoy et al., 2015), which has been pinpointed as be-
ing  a  key  driver  of  differences  in  cloud  feedback  and  cli-
mate sensitivity estimates (Tan et al., 2016).

The  cloud  altitude  response  to  global  warming  may
also amplify the original warming, and models continue to dis-
agree on the strength of this feedback (Zelinka et al., 2013).
Physical mechanisms of high cloud elevation with warming
are well  understood (Hartmann and Larson,  2002),  making
high-cloud altitude feedback very likely positive. Yet, it re-
mains  unknown to  what  extent  the  high-cloud  amount  and
the  high-cloud  optical  depth  change  with  warming.  These
changes are related to upper-tropospheric divergence and mi-
crophysics,  which  need  to  be  constrained  individually.
Some  studies  suggest  a  decreasing  high-cloud  amount  due
to  more  efficient  large-scale  organization  with  warming
(e.g. Bony et al., 2016), which points the way towards mech-
anistic emergent constraints on high-cloud feedback.

Better  constraining  cloud  feedback  will  therefore  very
likely  lead  to  better  constraints  on  the  ECS.  This  target
should  be  addressed  through  process-based  understanding
of individual cloud changes, such as how the relative cover-
age  of  tropical  low  clouds  evolves,  how  high-cloud  frac-
tions change as they move upward, or to what extent small-
scale microphysical changes perturb the climate system. Mer-
ging realistic estimates of these feedbacks would provide a
step forward for accurately constraining the ECS.

6.    Constraining climate changes

In the last  decade,  the concept of emergent constraints
has begun to be widely applied in different branches of cli-
mate science that allow constraining uncertain responses of
the Earth system, such as the hydrological cycle, the carbon
cycle, or various regional changes.

6.1.    The hydrological cycle

Uncertainties  in the response of  precipitation to global
warming are important and remain to be narrowed. Increas-
ing the confidence in precipitation changes would provide im-

portant benefits for regional climate projections and risk as-
sessment  (Christensen  et  al.,  2013).  Links  between  natural
variability of extreme precipitation and temperature offer pos-
sible  observational  constraints  for  changes  in  climate  ex-
tremes, especially because the underlying physical mechan-
isms  are  relatively  well  understood  (O’Gorman  and
Schneider, 2008). These constraints usually suggest a strong
intensification  of  heavy rainfall  with  warming (O’Gorman,
2012; Borodina  et  al.,  2017).  Changes  in  the  hydrological
cycle can partly be attributed to changes in the clear-sky short-
wave absorption, which is related to models' radiative trans-
fer parameterizations (DeAngelis et al., 2015). Watanabe et
al.  (2018) followed  this  path  by  providing  a  best  estimate
for both hydrological sensitivity and shortwave cloud feed-
back, through the surface longwave cloud radiative effect cli-
matology. This study then connected the intermodel spread
of changes in the water cycle and ECS. Process-oriented ana-
lysis of specific emergent constraints might thus lead to tar-
geted  model  development  for  narrowing  the  spread  in  cli-
mate projections.

6.2.    The carbon cycle

A second topic that has also received considerable atten-
tion is the sensitivity of the carbon cycle to climate change.
Cox et al. (2013) found a robust relationship that links interan-
nual covariations between tropical temperature and carbon re-
lease into the atmosphere (the predictor) and the weakening
in carbon storage under global warming. Observations high-
light that most climate models overestimate the present-day
sensitivity of land CO2 changes, suggesting an overly strong
weakening  of  the  CO2 tropical  land  storage  with  climate
change (Table 1). This constraint has been confirmed in sub-
sequent analysis (Wang et al., 2014; Wenzel et al., 2014). Ad-
ditional studies have aimed to constrain other aspects of the
climate–carbon cycle feedback, such as terrestrial photosyn-
thesis (Wenzel et al., 2016), sinks and sources of CO2 (Hoff-
man  et  al.,  2014; Winkler  et  al.,  2019),  and  tropical  ocean
primary production (Kwiatkowski et al., 2017).

6.3.    Geoengineering

Constraining  uncertainties  in  geoengineering  simula-
tions has also been addressed. Intermodel differences in the
climate response to an artificial increase in sulfate concentra-
tions  are  correlated  to  intermodel  differences  in  the  simu-
lated  cooling  by  past  volcanic  eruptions  (Plazzotta  et  al.,
2018). Physical assumptions underlying this relationship con-
sist  of  assuming that  volcanic  eruptions  can  be  understood
as  an  analogue  of  solar  radiation  management  (Trenberth
and Dai, 2007). Observations from satellites suggest that mod-
els overestimate the cooling by volcanic eruptions, thus over-
estimating the potential cooling effect by an addition of aero-
sols in the stratosphere.

