
 
 

System of Multigrid Nonlinear Least-squares Four-dimensional
Variational Data Assimilation for Numerical Weather

Prediction (SNAP): System Formulation and
Preliminary Evaluation

Hongqin ZHANG1,2, Xiangjun TIAN*1,2,3, Wei CHENG4, and Lipeng JIANG5

1International Center for Climate and Environment Sciences, Institute of Atmospheric Physics,

Chinese Academy of Sciences, Beijing 100029, China
2University of Chinese Academy of Sciences, Beijing 100049, China

3Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,

Nanjing University of Information Science and Technology, Nanjing 210044, China
4Beijing Institute of Applied Meteorology, Beijing 100029, China

5National Meteorological Information Center, China Meteorological Administration, Beijing 100081, China

(Received 6 November 2019; revised 9 July 2020; accepted 17 July 2020)

ABSTRACT

A  new  forecasting  system—the  System  of  Multigrid  Nonlinear  Least-squares  Four-dimensional  Variational  (NLS-
4DVar)  Data  Assimilation  for  Numerical  Weather  Prediction  (SNAP)—was  established  by  building  upon  the  multigrid
NLS-4DVar data assimilation scheme, the operational Gridpoint Statistical Interpolation (GSI)−based data-processing and
observation  operators,  and  the  widely  used  Weather  Research  and  Forecasting  numerical  model.  Drawing  upon  lessons
learned from the superiority of the operational GSI analysis system, for its various observation operators and the ability to
assimilate  multiple-source  observations,  SNAP  adopts  GSI-based  data-processing  and  observation  operator  modules  to
compute the observation innovations. The multigrid NLS-4DVar assimilation framework is used for the analysis, which can
adequately correct errors from large to small scales and accelerate iteration solutions. The analysis variables are model state
variables,  rather  than  the  control  variables  adopted  in  the  conventional  4DVar  system.  Currently,  we  have  achieved  the
assimilation  of  conventional  observations,  and  we  will  continue  to  improve  the  assimilation  of  radar  and  satellite
observations  in  the  future.  SNAP  was  evaluated  by  case  evaluation  experiments  and  one-week  cycling  assimilation
experiments. In the case evaluation experiments, two six-hour time windows were established for assimilation experiments
and  precipitation  forecasts  were  verified  against  hourly  precipitation  observations  from  more  than  2400  national
observation  sites.  This  showed  that  SNAP  can  absorb  observations  and  improve  the  initial  field,  thereby  improving  the
precipitation  forecast.  In  the  one-week  cycling  assimilation  experiments,  six-hourly  assimilation  cycles  were  run  in  one
week. SNAP produced slightly lower forecast RMSEs than the GSI 4DEnVar (Four-dimensional Ensemble Variational) as
a  whole  and  the  threat  scores  of  precipitation  forecasts  initialized  from  the  analysis  of  SNAP  were  higher  than  those
obtained from the analysis of GSI 4DEnVar.
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Article Highlights:

•  The  establishment  of  SNAP  builds  upon  the  multigrid  NLS-4DVar  assimilation  scheme,  the  GSI-based  observation
operators, and the WRF model.

•  The multigrid NLS-4DVar framework with fast localization corrects multiscale errors and accelerates iteration solutions.
•  By assimilating conventional observations, the performance of SNAP is slightly better than that of GSI 4DEnVar.
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1.    Introduction

The  accuracy  of  the  initial  conditions  largely  determ-
ines  the  success  or  failure  of  numerical  weather  prediction
(NWP). Data assimilation systems can provide accurate ini-
tial  fields  using  optimization  theory  and  methods  to  fully
integrate the increasing amount of observations and numer-
ical  simulations,  further  improving  NWP  (Courtier  et  al.,
1994; Evensen, 1994; Rabier et al., 2000). The four-dimen-
sional  variational  data  assimilation  (4DVar)  system,  which
is widely used in operational NWP centers (Lewis and Der-
ber,  1985; Courtier  et  al.,  1994; Rabier  et  al.,  2000; Ros-
mond and Xu, 2006; Gauthier et al., 2007), has the follow-
ing attractive features:  (1)  a  numerical  forecast  model  that,
as a strong constraint, ensures a physically concordant ana-
lysis;  (2)  the  capability  to  simultaneously  assimilate  mul-
tiple-time and multiple-source observations; and (3) the back-
ground error covariance is implicitly evolved by tangent lin-
ear  and  adjoint  models  over  the  assimilation  window
(Courtier  et  al.,  1994; Lorenc,  2003a),  beginning  with  a
static one. In the process of minimizing the 4DVar cost func-
tion,  the  adjoint  and  tangent  models  are  indispensable.
However, coding, maintenance, and updating the adjoint/tan-
gent  models  of  the  forecast  model  can  be  extremely  diffi-
cult, especially when the forecast model is strongly nonlin-
ear and the physical parameterization scheme includes discon-
tinuities  (Xu,  1996).  The  ensemble  Kalman  filter  (EnKF)
data  assimilation  system  (Evensen,  1994, 2003;
Houtekamer  and  Mitchell,  1998)  has  become  increasingly
popular due to its relatively simple concept and implementa-
tion, as well as the ensemble-estimated flow-dependent back-
ground  error  covariance  (Houtekamer  and  Mitchell,  1998;
Anderson,  2001; Houtekamer et  al.,  2005; Evensen,  2007).
Notably, the Canadian Meteorological Center has operation-
ally  applied  the  EnKF-based  ensemble  forecasting  system
(Houtekamer and Mitchell, 2005). Nevertheless, it lacks the
temporal smoothness constraint of the 4DVar system due to
assimilating  observations  sequentially.  Thus,  although  the
4DVar-  and  EnKF-based  data  assimilation  systems  have
their  own advantages  and  disadvantages,  together  they  can
be  complementary.  Great  efforts  have  been  made  to
advance data assimilation methods by coupling 4DVar and
EnKF  to  exploit  their  strengths  and  offset  their  respective
weaknesses (Hamill and Snyder, 2000; Lorenc, 2003b). The
literature  (i)  contains  many  introductions  to  the  develop-
ment and application of hybrid 4DVar methods (Buehner et
al., 2010a, b; Zhang and Zhang, 2012; Clayton et al., 2013;
Kuhl  et  al.,  2013; Lorenc,  2013),  which  solve  the  analysis
increment under the 4DVar assimilation framework requir-
ing  adjoint  and  tangent  linear  models  and  partly  introduce
the ensemble-estimated flow-dependent background error cov-
ariance,  and  (ii)  indicates  4DEnVar  (Four-dimensional
Ensemble Variational) makes the most of the linear assump-
tion between the observation perturbations and the model per-
turbations to approximate a tangent linear operator and elimin-
ate the dependence on the adjoint and tangent linear models.
Therefore,  the  implementation  of  4DEnVar  is  significantly

simplified (Qiu et al.,  2007; Tian et al.,  2008; Wang et al.,
2010; Tian et al., 2011; Tian and Feng, 2015).

