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ABSTRACT

Millimeter-wave cloud radar (MMCR) provides the capability of detecting the features of micro particles inside clouds
and  describing  the  internal  microphysical  structure  of  the  clouds.  Therefore,  MMCR  has  been  widely  applied  in  cloud
observations. However, due to the influence of non-meteorological factors such as insects, the cloud observations are often
contaminated  by  non-meteorological  echoes  in  the  clear  air,  known  as  clear-air  echoes.  It  is  of  great  significance  to
automatically  identify  the  clear-air  echoes  in  order  to  extract  effective  meteorological  information  from  the  complex
weather  background.  The  characteristics  of  clear-air  echoes  are  studied  here  by  combining  data  from  four  devices:  an
MMCR,  a  laser-ceilometer,  an  L-band  radiosonde,  and  an  all-sky  camera.  In  addition,  a  new  algorithm,  which  includes
feature  extraction,  feature  selection,  and  classification,  is  proposed  to  achieve  the  automatic  identification  of  clear-air
echoes. The results show that the recognition algorithm is fairly satisfied in both simple and complex weather conditions.
The recognition accuracy can reach up to 95.86% for the simple cases when cloud echoes and clear-air echoes are separate,
and 88.38% for the complicated cases when low cloud echoes and clear-air echoes are mixed.
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Article Highlights:

•  Measurements  from a  laser  ceilometer,  MMCR,  L-band  radiosonde,  and  all-sky  camera  are  used  to  delineate  clear-air
echoes and cloud echoes.

•  Features  are  filtered  using  the  Relief  algorithm  to  obtain  the  optimal  feature  subset,  from  which  the  neural  network
algorithm is trained to realize the automatic recognition of the clear-air echoes.

 

 
 

1.    Introduction

Since  the  first  Ka-band  millimeter-wave  cloud  radar
(MMCR) was developed by Paulsen in the 1970s for meteoro-
logical observation (Paulsen et al., 1970), it has been widely

used  in  the  field  of  cloud  observation.  Owing  to  its  short
wavelength and high sensitivity,  MMCR has the capability
of  detecting  the  internal  microphysical  structure  of  clouds,
such as  particle  sizes,  liquid  water  content,  and  drop spec-
tral  distributions  (Frisch  et  al.,  1995; Sassen  et  al.,  1999;
Kollias  and  Albrecht,  2000; Kollias  et  al.,  2001; Hogan  et
al., 2005; Lu et al., 2015). However, the atmospheric bound-
ary layer often has distinct features of daily variation and tur-
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bulence.  In  addition,  hydrometeors  are  not  the  only  source
of atmospheric backscattering (Luke et al., 2008). Although
cloud  radars  are  insensitive  to  the  Bragg  scattering  in  the
lower  troposphere,  MMCR  often  detects  echoes  on  sunny
days  without  the  presence  of  clouds  or  precipitation,  and
these  echoes  are  termed  as  clear-air  echoes  by  the  Amer-
ican Meteorological Society (Jacoby-Koaly et al., 2002).

All the cloud-radar data used in this study are from the
MMCR  located  in  the  southern  suburb  observatory  in
Beijing,  which  belongs  to  the  Meteorological  Observation
Center of the China Meteorological Administration (CMA).
The  radar  system  uses  a  solid-state,  phase-coherent,  and
quasi-continuous  wave  system  transmitter,  and  its  antenna
adopts a vertically pointing method. During its operation, it
has  been  found  that  cloud  observation  within  the  2–3  km
height  range  is  often  obscured  by  the  presence  of  clear-air
echoes,  especially  during  the  warm  months  of  Beijing.
Thus,  the  accurate  detection  of  clear-air  echoes  in  MMCR
returns is very important for observing and researching bound-
ary-layer cloud and precipitation.

Many  papers  have  reported  research  on  clear-air
echoes. For example, Russell and Wilson (1997) studied the
mechanism of clear-air echoes in the boundary layer and con-
sidered  that  there  are  two  main  scattering  mechanisms  for
clear-air echoes. One is particle scattering, which is a point
or  thin-line  echo,  mainly  caused  by  pollen,  insects,  birds,
etc. The other is Bragg scattering, which is a layered echo,
mainly  caused  by  turbulent  clumps  in  the  atmosphere  or
uneven atmospheric refractive index.