6.4.    Regional climate changes

While  most  emergent  constraints  focus  on  global
scales, several aim to better understand and constrain region-
al climate changes. So far, these studies mostly focus on ex-
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tratropical climate responses, as was the case for the pioneer-
ing  work  of Hall  and  Qu  (2006).  Attempts  in  constraining
changes  of  extreme temperature  have  recently  showed that
models  slightly  overestimate  the  increasing  frequency  of
heat  extremes  with  global  warming  in  Europe  and  North
America  (Donat  et  al.,  2018),  in  relation  to  overly  strong
soil drying (Douville and Plazzotta, 2017). Changes in the ex-
tratropical circulation have also been studied. Models show
a robust poleward shift of the Southern Hemisphere jet with
global warming, and are uncertain about the sign of the shift
in  the  Northern  Hemisphere  jet.  Emergent  constraints  sug-
gest that models overestimate the Southern Hemispheric pole-
ward  shift  (Kidston  and  Gerber,  2010; Simpson  and
Polvani, 2016) and predict that the Northern Hemisphere jet
will likely move poleward (Gao et al., 2016). Finally, a num-
ber of studies have sought to constrain changes over the Arc-
tic  region.  Their  results  show  that  most  models  delay  the
year  when summertime sea-ice cover  is  likely to disappear
(Boé et al., 2009; Massonnet et al., 2012) and slightly overes-
timate  the  strength  of  the  polar  amplification  (Bracegirdle
and Stephenson, 2013).

Regional  emergent  constraints  remain  rare,  which  re-
duces the ability to compare metrics and observations to one
another.  Results  are  thus  not  yet  robust,  and  should  be
viewed with caution. However, knowing the large uncertain-
ties underlying regional climate projections and the advant-
ages  local  populations  will  get  from  better  model  projec-
tions (Christensen et al., 2013), I expect in the near future to
see  numerous  new  emergent  constraints  aimed  at  narrow-
ing uncertainties in regional climate changes. Nevertheless,
this  should  be  addressed  through  rigorous  physical  under-
standing given the numerous multi-scale interactions and ad-
justments that induce regional differences.

6.5.    Paleoclimate

The sensitivity of global-mean temperature to Earth's or-
bital  variations  and/or  CO2 natural  changes  might  be  con-
sidered  an  analogue  of  the  warming  induced  by  the  artifi-
cial  CO2 increase,  i.e.,  the  climate  sensitivity  to  past  cli-
mate  change  as  an  analogue  to  the  ECS  [as  defined  by
Gregory et al. (2004)]. When imposing such past variations,
climate  models  suggest  different  responses  in  the  strength
of global-mean cooling that may be related to the spread in
ECS. For instance, Hargreaves et al. (2012) showed that the
simulated global-mean cooling during the Last Glacial Max-
imum (LGM, 19–23 ka  before  present)  is  inversely  correl-
ated with ECS in CMIP3 models. Constraining the LGM cool-
ing from proxy data yields a most likely climate sensitivity
of  around  2.3  K,  which  is  lower  than  inferred  estimates
based on the mean state or variability (Table 1). A number
of criticisms may arise from this inference, such as the real-
ism  of  the  LGM  CMIP  simulations,  uncertainties  underly-
ing proxies used for observational reference, and the use of
paleoclimates  as  a  surrogate  for  global  warming  (differ-
ences in temperature patterns,  albedo feedback etc.).  These
uncertainties may partly explain the frequent weak correla-
tions found between paleoclimate indices and climate projec-

tions, and the difficulty in narrowing the spread in models' cli-
mate  sensitivity  estimates  from  paleoclimate-based  emer-
gent  constraints  (Schmidt  et  al.,  2013; Harrison  et  al.,
2015).

7.    Have  emergent  constraints  thus  far  nar-
rowed the spread of climate sensitivity?

±

Table 1 lists 14 emergent constraints that provide best es-
timates  for  climate  sensitivity  using  various  predictors
(without  paleoclimate  indexes).  Here,  I  consider  whether,
taken together, they reduce the raw model uncertainty (e.g.,
3.4 0.8 K for CMIP5 models). For that purpose, a density es-
timate  is  generated  based  on  11  ECS  emergent  constraints
that provide the mean and standard deviation of more likely
ranges  (Table  1).  These  values  correspond  to  moments
provided by the  authors  if  available,  or  estimated from the
emergent relationship (and thus correspond to a raw estim-
ate of the real posterior estimate). Due to the small sample, I
use a kernel bandwidth of 1.0°C. This provides a density dis-
tribution with a 5%–95% range of 2.2°C–4.9°C and a medi-
an  of  3.8°C. Figure  4 shows  that  this  unweighted  distribu-
tion is close to the prior distributions, yet slightly skewed to-
wards  high  ECS  values  (explained  by  most  emergent  con-
straints with higher-than-average ECS values).