Nonlinear  least-squares  four-dimensional  variational
assimilation (NLS-4DVar; Tian and Feng, 2015; Tian et al.,
2018) is  a  distinctive 4DEnVar method that  transforms the
cost function of 4DEnVar into a nonlinear least-squares prob-
lem.  NLS-4DVar  is  solved  by  Gauss−Newton  iteration,
which is employed to handle non-quadratic, nonlinear fore-
cast  models  and  observation  operators.  Similarly,  NLS-
4DVar  uses  the  ensemble-estimated  flow-dependent  back-
ground error covariance and no longer requires the tangent lin-
ear and adjoint models based on the assumption of a linear
relationship between the model perturbations and the simu-
lated observation perturbations.  It  is  worth mentioning that
Zhang and Tian (2018a) developed an ensemble expanding
localization of NLS-4DVar based on an efficient local correla-
tion  matrix  decomposition  approach,  which  simplifies  the
complicated localization process and greatly improves the cal-
culation  efficiency  and  assimilation  accuracy,  granting  the
NLS-4DVar method great potential for operational applica-
tion.  In  addition,  it  is  well  known  that  the  multigrid  tech-
nique is an effective iterative acceleration method for solv-
ing linear and nonlinear problems (Briggs et al., 2000) at dif-
ferent  grid  scales.  Introducing  the  multigrid  technique  into
data  assimilation  can  correct  errors  at  different  grid  scales
(Xie et  al.,  2005, 2011; Li  et  al.,  2008, 2010, 2013; Zhang
and  Tian,  2018b).  At  present,  multigrid  3DVar  is  widely
used,  but  the  application  of  multigrid  EnKF  or  multigrid
4DVar methods is rare. The former is mainly because multi-
grid  EnKF  requires  ensembles  at  different  resolutions,
which incurs a high computational cost. The latter is mainly
because the solving process of 4DVar is strongly dependent
on adjoint  and tangent  linear  models.  Consequently,  multi-
grid 4DVar naturally requires adjoint and tangent linear mod-
els at different grid scales with high computational cost and
difficulty. Zhang  and  Tian  (2018b) developed  an  effective
multigrid NLS-4DVar that only needs to conduct ensemble
simulations  at  the  finest  grid.  Compared  to  the  standard
NLS-4DVar (Tian and Feng, 2015), the computational cost
of  multigrid  NLS-4DVar  decreases  with  higher  assimila-
tion accuracy.

The Gridpoint Statistical Interpolation (GSI) analysis sys-
tem  at  the  National  Centers  for  Environmental  Prediction
(NCEP) is established in physical space, thus facilitating par-
allel  computing  and  operational  applications  (Wu  et  al.,
2002; Kleist  et  al.,  2009),  and  originates  from  the  opera-
tional Spectral Statistical Interpolation system. The GSI sys-
tem  has  excellent  observation  operators  and  can  simultan-
eously assimilate a variety of observations (including conven-
tional,  radar,  and  satellite  observations; Benjamin  et  al.,
2004; Skamarock and Klemp, 2008; Zhu et al., 2013; Pan et
al., 2014, 2018; Benjamin et al., 2016). In terms of observa-
tion operators, GSI is one of the most advanced and mature
analysis systems worldwide. Zhu et al. (2013) borrowed the
data-processing and observation operators from GSI to estab-
lish a regional EnKF system. Currently, more than 20 conven-
tional observations (including satellite retrievals) and satel-
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lite radiance/brightness temperature observations from mul-
tiple satellites as well as others (containing global position-
ing  system  radio  occultations  and  radar  data,  etc.)  can  be
assimilated (Hu et al., 2018).

The purpose of this  paper is  to document the develop-
ment and verification of the System of Multigrid Nonlinear
Least-squares Four-dimensional Variational Data Assimila-
tion for Numerical Weather Prediction (SNAP). The key com-
ponents  of  SNAP  are  the  multigrid  NLS-4DVar  assimila-
tion scheme and the GSI-based data processing and observa-
tion  operators.  SNAP  can  assimilate  all  available  observa-
tions  in  the  operational  GSI  system.  At  present,  conven-
tional  observations  are  assimilated,  and  the  assimilation  of
radar  and  satellite  observations  are  undergoing  improve-
ments.  Furthermore,  SNAP  has  been  fully  evaluated  by  a
group of case evaluation experiments and another group of
one-week  cycling  assimilation  experiments  by  assimilating
conventional observations.

This  paper  is  organized as follows.  Section 2 provides
an introduction to SNAP. Section 3 describes the case evalu-
ation experiments for SNAP. The one-week cycling assimila-
tion evaluation experiments are discussed in section 4. A sum-
mary and concluding remarks are presented in section 5.

2.    SNAP

As noted previously, SNAP is constructed based on the
multigrid NLS-4DVar method and the GSI-based data-pro-
cessing  and  observation  operator  module,  which  uses  the
dynamic  core  of  the  Advanced  Research  version  of  the
Weather Research and Forecasting model (WRF-ARW) and
can  assimilate  multiple-source  observations. Figure  1

yk −Hk (xk)
k = 0,1,2, . . . ,S

presents  a  flowchart  of  SNAP.  The system runs  six-hourly
assimilation cycles and the analysis time is at the beginning
of the assimilation window. The WRF model is used for ana-
lysis−forecast cycles. SNAP has three grid scales, and at a cer-
tain grid scale the observation innovations  with
multi-time (  is the observation time) are calcu-
lated by the GSI-based data-processing and observation oper-
ator module, and the NLS-4DVar with an efficient localiza-
tion  scheme  solves  iteratively  to  obtain  the  analysis.  Not-
ably,  the  assimilation  analysis  of  SNAP  is  in  the  model
space and the analysis variables are the model prognostic vari-
ables.  Currently,  the  analysis  variables  are  the  horizontal
wind u/v, perturbation potential temperature T, perturbation
pressure P, and water vapor mixing ratio q. The analysis vari-
ables can be added flexibly according to the specific assimila-
tion problems.  Additional  details  about the multigrid NLS-
4DVar method are given below.

2.1.    Multigrid  NLS-4DVar  method  and  covariance
localization

x′(i)
i = 1,2, · · · ,n

n = 3
n = 1

The multigrid NLS-4DVar method described by Zhang
and Tian (2018b) is used to obtain the analysis. The funda-
mental principle of multigrid NLS-4DVar is to sequentially
minimize the 4DVar cost functions from the coarsest to the
finest  grid  scales  to  obtain  the  analysis  increment 
(  is the grid scale) at the ith grid scale (outer itera-
tion),  which  is  solved  iteratively  with  the  NLS-4DVar
method  (inner  iteration).  Three  grid  scales  are  adopted  by
SNAP, i.e., .  If  the  solution of  NLS-4DVar is  only at
the  finest  grid  scale  ( ),  we  define  it  as  “SNAP_S”.  It
should  be  noted  that  multigrid  NLS-4DVar  can  be  recog-
nized as the multi-scale iterative method for NLS-4DVar. In

 

 

Fig. 1. Framework diagram of SNAP.
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the  multigrid  NLS-4DVar  scheme,  the  background  is
updated by the analysis of the previous grid level, which is
the  same  as  the  usual  iterative  scheme  adopted  by  tradi-
tional  4DVar.  In such an iterative scheme, the initial  value
of the ith iterative step is updated by the analysis of the (i −
1)th iterative step.