For  researching clear-air  echoes  caused by the  scatter-
ing of insects and other particles, many studies have used cen-
timeter-band and dual-polarization radars. For example, Kes-
singer  et  al.  (2003) successfully  identified  clear-air  echoes
through analysis of Doppler weather radar echo characterist-
ics, including local mean intensity, local standard variance,
texture  features,  and  vertical  difference  of  reflectivity
factor, from the three types of base data (reflectivity factor,
radial  velocity,  and spectral  width). Melnikov et  al.  (2015)
used  S-band  dual-polarization  radars  to  identify  the  asym-
metry of biological scatterers through dual-polarization para-
meters. Gauthreaux and Diehl (2020) and Yin et al.  (2018)
also analyzed the clear-air echoes caused by biological scatter-
ers by using dual-polarization characteristics. Though polariz-
ation measurement is an efficient way to discriminate clear-
air  echoes  from  cloud  echoes,  polarization  measurements
are not equipped in standard radars of operational radar net-
works.

Relatively,  there are few studies on clear-air  echoes in
the  millimeter-wave  band  and  layered  echoes. Luke  et  al.
(2008) extracted  some  features  of  clear-air  echoes,  includ-
ing the derivative spectrum, main spectrum peak width, and
the average Doppler velocity. By utilizing a back-propagat-
ing (BP) neural  network for feature training and classifica-
tion,  92%  of  the  clear-air  echoes  were  successfully  identi-
fied.  However,  clear-air  echoes  can  also  be  the  result  of
other  reasons  such  as  uneven  atmospheric  refractive  index
and turbulence. In addition, a large number of extracted fea-

tures  may  lead  to  low  computation  and  recognition  accur-
acy.  Therefore,  the  method  needs  to  be  further  improved
with  redundancy  processing  on  the  extracted  features.
Kalapureddy  et  al.  (2018) proposed  a  method  to  filter  the
echoes  caused  by  biota  in  MMCR,  under  the  assumption
that the cloud echo is more coherent, and uniform, and has a
longer  correlation  period  than  the  biological  echoes.  The
method is simply based on the continuous vertical reflectiv-
ity factor profile for separating the cloud and non-hydromet-
eor  returns.  It  uses  a  4-s  moving  mean  and  standard  devi-
ation  values  of  the  reflectivity  factor  profile  for  statistical
inspection  to  screen  out  the  biota.  This  method  can  deal
with isolated insects, but it also relies on polarization measure-
ments to assist  with the identification of high-density biota
in the cloud.

This study is designed to take full advantage of the data
from  four  instruments  in  clear-air  echo  identification:  an
MMCR,  a  laser  ceilometer,  an  L-band  radiosonde,  and  an
all-sky camera.  The laser  ceilometer  can provide the cloud
base information,  while the L-band radiosonde and the all-
sky  camera  can  provide  the  humidity  profiles  and  sky
images  respectively.  Together  with  the  MMCR,  the  three
instruments can improve the recognition rate of clouds and
enhance  the  verification  of  clear-air  echoes.  In  addition,  a
new algorithm that achieves feature extraction, feature selec-
tion, and identification of clear-air echoes based on a neural
network (Bao et al.,  2004) is proposed in this study, which
is  flexible  enough  to  be  employed  in  standard  profiling
radars without constraint to polarization measurements.

2.    Clear-air echo signatures

According  to Clothiaux  et  al.  (2000) and Geerts  and
Maio  (2004),  small  insects  produce  strong  radar  echoes
within the 2–3 km height range, especially over land and dur-
ing  warm  seasons.  The  reflectivity  factor  of  the  radar
echoes of these insects is comparable to that of clouds and pre-
cipitation,  making  the  true  cloud  echoes  easily  contamin-
ated by the clear-air echoes. Consequently, the cloud base is
difficult to detect without using laser equipment.

In the study of Luke et al. (2008), the radar reflectivity
factor range of insect echoes was found to be −35 to 0 dBZ
on  the  35-GHz  MMCR  reflectivity  factor  measurements.
For layered clear-air echoes, they mainly appear in the atmo-
spheric boundary layer, and often have strong inversions at
low altitudes at night. Such echoes often occur near an inver-
sion layer, a warming layer, and a layer with abrupt changes
in refractive index. Tang (2014) observed that the height of
such clear-air echoes is mainly between the ground and 4 km
height. Kalapureddy et  al.  (2018) observed  with  a  35-GHz
radar  that  the  biota  echoes  were  mostly  below 1.7  km and
fell within the reflectivity factor range of −50 to −20 dBZ.