Here, an equal weight is attributed to each distribution,
which  assumes  that  emergent  constraints  are  equally  valu-
able. Knowing the various levels of credibility emergent con-
straints  could  receive  (Caldwell  et  al.,  2018),  this  assump-
tion  remains  a  crude  approximation.  Conversely,  quantify-
ing  this  credibility  would  permit  weighting  each  emergent
constraint  and  providing  more  reliable  posterior  distribu-
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Fig. 4. Probability density distributions of ECS. The black and
gray  density  distributions  show  the  original  CMIP3  and
CMIP5  model  distributions.  The  11  emergent  constraints  of
ECS are shown as a normal distributions, with the mean (color
dots) and standard deviation listed in Table 1. Unweighted and
weighted  density  distributions  aggregated  over  the  11
emergent constraints are shown as green full and dashed lines
respectively. A kernel bandwidth of 1.0°C is used and weights
are computed as the reciprocal of the variance.
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tions.  However,  various  ways  of  combining  and  weighting
the  constraints  exist.  Standard  deviation  associated  with
each  constraint  is  somehow related  to  this  level  of  confid-
ence, given its link with the model ensemble (section 2.2.3)
and observation uncertainties (section 2.2.2). Thus, I attrib-

ute  a  relative  weight  of  to  each  emergent  constraint,

which  corresponds  to  an  optimal  weighting  method  under
the  assumption  that  distributions  are  independent  and  nor-
mally distributed. Figure 4 shows that the weighted density
distribution is closer to the raw CMIP distributions and nar-
rower that the unweighted distribution (a 5%–95% range of
2.3°C–4.6°C and a median of 3.7°C). Differences between un-
weighted and weighted distributions are partly related to the
strong  relative  weight  given  to  some  emergent  constraints
(e.g., Volodin,  2008).  The  weighting  framework  suffers
from  several  biases,  such  as  the  lack  of  statistical  consist-
ency across various constraints, the overconfidence of obser-
vational estimates, or the different set of models used for com-
puting emergent constraints.

The  disagreement  between  emergent  constraints  and
their large uncertainties therefore does not significantly nar-
row  the  original  spread  in  ECS.  This  suggests  that  emer-
gent constraints need to be better assessed through a verifica-
tion of physical mechanisms explaining the relationship (Cald-
well et al., 2018; Hall et al., 2019). This would help in provid-
ing better weights quantifying the credibility of emergent con-
straints and thus provide more reliable averaged ranges for
narrowing the spread in climate change projections. Finally,
statistical inference and observational uncertainties must be
better informed for cross-validation of posterior estimates.

8.    Conclusions

This  paper  presents  the  concept  of  emergent  con-
straints, a methodology that aims to narrow uncertainties in
climate  change  projections  by  identifying  a  link  between
them and the intermodel spread in an observable predictor.
In  the  last  decade,  the  number  of  studies  using  this  frame-
work has grown significantly and provided constraints on vari-
ous climate projections (an exhaustive list of published emer-
gent  constraints  is  presented  in Table  1).  The  majority  fo-
cused  on  narrowing  uncertainties  in  ECS,  cloud  feedback,
and carbon cycle feedbacks. Others focused on components
of the climate system in relation to changes in the hydrologic-
al cycle, the cryosphere, or the dynamical shift of the midlatit-
ude  jet,  among  others.  Predictors  can  be  grouped  in  two
main  categories:  natural  variations  of  the  variable  of  in-
terest with temperature variability, or a mean feature of the
climate  system.  This  sometimes  leads  to  metrics  not  dir-
ectly related to the considered predictand. Physical explana-
tions for emergent constraints are diverse and thus most of
them remain  to  be  confirmed.  Weighting  the  credibility  of
emergent constraints would very likely increase the confid-
ence in posterior estimates aimed at narrowing the spread in

climate projections.
The diversity of emergent constraints highlights the com-

mitment of the climate community to narrowing uncertain-
ties in climate projections. This interest will likely continue
to grow since a large number of changes in climate phenom-
ena simulated by models remain uncertain, even when funda-
mental  mechanisms  are  relatively  well  understood  (e.g.,
changes in monsoons, heat waves, cyclones). The emergent
constraint framework can thus be seen as a new and prom-
ising  way  to  evaluate  climate  models  (Eyring  et  al.,  2019;
Hall  et  al.,  2019),  especially  with  the  upcoming  CMIP6,
which will very likely boost this enthusiasm. However, this
calls for robust statistical inference for providing credible un-
certainty reductions. In that respect, the code used for quanti-
fying inference and uncertainties  in Fig.  4 with two differ-
ent methods is shared1. Quantifying posterior estimates with
different frameworks (either from inference or model weight-
ing)  allows  testing  the  confidence  in  predictions.  Further
work would consist of continuing to test different statistical
inference  procedures  and  build  multi-predictor  weighting
methods to  benefit  from the  number  of  proposed emergent
constraints.

Beyond  the  post-facto  model  evaluation,  it  will  ulti-
mately  be  interesting  to  see  whether  new  climate  models
take advantage of emergent constraints to improve their simu-
lation of present-day climate and to reduce uncertainties in fu-
ture projections.
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