x′ = x− xb xb ∈ Rnx

nx

Px x′ = Pxβ Px = (x′1, x
′
2, · · · , x′N) β = (β1,

β2, · · · ,βN)T x′j = x j− xb x j j = 1,2, · · · ,N
B

As  an  advanced  4DEnVar  method,  NLS-4DVar  (Tian
and Feng, 2015; Tian et al., 2018) assumes that the optimal
analysis  increment  (  is  the  background,

 is the dimension of the state variables) can be character-
ized as a linear combination of the initial ensemble perturba-
tion ;  that  is, , , 

, ,  and  ( )  is  the jth
ensemble  and  the  background  error  covariance  [  =
PxPx

T/(N−1)] is estimated by short-term forecast ensembles.
By  substituting  the  above  assumptions  and  minimizing  the
incremental  form  of  the  4DVar  cost  function  by  the
Gauss−Newton  iteration  method  (Dennis  and  Schnabel,
1996), Tian and Feng (2015) obtained 

β(l) =β(l−1)+

S∑
k=0

(
P∗y,k
)T

L′k
(
Pxβ

(l−1)
)
+

S∑
k=0

(
P#

y,k

)T [
y′obs,k −L′k

(
Pxβ

(l−1)
)]
, (1)

where: 

(
P∗y,k
)T
= − (N −1)

(N −1)I+
S∑

k=0

(
Py,k

)T
(Rk)−1 Py,k

−1

·
 S∑

k=0

(
Py,k

)T
Py,k

−1(
Py,k

)T
, (2)

 

(
P#

y,k

)T
=

(N −1)I+
S∑

k=0

(
Py,k

)T
(Rk)−1 Py,k

−1(
Py,k

)T
(Rk)−1 .

(3)

Py,k =
(
y′1,k,y

′
2,k, · · · ,y′N,k

)
y′j,k = L′k

(
x′j
)

Rk

L′k (x′) = L′k (xb+ x′)−
Lk (xb) Lk = Hk Mt0→tk y′obs,k = yobs,k −Lk (xb) Hk

Mt0→tk (·)
t0 tk yobs,k ∈ Rny,k

tk ny,k
∑S

k=0ny,k = ny yobs,k

ny

S +1
l = 1,2, · · · , lmax

lmax

Where , and .  is the
observation  error  covariance  matrix. 

, , .  is the obser-
vation  operator  of  GSI.  is  the  nonlinear  forecast
model integration from  to .  are the observa-
tions at , ( )  is  the dimension of  and

 is the total number of observations in the assimilation win-
dow. k is the observation time,  is the total number of
observation times in the assimilation window.
is  the  number  of  iterations  and  is  the  maximum itera-
tion number. The optimal analysis increment is: 

x′ = Pxβ
(lmax) . (4)

According  to Zhang  and  Tian  (2018b),  the  cost  func-
tion can generally reach the minimization convergence stand-
ard  after  three  iterations.  Because  the  multigrid  technique

lmax = 1
can  speed  up  the  convergence  and  SNAP  has  three  grid
scales, the maximum iterations of each grid scale is .
In fact,  the above formulas [Eqs.  (1)  and (4)]  are  the solu-
tion of NLS-4DVar without the localization scheme.

N
B

However,  due  to  the  limited  number  of  ensembles ,
the  ensemble-estimated  contains  spurious  correlations
and further  results  in  spurious analysis  increments.  In  gen-
eral,  the  localization  process  (Houtekamer  and  Mitchell,
1998; Hamill et al., 2001; Tian et al., 2018; Zhang and Tian,
2018a) can alleviate this problem. Tian and Feng (2015) con-
sidered  spatial  distance−based  correlations  between  grid
points  and  observation  sites,  which  computes  correlations
repeatedly  between  the  grid  points  and  observation  sites
with higher calculation cost, especially at higher model resolu-
tions and with a massive number of observations. Tian et al.
(2018) proposed  an  equivalent  fast  localization  scheme
based on ensemble expanding localization,  which is  neces-
sary to  construct  moderation functions  to  act  on the model
and observation space respectively. The analysis increment
is as follows: 

β(l)
ρ =β

(l−1)
ρ +

S∑
k=0

(
ρo,k < e > P∗y,k

)T
L′k
(
Px,ρβ

(l−1)
ρ

)
+

S∑
k=0

(
ρo,k < e > P#

y,k

)T [
y′obs,k −L′k

(
Px,ρβ

(l−1)
ρ

)]
, (5)

 

x′ = Px,ρβ
(lmax)
ρ , (6)

Px,ρ = (ρm < e > Px) ρm ∈ Rnx×r ρo,k ∈ Rny,k×r

(< e >) Px,ρ = (ρm < e > Px) =
(
ρm,1x′1, · · · ,ρm,1x′N ,

ρm,2x′1, · · · ,ρm,2x′N , · · · ,ρm,r x′1, · · · ,ρm,r x′N
)

where , and  are
the moderation functions generated by the efficient local cor-
relation  matrix  decomposition  approach  (Zhang  and  Tian,
2018a). The subscripts “m” and “o” stand for the model and
observation  spaces,  respectively.  For  the  definition  of  the

 operator, 

.  It  should  be
noted  that  the  two  localization  schemes  in Tian  and  Feng
(2015) and Tian  et  al.  (2018) are  theoretically  equivalent.
However, the latter adopted the efficient local correlation mat-
rix  decomposition  approach,  which  only  uses  a  few  trun-
cated modes and does not need to repeatedly compute the cor-
relations between the grid  points  and the observation sites.
This greatly simplifies the complex localization process, espe-
cially  when  the  model  resolution  and  observations  are
increased (Zhang and Tian, 2018a; Tian et al., 2018).

2.2.    Initial ensemble generation and ensemble update

The initial ensemble perturbations are generated by the
random state variable method (Tian and Zhang, 2019, step2
b  and  c  in  section  2.2; Zhang,  2019,  appendix)  and  then
added to the background to obtain the initial ensembles. The
random state variable includes the singular value decomposi-
tion and the random orthogonal matrix (Evensen, 2007). In
the  real  assimilation  system,  the  state  variables  are  usually
composed of  multiple  state  variables,  such as  the u/v wind
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components, perturbation potential temperature T, perturba-
tion pressure P,  and water vapor mixing ratio q.  To reduce
the calculation cost and programming difficulty, all state vari-
ables were determined individually. The cost of calculation
and the difficulty of programming were reduced, and the dif-
ferences  in  units  and  magnitude  among  variables  were
avoided, along with increasing ensemble spreads.

SNAP  uses  the  covariance  relaxation  of Zhang  et  al.
(2009) to  inflate  the  background  error  covariance,  which
needs not only the prior perturbation, but also the posterior
perturbation as follows: 

Px,new = (1−α) Px,a+αPx . (7)

α
Px,a

Px

In this paper,  is equal to 0.8 (Zhang et al., 2009). The
posterior ensemble perturbation matrix  (subscript a for
analysis) is updated by the multiplication of  by a trans-
form matrix T (Hunt et al., 2007; Tian and Xie, 2012): 

T =
[
(N −1) P∗

]1/2 , (8)
 

P∗ =
(N −1) I+

S∑
k=0

(
Py,k

)T
R−1

k

(
Py,k

)−1

. (9)

2.3.    Verification techniques

(1) Root-mean-square error (RMSE) and correlation coef-
ficient (CC): 

RMSE =

√√
1
n

n∑
i=1

( fi−oi)2 , (10)

 

CC =

n∑
i=1

(
fi− f̄

)
(oi− ō)√

n∑
i=1

(
fi− f̄

)2√ n∑
i=1

(oi− ō)2

, (11)

oi ō
fi f̄

n

where  is  the  observation,  is  the  mean  of  all  observa-
tions,  is the forecast value,  is the mean of the forecast val-
ues, and  is the number of observation sites used for valida-
tion.