In  view  of  the  above  reviews,  this  paper  focuses  on
using  millimeter-wave  single-polarization  radar  to  observe
the reflectivity factor measurements from 1 September 2015
to 31 August 2016, and analyze the distribution characterist-
ics  of  clear-air  echoes,  which  are  below  3  km  height  and
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have a reflectivity factor ranging from −36 to −4 dBZ. The
reflectivity  factor  and  velocity  spectra  data  of  9  and  25
April 2016 were selected for detailed analysis, as shown in
Figs. 1 and 2. It can be observed in Fig. 1 that the reflectiv-
ity factor range of the clear-air echoes is −36 to −4 dBZ; in
Fig. 2, the reflectivity factor range is −36 to −16 dBZ. Addi-
tionally, the velocity variation of clear-air echoes in the velo-
city spectrum is greater than that of cloud echoes.

3.    Instruments and data

In  the  radar  reflectivity  factor  measurements,  the
echoes  appearing  below  the  cloud  are  considered  clear-air
echoes, so the determination of the cloud base height is partic-
ularly  important.  The  intention  in  this  paper  is  to  combine
the MMCR and laser ceilometer to determine the cloud base
height,  and then use the L-band radiosonde and the all-sky
camera  to  assist  in  judging the  cloud information  to  verify
the reliability of the estimated cloud base height. In this exper-
iment, the distance between any two of the four instruments
is  within  200  m and  their  deployment  locations  are  shown
in Fig. 3. The four instruments are introduced in the follow-
ing subsections.

3.1.    MMCR

The MMCR used in this  study is  located in the south-
ern  suburb  observatory  in  Beijing.  It  operates  at  8.6  mm
wavelength  and  35  GHz  frequency.  Its  antenna  scans  the

sky in the vertical direction and its maximum height of obser-
vation is 15 km. The vertical spatial resolution is 30 m and
the temporal resolution is 60 s. The major technical and sub-
system  parameters  are  listed  in Table  1.  The  MMCR  uses
three vertically pointing observation modes to detect simultan-
eously, and each observation mode corresponds to a differ-
ent  pulse  width. Table  2 shows  the  specific  parameters  of
the  three  observation  modes. Figure  4 is  a  schematic  dia-
gram of the MMCR’s system configuration (Nashashibi and
Ulaby,  2001),  in  which  both  indoor  and  outdoor  parts  are
included.

The  base  data  and  power-spectrum  data  from  the
MMCR are  used in  this  study.  The base  data  comprise  the
reflectivity factor, velocity, and spectral width. The power-
spectrum data are obtained from Fast Fourier Transform of
the time-domain signal, and reflect the echo power distribu-
tion of different Doppler velocity. Each radar range corres-
ponds to a power spectrum, which is composed of 256 spec-
tral  points,  and  each  spectral  point  corresponds  to  a  Dop-
pler  velocity.  The  power-spectrum  data  are  closely  related
to the microphysics and dynamics in the cloud, and are crit-
ical for extracting the features of radar echoes.

3.2.    Laser ceilometer

The laser ceilometer used in this study is Vaisala CL51,
which  is  manufactured  by  Vaisala  in  Finland  and  certified
by the CMA. Its maximum detection height is 15 km and its
repeat  frequency  is  10  kHz,  with  a  spatial  resolution  of

 

Fig.  1.  (a)  Reflectivity  factor  plot  on  9  April  2016.  (b)
Velocity spectrum plot on 9 April 2016.

 

Fig.  2.  (a)  Reflectivity  factor  plot  on  25  April  2016.  (b)
Velocity spectrum plot on 25 April 2016.
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about 5 m and temporal resolution of 60 s.
The laser ceilometer emits continuous laser pulses vertic-

ally upwards. When the laser pulses enter and pass through
the  clouds  from  the  cloud  base,  strong  scattering  at  the
cloud border will take place and the backscattered signal is
received (He et al., 2011). Thus, the laser ceilometer can be
used to assist in determining the cloud base height.