(2)  Precipitation  threat  score  (TS)  and  equitable  threat
score (ETS): 

TS =
a

a+b+ c
, (12)

 

ETS =
a−ar

a+b+ c−ar
, (13)

 

ar =
(a+b)(a+ c)

n
, (14)

where a is  the  number  of  correct  hits, b is  the  number  of
false alarms, c is the number of misses, d is the number of

n = a+b+ c+d
occasions that both forecast and observations are under a spe-
cific threshold, and , as shown in Tables S1
and S2 in electronic supplementary material (ESM).

(3) The relative percentage improvement (RPI, unit: %)
for the RMSE is computed as follows: 

RPIRMSE = 100
RMSEA−RMSEB

RMSEA
. (15)

RPIRMSEIf  the  value  is  positive,  this  means  that  the
experiment B has a smaller RMSE.

3.    Case evaluation experiments for SNAP

First,  a  group  of  case  evaluation  experiments  were
designed to evaluate SNAP and SNAP_S, by assimilating con-
ventional observations.

3.1.    Experimental setup

From  0000  UTC  8  June  2010  to  0000  UTC  9  June
2010, heavy precipitation occurred in South China, at a con-
centrated  precipitation  range  and  high  intensity.  The  rain
band was zonally distributed from the southwest to the north-
east. The 24-h accumulated precipitation exceeded 100 mm.

We used WRF-ARW version 3.7.1 as the numerical fore-
cast  model  in  the  following  numerical  experiments.  The
domain  covered  the  whole  of  China  in  the  region
(15.5°−43.5°N,  88.5°−131.5°E)  with  the  central  point  of
(30°N,  110°E).  SNAP  adopted  three  grid  scales  (coarsest,
fine, and finest) to conduct the assimilation analysis and the
model forecast was at the finest scale. The finest grid scale
contained 120 × 100 (longitude × latitude) grid points in the
horizontal direction, with 30-km grid spacing. The numbers
of  grid  points  in  the coarsest  and fine scales  were 30 × 25
and  60  ×  50,  with  horizontal  resolutions  of  120  km  and
60 km, respectively. It is worth noting that the latitude and
longitude  ranges  of  the  three  grid  scales  were  different,
because  the  simulation  domains  of  the  three  grid  scales  in
these  experiments  were  generated  with  the  same  center
point (30°N, 110°E) and the map projection (Lambert), but
the  grid  points  and  resolutions  were  different.  In  the  ver-
tical direction, we used 30 layers from η = 0 to η = 1. The
top pressure of the model layer was 50 hPa. The main phys-
ical components of the WRF model included the rapid radiat-
ive  transfer  model  for  longwave  radiation  (Mlawer  et  al.,
1997),  the  Dudhia  shortwave  radiation  scheme  (Dudhia,
1989),  the  Yonsei  University  planetary  boundary  layer
scheme  (Hong  et  al.,  2006),  the  Purdue  Lin  explicit  cloud
microphysics  parameterization  (Lin  et  al.,  1983; Rutledge
and Hobbs, 1984; Chen and Sun, 2002), and the Noah land
surface model land scheme (Chen and Dudhia, 2001). First-
guess  field  and  boundary  conditions  in  the  experiments
were generated using NCEP final (FNL) operational global
analysis data (http://rda.ucar.edu/datasets/ds083.2/).

Two  window  cycling  assimilation  experiments  were
designed.  The  length  of  each  assimilation  window was  six
hours ([−3, 3]). The first assimilation window (named W1)
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was  ranged  from  2100  UTC  7  June  2010  to  0300  UTC  8
June 2010 and the second assimilation window (named W2)
was  ranged  from  0300  UTC  8  June  2010  to  0900  UTC  8
June 2010. The analysis time was at  the beginning of each
assimilation window, at  which time the optimal  analysis  is
obtained by minimizing the cost function. In each assimila-
tion window, observations were assimilated hourly;  that  is,
each assimilation window contained seven observation bins,
and the assimilated observations were reprocessed as hourly
data  batches,  including  data  within -h  windows  ((−3,
−2.5], (−2.5, −1.5], (−1.5, −0.5], (−0.5, 0.5], (0.5, 1.5], (1.5,
2.5],  (2.5,  3]).  The  background  field  of  W1  was  a  12-h
model  forecast  initialized  by  NCEP/FNL  data  12  h  before
the  analysis  time.  The  control  (CNTL)  was  a  27-h  model
integration from the background field of W1 at the analysis
time (2100 UTC 7 June 2010) initialized using NCEP/FNL
operational global analysis data; 120 ensembles were used.
The  simulation  observations  and  observation  innovations
were generated through the GSI-based data  processing and
observation operator module. After calibrating the perform-
ance sensitivity to localization radius experiments, the hori-
zontal localization radius was 2100 km. The number of trun-
cated  modes  used  for  the  generation  of  and  were

 and  (Zhang and Tian, 2018a). The background
field of W2 was obtained by a 6-h model integration initial-
ized by the analysis field generated in W1 at its correspond-
ing analysis time.

The  conventional  observations  for  assimilation  were
from  the  China  Meteorological  Administration  (CMA)
National Meteorological Information Center, and were used
for  China’s  first-generation  global  atmospheric  reanalysis
product  (CRA-40),  which  consist  of  surface  and  upper-air
observations.  Surface  observations  were  available  from
ships, drifting buoys, land stations, and airports. In-situ meas-
urements  of  the  upper  air  were  available  from  radiosonde,
pilot  balloon,  aircraft,  and  wind  profile  data. Liao  et  al.
(2018) describe  the  integrated  conventional  data  sources,
the quality control process, evaluation procedure and rejec-
ted observations, etc. Figure 2 shows the horizontal distribu-
tion of the assimilated observations after the GSI-based data
processing (including read-in of observations, data thinning,
data time and localization check, and gross error check) and
observation operator module. Different colors represent the
observations assimilated at different times. For these evalu-
ation experiments, we focused on precipitation verification,
using the hourly precipitation observations from more than
2400 national observation sites.

3.2.    Experimental results

First,  the  experiments  of  the  first  assimilation  window
(W1)  were  used  to  comprehensively  evaluate  the  correct-
ness  of  SNAP.  The  precipitation  forecast  evaluation  is
described  in  section  3.2.1.  The  analysis  of  the  improve-
ments  of  the  initial  analysis  field  is  discussed  in  section
3.2.2. The parameters of SNAP were determined by sensitiv-
ity experiments (section 3.2.3). Furthermore, the cycle assimil-
ation  performance  of  SNAP  and  the  validity  of  the

ensemble perturbation update scheme are illustrated through
the experiments using the second assimilation window (sec-
tion 3.2.4).

3.2.1.    Precipitation forecast skill

Figure  3 shows  the  24-h  accumulated  precipitation
from  0000  UTC  8  June  2010  to  0000  UTC  9  June  2010,
which  initializes  from  2100  UTC  7  June  2010. Figure  3a
shows  the  precipitation  observations  (OBS)  obtained  from
the  hourly  accumulated  precipitation  of  more  than  2400
national observation stations. Figures 3b−d show the precipita-
tion forecasts obtained by model integration initialized from
CTRL  and  assimilation  analyses  of  SNAP_S  and  SNAP,
respectively.  The  precipitation  intensity  predicted  by  the
model (Figs. 3b−d) was greater than the cumulative precipita-
tion observations (Fig. 3a). Heavy precipitation of up to 100
mm mainly occurred in Anhui, southeast Hubei, and central
Hunan  (Fig.  3a).  At  the  same  time,  there  were  different
degrees of precipitation in northern Jiangxi, eastern and west-
ern  Guangxi,  and  western  Guangdong.  There  was  a  false
heavy  precipitation  center  at  the  junction  of  Anhui  and
Hubei,  where  the  precipitation  reached  140  mm  (Fig.  3b).
There was obvious false precipitation in central Jiangxi, and
the  precipitation  center  in  Hunan  was  to  the  southeast.  At
the same time, the precipitation forecast in western Guangxi
was markedly stronger. However, there was little precipita-
tion forecasting capability in western Guangdong. Figures 3c
and d show the  precipitation  forecast  simulated  by  models
of different  initial  fields,  generated through three iterations
at  a  single  grid  scale  (SNAP_S, Fig.  3c)  and  three  grid
scales with only one iteration at each grid scale (SNAP, Fig. 3d)
after  assimilating  conventional  observations.  Compared  to
CTRL  (Fig.  3b),  the  assimilation  of  conventional  observa-
tions  of  SNAP  reduced  the  false  precipitation  at  the  junc-
tion of central Jiangxi,  Anhui, and Hubei,  as well as to the
west  of Guangxi,  but  it  could not forecast  the precipitation
in western Guangdong. Comparing Figs. 3c and d, the cumu-
lative precipitation distribution of SNAP was closer to real-
ity  (Fig.  3a),  especially  in  Anhui,  northern  Jiangxi,  and
other areas, which to some extent showed the importance of
the multigrid assimilation framework.

 

Fig.  2.  Horizontal  distribution of  the assimilated observations
in  the  first  assimilation  window.  Different  colors  represent
different observation times.
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Table 1 presents the results of the quantitative analysis
of the RMSE and CC of precipitation forecasts and observa-
tions in the rainy region. The RMSE of CTRL and precipita-
tion observations was 21.07174. After assimilating conven-
tional  observations,  the  RMSE  of  SNAP_S  and  precipita-
tion observations was 18.87847. The RMSE of SNAP and pre-
cipitation  observations  (18.47027)  was  even  smaller  than
that  of  SNAP_S,  mainly  due  to  using  the  multigrid  NLS-
4DVar assimilation framework to  improve the assimilation
accuracy. At the same time, the CC (passing the t-test at the
99%  confidence  level)  between  SNAP  and  precipitation
observations  (0.702526)  was  larger  than  those  between

precipitation  observations  and  CTRL  (0.641511)/SNAP_S
(0.686377),  which  further  quantitatively  indicated  that  the
cumulative  precipitation  forecasts  of  SNAP  were  closer  to
the precipitation observations.

Figure 4 shows the 24-h cumulative precipitation TS val-
ues predicted from different initial fields. For the forecast of
light  rain,  the  scores  were  almost  the  same,  although
SNAP_S  was  slightly  better.  For  moderate  rain  and  heavy
rain,  SNAP_S  and  SNAP  were  better  than  CTRL,  and
SNAP was better than SNAP_S. For rainstorms, CTRL was
better  than  SNAP_S  and  SNAP,  and  SNAP_S  was  better
than  SNAP.  There  are  two  possible  reasons  for  these  res-

 

 

Fig.  3.  The  24-h  accumulated  precipitation  from 0000  UTC 8  June  2010  to  0000  UTC 9  June  2010  (units:  mm):
precipitation observations (a) OBS; and precipitation forecasts (b) CTRL; (c) SNAP_S; (d) SNAP.
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ults;  one  is  the  relatively  coarse  resolution  of  the  experi-
ments,  and the other is that only conventional observations
were assimilated, and they were sparse, representing a large
scale. For torrential rainfall,  the score was almost 0. It was
not surprising that the assimilation of conventional observa-
tions  led  to  a  higher  TS  than  CTRL.  These  results  further
demonstrate  that  the  multigrid  NLS-4DVar  assimilation
framework can further improve the initial field and precipita-
tion forecast.

Table  2 presents  a  comparison  of  the  CPU  times
required  for  SNAP and SNAP_S to  solve  the  optimal  ana-
lysis  field.  The  numerical  experiments  were  conducted  on
the TH-1A system of the National Supercomputer Center in
Tianjin, with 600 CPUs (50 nodes × 12 cores) and 5 TB of
memory,  and  all  assimilation  calculations  were  serial  on  a
single  node  single  core.  The  total  CPU  time  required  by
SNAP_S to obtain the optimal analysis field was 129.52 s,
with 31 584 observations used for  each iteration.  The total
CPU  time  of  SNAP  was  102.22  s  (Table  2).  Therefore,
SNAP was more efficient than SNAP_S. This was because
the  observation  operators  of  each  grid  scale  were  different
in the multigrid assimilation framework and the longitudes
and  latitudes  of  the  three  grid  scales  were  different  (the
finest grid scale covers the maximum domain, the fine grid
scale  comes  next,  and  the  coarsest  grid  scale  is  the  min-
imum coverage). Consequently, the number of observations
assimilated  at  each  grid  scale  had  a  certain  difference.  In
this experiment, 28 120, 30 338, and 31 584 assimilated obser-
vations were included, respectively, from the coarsest to the
finest  grid.  In  summary,  using  the  multigrid  assimilation
framework  SNAP  can  improve  the  assimilation  accuracy

using fewer observations and less computational cost (Table
2), while revising multiscale errors (Figs. 3 and 4, Table 1).

3.2.2.    Optimal initial analysis field

The  improvement  of  precipitation  forecasts  is  attrib-
uted  to  the  assimilation  of  conventional  observations  by
SNAP and SNAP_S to obtain the optimal initial field. Thus,
from the perspective of the initial field increment, the reas-
ons for the improvement of precipitation forecasts were ana-
lyzed. Figure 5 shows the analysis increment of water vapor
mixing ratio (SNAP-CTRL and SNAP_S-CTRL) at the ana-
lysis time of the 12th layer of the model (850 hPa). The ana-
lysis  increments  of  water  vapor  mixing  ratio  in  central
Jiangxi,  north  of  central  Hunan,  and  northeast  Anhui  were
negative,  and  they  were  revised  to  different  degrees  by
SNAP and SNAP_S (Figs. 5a and b), which was consistent
with  the  decreases  in  false  precipitation  in  central  Jiangxi,
Anhui, Hubei, and central Hunan of SNAP_S and SNAP com-
pared to CTRL (Figs. 3b−d). Figure 6 shows the vertical dis-
tribution of the water vapor mixing ratio analysis increment
(SNAP-CTRL and SNAP_S-CTRL) along 28°N. In the ver-
tical direction, the analysis increments of the water vapor mix-
ing  ratio  within  the  region  110−118°E  of  SNAP_S  and
SNAP  were  negative,  especially  below  400  hPa  (Fig.  6).
This is consistent with SNAP_S and SNAP weakening false
precipitation  in  central  Jiangxi  and  central  Hunan  (Fig.  3).
By comparing the precipitation forecasts in Fig. 3 and the ana-
lyses increment fields in Figs. 5 and 6, it could be seen that
central Jiangxi, Hunan, and the junction of Anhui and Hubei
in  the  central  region  of  the  precipitation  forecast  and  ana-
lysis increment field had a good corresponding relationship,
and  the  SNAP_S  and  SNAP  assimilation  systems  could
absorb well the observation information, improving the struc-
ture of  the initial  field,  thereby improving the precipitation
forecast.