3.3.    All-sky camera

The  all-sky  camera  is  designed  to  automatically  mon-
itor  cloud conditions  during  daytime.  Its  camera  above the
instrument looks down at a hemispherical mirror with a heat-
ing device and takes the image of the sky reflected in the mir-
ror.  The  average  operation  time of  the  camera  used  in  this
study  is  0600–2000  Local  standard  time  (LST  hereafter).
The all-sky images, with a resolution of 2848 × 4288 and 24

true colors, are taken every 10 min.

3.4.    L-band radiosonde

In meteorological observation, the radiosonde system is
important  for  upper-air  observation.  The  maximum detect-
able height of the L-band radiosonde system is 30 km. The
radiosonde  sounding  data  used  in  this  study  are  from  the
southern suburb observatory in Beijing, which are observed
twice a day at 0715 and 1915 LST.

3.5.    Detectability  comparison  between  the  MMCR  and
laser ceilometer

Discriminating  clear-air  echoes  from  cloud  echoes
becomes extremely challenging when the echoes mix in the
lower  level  of  the  atmosphere,  meaning  it  is  necessary  to
first check the cloud detection ratios (the ratio between the
time  when  one  instrument  detects  the  cloud  and  the  time
when both instruments are in operation) of the MMCR and
the laser ceilometer for detecting clouds at different heights.
The observed clouds are divided into three categories accord-
ing to their base height. Clouds with a cloud base height of
less  than  2.5  km  are  low  clouds,  2.5–4.5  km  are  middle
clouds,  and  higher  than  4.5  km  are  high  clouds. Table  3
shows the cloud detection ratios of the MMCR and the laser
ceilometer during selected observation times when both instru-
ments were in operation.

It  can  be  seen  from Table  3 that  the  detection  of  high
cloud, i.e., the cloud detection ratio of the MMCR, is larger
than  that  of  the  laser  ceilometer,  which  may  be  caused  by
the thin  cloud particles  of  high clouds when backscatter  to
the laser ceilometer becomes weak and less detectable. For
the detection of middle clouds, the MMCR and the laser ceilo-
meter  perform similarly,  with  only  a  slightly  higher  detec-
tion ratio for the MMCR. For low-cloud detection, the cloud
detection ratio of the laser ceilometer is significantly higher
than that of the cloud radar. Therefore, it is necessary to com-
bine  both  instruments  to  determine  the  actual  cloud  base
height accurately.

In accordance with commonly used indicators of statist-
ical  significance,  we employ the t-test  method for  signific-
ance  testing,  with  the  level  of  significance  (α)  set  to  0.05.
The cloud base height detected by the MMCR and the laser
ceilometer  from 1  December  2015  to  31  January  2016  are

 

Fig.  3.  Map  of  deployment  locations  of  the  MMCR,  all-sky
camera, L-band radiosonde, and laser ceilometer.

Table 1.   Major technical parameters for the MMCR.

Item Technical specifications

Radar system Coherent, pulsed doppler, solid-statetransmitter, pulse compression
Radar frequency 35 GHz (Ka band)

Detecting parameters Reflectivity factor (Z), vertical velocity (V), spectral width (W)
Transmitter peak power Pt ≥ 50 W

Antenna subsystem

Antenna type: Cassegrain
Antenna diameter: 2.4 m

Beam width: 0.25°

Range of detection
Height: 0.120–15 km

Temporal resolution: 60 s (adjustable)
Height resolution: 30 m
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compared, as shown in the scatterplot in Fig. 5, and a clear lin-
ear correlation is shown, with a significant correlation coeffi-
cient of R = 92%, which is greater than the t-test critical cor-
relation coefficient and thus is significant. Therefore, the res-
ults  show  that  the  cloud  base  height  observed  by  the
MMCR and the laser ceilometer is consistent.

3.6.    Comparison of the MMCR and L-band radiosonde

During 1–18 January 2016 and 1 April to 31 June 2016,
a  total  of  109  days,  there  were  248  sounding  observations
from the L-band radiosonde. However, during the observa-
tion periods we selected, only 42 observations matched the
MMCR observations. Similar as above, comparison of the per-
formances of the MMCR and the L-band radiosonde on the
detection of the cloud base indicated that they have consist-
ent cloud base height observations, which is shown in Fig. 6.
An example case analysis is presented below.