3.2.3.    Sensitivity to the system parameters

Next, we conducted sensitivity experiments for the hori-
zontal  localization  radius  and  the  number  of  truncated
modes selected in SNAP, based on the RMSE, CC and TS
of  24-h  precipitation  forecasts  and  the  CPU  time  required
for assimilation calculations [Fig. S1, and Tables S3 in Elec-
tronic  Supplementary  Material  (ESM) and Table  3].  When
the localization radius was 2100 km, the RMSE was smal-

Table 1.   RMSE and CC values of 24-h cumulative precipitation
forecasts with different initial fields and observations.

CTRL SNAP_S SNAP

RMSE 21.07174 18.87847 18.47027
CC 0.641511 0.686377 0.702526

li (i = 1,2,3)
Li (i = 1,2,3)

Table 2.   CPU times required for SNAP and SNAP_S to solve the
optimal analysis field, in which  represents the number
of  iterations  of  SNAP_S  and  represents  the ith  grid
scale of SNAP.

CPU time (s)

SNAP_S SNAP

l1/L1 43.04 27.27
l2 /L2 42.98 32.02
l3/L3 43.30 42.93

Total CPU time 129.32 102.22

 

Fig. 4. The TS of 24-h cumulative precipitation classifications
from 0000 UTC 8 June 2010 to 0000 UTC 9 June 2010.

1274 SYSTEM OF MULTIGRID NLS-4DVAR DATA ASSIMILATION FOR NWP VOLUME 37

 

  



ler  and the CC was larger  (Fig.  S1).  At  the same time,  the
TS showed that for light rain, moderate rain, and heavy rain,
the local precipitation forecast with a radius of 2100 km had
an absolute advantage. In fact, when the localization radius
is about 1000 km, the distribution and intensity of precipita-
tion has been significantly improved (not shown). However,
by  comparing  all  the  indexes  of  assimilation  accuracy,  we
think  that  2100  km  is  the  best  localization  radius  in  these

experiments.  For  rainstorms  and  torrential  rainfall,  the  TS
of CTRL was higher. For the selected number of optimal trun-
cation modes, this section focuses on the assimilation accur-
acy and calculation efficiency,  as  shown in Table 3.  When
the cumulative variance was greater than 90%, the assimila-
tion  accuracy  was  significantly  improved  (Table  3).  In
terms of statistical error, when the cumulative variance was
95%,  there  was  a  smaller  RMSE and a  larger  CC (passing

 

 

Fig. 5. Analysis increment of the water vapor mixing ratio (units: g kg−1) at the 12th layer of the model (850 hPa):
(a) SNAP_S-CTRL; (b) SNAP-CTRL.

 

 

Fig. 6. Vertical distribution of the analysis increment of the water vapor mixing ratio (units: g kg−1) along 28°N: (a)
SNAP_S-CTRL; (b) SNAP-CTRL.
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the t-test at the 99% confidence level). For precipitation, the
TS of a precipitation forecast with a cumulative variance of
99%  was  better  than  that  for  95%,  except  for  light  rain.
However,  with  the  increase  of  the  truncated  mode  number
(cumulative variance), the CPU time for the assimilation cal-
culation also increased. Therefore, considering the assimila-
tion  accuracy  and  calculation  efficiency,  we  chose  the
optimal truncated mode number with a cumulative variance
of 95%; namely,  and .

3.2.4.    Results of the cycle system

The  two-window cyclic  assimilation  experiments  used
to  evaluate  SNAP  were  designed  by  continuous  assimila-
tion of observations (total of 12 hours), and the optimal ana-
lysis  field  was  obtained  at  the  start  of  the  second  window
(0300 UTC 9 June 2010). To verify the cyclic assimilation
performance of SNAP, the 12-h cumulative precipitation res-
ults  were  selected  for  evaluation  in  this  section. Figure  7
shows  the  12-h  cumulative  precipitation  distribution  from
0300  to  1500  on  9  June  2010.  SNAP  and  SNAP_S
improved the precipitation forecast through the assimilation
of conventional observations, which was closer to observa-
tions (Figs. 7a, c and d). Table 4 shows the RMSE and CC
of  12-h  cumulative  precipitation  forecasts  of  different  ini-
tial  fields  (CTRL,  SNAP_S,  and  SNAP).  The  RMSE  was
lower  for  SNAP_S  and  SNAP  than  for  CTRL,  while  CC
was greater than CTRL. In addition, SNAP was better than
SNAP_S.  Furthermore,  the TS of  the precipitation forecast
was  better  than  that  of  CTRL  except  for  torrential  rainfall
(Fig. 8). SNAP_S and SNAP were almost the same for the
precipitation forecast of light rainfall, moderate rainfall, and
rainstorms.  SNAP  was  better  than  SNAP_S  at  forecasting
heavy rainfall.  The above results all demonstrate the cyclic
assimilation capacity of SNAP and the effectiveness of the
ensemble perturbation updating scheme used for the second
assimilation window.

4.    One-week  cycling  data  assimilation
experiments

One-week  cycling  data  assimilation  experiments  were

designed to further evaluate SNAP compared to GSI 4DEn-
Var by assimilating conventional observations. Two experi-
ments  using  the  multigrid  NLS-4DVar  (called  SNAP)  and
GSI  4DEnVar  (called  GSI)  methods  were  conducted  to
obtain the analysis, respectively. The generation and update
schemes  of  ensembles  adopted  in  SNAP  were  also
examined.

4.1.    Experimental setup

The  one-week  (16−23  July  2016)  evaluation  experi-
ments  were  designed  with  continuous  six-hourly  assimila-
tion  cycles  throughout  this  period,  which  started  at  0300
UTC 16  July  2016  and  ended  at  0300  UTC 23  July  2016.
This  period  included  an  extreme  rainstorm in  North  China
(35°−43°N,  113°−122°E) that  occurred between 18 and 21
July 2016 (Fig. 9). There were two heavy rainfall centers in
North China. The first one was located in the Taihang Moun-
tains and occurred as a consequence of convective precipita-
tion.  The  second  one  was  located  in  south-central  Beijing
and occurred as a consequence of stratiform precipitation. A
30-h  forecast  was  generated,  initialed  from  the  six-hourly
cycled  multigrid  NLS-4DVar  assimilation  analyses.  Paral-
lel  experiments  using  the  GSI  4DEnVar  system  were  also
run to enable comparison with the GSI 4DEnVar scheme. It
should  be  noted  that  there  were  many  differences  between
SNAP  and  GSI  including  the  analysis  time  and  variables.
The  SNAP/GSI  analysis  time  was  at  the  beginning/middle
of the assimilation window, respectively. Therefore, a 27-h
forecast was generated, initialed from the six-hourly cycled
GSI  4DEnVar  assimilation  analyses  assimilating  the  same
observations  as  in  SNAP.  The  SNAP  analysis  variables
were  model  variables,  and the  GSI  analysis  variables  were
control  variables.  The  horizontal  localization  radius  of
SNAP was 300 km. Both the experiments  used seven time
levels of each assimilation window (as in section 3.1). Sixty
ensemble  members  were  employed.  Only  the  ensemble-
based background error covariance was used in both SNAP
and GSI. The total number of iterations solved by GSI was
100, including 2 outer loops and 50 inner loops. First-guess
field  and  boundary  conditions  were  generated  using
ECMWF  ERA-Interim  global  analysis  data  (https://apps.
ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/),

Table 3.   RMSE and CC values of 24-h precipitation observations and forecasts, and TSs of 24-h cumulative precipitation classifications
with  different  cumulative  variances  (truncated  modes)  and  CTRL.  CPU  times  required  for  SNAP  to  solve  the  optimal  analysis  with
different cumulative variances are also shown.

CTRL

Cumulative variances

rx = 7, ry = 690% ( ) rx = 9, ry = 795% ( ) rx = 11, ry = 999% ( )

RMSE 21.07174 19.06320 18.87847 19.09410
CC 0.641511 0.681729 0.686377 0.682230

0.1Threshold=  (mm) 0.7957 0.8030 0.8039 0.8019
10.0Threshold=  (mm) 0.6945 0.7114 0.7076 0.7095
25.0Threshold=  (mm) 0.5647 0.5843 0.5856 0.5963
50.0Threshold=  (mm) 0.3922 0.3315 0.3279 0.3405

100.0Threshold=  (mm) 0.05 0.0 0.0 0.0
Time (s) − 38.99 43.04 51.09
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which were available every 6 h and updated every day. The
model settings were the same as in section 3.1.

The conventional observational data for assimilation in
these evaluation experiments  were GDAS PrepBUFR data,
including  the  surface  observations  (land-reporting  stations,
ships,  buoys,  etc.)  and  the  upper-air  observations  (radio-

sondes,  aircrafts,  wind  profilers,  etc.).  The  observations
were treated in accordance with the time levels of the back-
ground and  ensembles.  The  forecasts  were  verified  against
the conventional observations from the CMA National Met-
eorological Information Center used for China’s first-genera-
tion  global  atmospheric  reanalysis  product  (CRA-40)  after
the GSI-based data-processing and observation operator mod-
ule, which converts relative humidity to humidity. Precipita-
tion verification used hourly precipitation observations from
2380 national observation stations.

4.2.    Experimental results

Figure  10 shows  the  one-week  and  domain-averaged

Table 4.   RMSE and CC values of 12-h cumulative precipitation
observations and forecasts for different initial fields.

CTRL SNAP_S SNAP

RMSE 8.831729 8.529635 8.470109
CC 0.7460064 0.7666475 0.7688572

 

 

Fig. 7.  The 12-h accumulated precipitation forecast from 0300 UTC 9 June 2010 to 1500 UTC 9 June 2010 (unit:
mm): precipitation observations (a) OBS; and precipitation forecast (b) CTRL; (c) SNAP_S; (d) SNAP.
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RMSEs at different forecast hours out of the assimilation win-
dow,  verified  against  all  the  conventional  observations  for
the u/v wind components, temperature, and humidity. It can
be  seen  that  the  averaged  RMSEs  of  SNAP  were  slightly
lower  than  those  of  GSI  at  most  forecast  hours,  especially
for u wind and temperature.  And for v wind and humidity,

the forecast improvements were evident. This may be due to
the  multigrid  NLS-4DVar  being  able  to  correct  multiscale
errors to improve the initial field and forecast.

Figures 11 and 12 show the vertical profiles of 6-h and
24-h forecast averaged RMSEs, verified against all conven-

 

Fig. 8. The TS of 12-h cumulative precipitation classifications
from 0300 UTC 9 June 2010 to 1500 UTC 9 June 2010.

 

Fig. 9.  The accumulated precipitation observations from 0000
UTC 18 July 2016 to 0000 UTC 22 July 2016 (unit: mm).

 

 

Fig.  10.  The  one-week  and  domain-averaged  RMSEs  at  different  forecast  hours  out  of  the
assimilation window from SNAP and GSI, verified against all conventional observations for
the (a) u and (b) v wind components, (c) temperature, and (d) humidity. The horizontal axis
shows the forecast hour.
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tional observations for the u/v wind components,  temperat-
ure, and humidity. It should be noted that the statistical val-
ues of 1000 hPa include the results for cases with pressure
greater than 1000 hPa. As can be seen from Fig. 11, for the
u/v wind  and  temperature,  SNAP  and  GSI  had  their  own
advantages in different pressure levels. According to Figs. 10
and 11,  the  6-h  forecast  averaged  RMSEs  of  SNAP  were
slightly lower than those of GSI for u/v wind. The 6-h fore-
cast averaged RMSEs of SNAP were also lower than those
of GSI for the humidity variable at most pressure layers, sug-
gesting a better analysis of all layer structures (Fig. 11 and
Table  5).  Except  for  the  higher  RMSEs  at  the  upper  level
for u wind, and at lower middle levels (700 hPa) for humid-
ity,  the  performance  of  SNAP was  superior  to  that  of  GSI
throughout the 24-h forecast (Fig. 12 and Table 5). For tem-
perature, SNAP was better at the upper pressure levels, sug-
gesting that the SNAP forecast was generally a better fit to

the observations than the GSI forecast.
To  quantify  the  improvement  of  SNAP  over  GSI,  the

RPI for RMSE was computed (Table 5). It can be seen from
Table 5 that SNAP produced slightly lower forecast RMSEs
than GSI 4DEnVar as a whole in the prediction verification
of u/v wind,  temperature  and  humidity  (Figs.  10−12).  The
6-h  forecast  averaged  RMSE  of u wind  was  improved  by
20.81%  at  50  hPa,  which  represents  the  largest  improve-
ment among all variables and the 24-h RPI at above 400 hPa
was  positive,  which  means  that  SNAP has  a  good forecast
of u wind in the middle and lower layers. For the humidity,
except for the 700- and 400-hPa levels, the values of the 24-h
RPI  were  positive.  For  the v wind and temperature,  SNAP
and GSI have their own advantages in different pressure lay-
ers.

Figure 13 shows the 12-h accumulated precipitation for
a case of extreme precipitation from 1800 UTC 19 to 0600

 

 

Fig. 11. Vertical profiles of the 6-h averaged RMSEs of the SNAP and GSI forecasts’ fit to
conventional observations for the (a) u and (b) v wind components,  (c) temperature and (d)
humidity for the testing period.
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Table 5.   The RPI of the RMSE for 6-h and 24-h forecasts over all forecast cycles throughout the experimental period.

Pressure (hPa)

RPIRMSE

u (%) v (%) T (%) q (%)

6-h 24-h 6-h 24-h 6-h 24-h 6-h 24-h

50 20.81 −6.26 −0.85 0.07 −0.82 −5.44 − −
100 −0.29 −0.82 9.29 −1.24 −0.9 0.37 − −
200 −4.26 −0.23 4.46 2.89 −0.52 2.91 − −
300 0.37 2.61 3.13 2.81 −3.99 3.29 3.36 0.35
400 0.56 −1.06 4.29 −4.51 −0.94 5.33 −0.72 −1.38
500 0.75 1.41 −1.447 0.96 −2.35 2.34 4.92 2.75
600 −7.35 1.51 3.31 −0.06 −1.42 0.54 2.67 4.34
700 −3.27 2.82 −2.27 1.93 1.24 −1.38 5.56 −11.95
800 4.16 2.91 −3.68 2.85 2.32 −1.19 1.93 0.01
900 −0.19 1.47 −4.09 0.68 −0.04 −0.54 −0.01 0.56

1000 1.06 0.96 −3.64 −1.04 −0.17 −1.28 −0.15 1.41

 

 

Fig. 12. As in Fig. 11 but for the 24-h forecast averaged RMSEs.
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UTC 20 July 2016 in North China. Figure 13a shows the pre-
cipitation observations (OBS) obtained from hourly precipita-
tion observations of 2380 national observation stations; the
amount  of  12-h  accumulated  precipitation  exceeded  140
mm. Figures  13b and c show  the  12-h  precipitation  fore-
casts  of  SNAP  and  GSI,  respectively.  It  can  be  seen  from
Fig.  13 that  the  precipitation  forecast  intensity  (Figs.  13b
and c) was weaker than the observed precipitation (Fig. 13a).
Heavy  rainfall  mainly  occurred  in  the  Taihang  Mountains,
the south-central part of Beijing, and Tianjin. SNAP was bet-
ter than GSI for predicting the location of precipitation. Fur-
thermore, the RMSEs and spatial CCs between the observa-
tions  and precipitation forecasts  of  SNAP/GSI were  30.20/
30.39  and  0.82/0.81  respectively,  which  quantitatively
showed that the performance of SNAP was superior to GSI.
Figure 14 shows the 12-h accumulated precipitation classifica-
tion ETS values for thresholds of 5, 15, 30, 70 and 100 mm.
It  can be seen that,  except  for  the threshold of  70 mm and
100 mm, SNAP outperformed GSI for the other thresholds
shown.

Ensemble members are very important for the ensemble-
based data assimilation methods, which use the linear combin-
ation of ensemble perturbations to express the analysis incre-
ment.  Therefore,  the  generation  and  updating  strategy  of
ensemble perturbations are of great importance. In this part,
the  time  period  from  0300  UTC  19  to  1500  UTC  20  July
2016,  characterized  by  heavy  rainfall  events,  was  selected
by the ensemble spread test, which had six assimilation win-
dows. Figure 15 shows time series of ensemble spread dur-
ing the test period for the u/v horizontal wind components,
perturbation potential  temperature T,  and water  vapor mix-
ing ratio q state variables.  It  can be seen that the ensemble
spread  did  not  decrease  with  the  increase  in  forecast  time,
and showed a cyclic characteristic in each assimilation win-
dow.  For  the u and q variables,  the  ensemble  spread  in  an
assimilation window was reduced. However, for the v and T
variables, the ensemble spread was first smaller, and then lar-
ger  in each assimilation window, which may be due to the
nonlinearity  of  the  numerical  model.  The  assimilation  res-

 

Fig.  13.  The  12-h  accumulated  precipitation  forecast  from
1800  UTC  19  to  0600  UTC  20  July  2016  (unit:  mm):
observations (a) OBS; forecasts (b) SNAP and (c) GSI.

 

Fig.  14.  The  ETS  of  12-h  cumulative  precipitation
classifications from 1800 UTC 19 to 0600 UTC 20 July 2016.

NOVEMBER 2020 ZHANG ET AL. 1281

 

  



ults  showed  that  the  generation  and  update  schemes  of
ensemble perturbations adopted in this study were effective.

5.    Summary and concluding remarks

This paper describes a newly developed, SNAP, based
on  the  multigrid  NLS-4DVar  assimilation  framework  and
the GSI-based quality control and observation operator mod-
ules,  which  was  evaluated  with  the  WRF-ARW  numerical
forecast model. The particular advantages of SNAP are as fol-
lows:

•  It  can  effectively  absorb  multiple-source  (conven-
tional, radar, and satellite) observations.

• It makes full use of GSI-based data-processing (includ-
ing  quality  control  and  thinning)  and  observation  operator
modules to generate observation innovation.

•  The  multigrid  NLS-4DVar  assimilation  framework
can sequentially revise multiscale errors and accelerate iterat-
ive  convergence,  thus  improving  the  assimilation  accuracy
and computational efficiency.

• The application of the fast localization scheme simpli-
fies the complicated localization process and makes it  pos-
sible  for  the  NLS-4DVar  method  to  be  applied  operation-
ally.

In the case evaluation experiments, compared to observa-
tions, CTRL produced a strong false heavy precipitation cen-
ter,  and  the  weak  precipitation  area  of  observations  was
strengthened.  SNAP  eliminated  the  false  heavy  precipita-
tion  center  by  assimilating  the  conventional  observations,
which  effectively  weakened  the  false  heavy  precipitation,
and  the  position  of  the  heavy  precipitation  also  improved.
The analysis increment was in good agreement with the pre-

cipitation  forecast,  which  indicates  that  SNAP  can  effect-
ively  absorb  observation  information,  improve  the  initial
field,  and  further  improve  the  precipitation  forecast.  In  the
one-week  cycle  assimilation  experiments,  the  averaged
RMSEs of SNAP were slightly lower than those of GSI for
the u/v wind  components, T,  and q,  as  a  whole.  Further-
more,  precipitation  verification  experiments  showed  that
SNAP outperformed GSI.

ρm,(i) ρo,(i)

At present, in SNAP, the assimilation of radar, satellite,
and  other  unconventional  observations  is  still  in  progress.
At  the  same  time,  for  the  localization  scheme  of  multigrid
NLS-4DVar,  and  at  the ith grid scale are extrac-
ted from the finest grid scale without the multiscale localiza-
tion strategy. In future work, the coupling between the multi-
grid NLS-4DVar assimilation framework and the multiscale
localization  strategy  will  be  studied.  In  addition,  how  to
choose  an  accurate  localization  radius  adaptively  and
robustly plays a vital role in building a mature assimilation
system.  SNAP  urgently  needs  the  development  of  such  an
adaptive  localization  scheme,  and  this  work  is  ongoing.
Assimilation  of  multiscale  observations  and  a  big
data−driven  NLS-4DVar  (Tian  and  Zhang,  2019)  consist-
ing  of  two  ensembles,  a  prepared  historical  “big  data ”
ensemble and a small “online” ensemble, is also underway
and will be introduced in future papers. Bias correction with
the NLS-4DVar method is also being investigated for satel-
lite data assimilation.
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