Figure  7a shows  the  reflectivity  factor  profile  of  the

MMCR  observed  at  0701  LST  3  June  2016. Figure  7b
shows  vertical  profiles  of  temperature  and  relative  humid-
ity observed by the corresponding radiosonde. As shown in
Fig. 7a, the MMCR detected a cloud base at 6150 m, while
the radiosonde detected a cloud base at 6517 m. They agree
with each other reasonably well.

3.7.    Benchmark for clear-air echoes

According  to  section  3.5  and  the  linear  correlation
shown  in Fig.  5,  the  threshold  of  difference  between  the
heights  of  the  laser  ceilometer  and  the  MMCR  is  selected
within 1000 m, which is  also consistent  with the results  of
Oh et  al.  (2016) and Zhao  et  al.  (2017).  With  reference  to
the  above  consistent  analysis  among  the  instruments,  as
well as the study of Clothiaux et al. (2000), the benchmark
samples  for  clear-air  echoes  can  be  derived:  For  a  given
MMCR observation, the cloud base height measured by the
laser ceilometer at the same time is marked on the MMCR
echoes. If the difference between the cloud base heights meas-
ured  by  the  two  instruments  is  within  1000  m,  the  cloud
base  height  obtained  by  the  MMCR  is  used  as  an  actual
cloud  base  height.  Then,  by  analyzing  the  cloud  informa-
tion  from  the  radiosonde  data  and  examining  the  pictures
from  the  all-sky  camera,  the  reliability  of  the  previously
determined cloud base is further verified. If the result is reli-
able,  the  obtained  cloud  base  height  is  used  as  the  bench-
mark  height.  Echoes  that  appear  above  the  benchmark

 

 

Fig. 4. Schematic diagram of the MMCR system configuration.

Table 2.   Specific parameters of three observation modes for the
MMCR.

Pulse width 2 μs 5 μs 20 μs

Minimum range 360 m 960 m 3060 m
Maximum range 2460 m 5010 m 18 510 m

Dwell time 4 s 4 s 4 s
Number of range bins 30–100 65–200 210–617

Range sample volume spacing 30 m 30 m 30 m

Table 3.   Cloud detection ratio of the MMCR and the laser ceilometer in selected observation periods for clouds of different heights.

Cloud type

Selected observation time
when both instruments are in

operation (min)

Total time when
MMCR detects

cloud (min)

Total time when laser-
ceilometer detects

cloud (min)

Cloud detection
ratio of MMCR

(%)

Cloud detection
ratio of laser-

ceilometer (%)

Low cloud 420 265 402 63.1 95.7
Middle cloud 4394 3234 3086 73.6 70.2
High cloud 7808 6502 4115 83.3 52.7
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height are considered as cloud echoes, and those appearing
below  the  benchmark  height  are  considered  as  clear-air
echoes.

4.    Description of the clear-air-echo recognition
algorithm

4.1.    Procedures of the algorithm

The  flowchart  in Fig.  8 shows  the  procedures  of  the
clear-air-echo  recognition  algorithm.  The  procedures
include  feature  extraction,  feature  selection,  and  clear-air-
echo recognition.

Spectral features, including the power spectral kurtosis
and spectral width, are effective in distinguishing cloud and
clear-air echoes (Luke et al., 2008). The extraction of the spec-
tral features is accomplished in three steps: (1) collection of
clear-air  and cloud echo samples;  (2) extraction of spectral
features of the samples; and (3) establishment of a set of fea-
tures.

As  introduced  in  section  3,  the  data  from  September
2015 to August 2016 are used in clear-air-echo recognition.
After initial data screening, 54 834 radar echo samples can

be obtained to train the neural network. Among them, there
are 11 706 clear-air echoes and 43 128 cloud-echo echoes.

From the analysis of the above established dataset, it is
found  that  most  of  the  clear-air  echoes  display  a  concen-
trated  area  of  high-power  spectral  density  along  the  velo-
city  spectrum.  They  are  multi-peaked  with  sharp  fluctu-
ations and narrow spectral width, compared to that of cloud
echoes.  Due to the existence of  noises,  the main spectrum,

 

Fig.  5.  Cloud  base  height  consistency  of  the  MMCR and  the
laser ceilometer.

 

Fig.  6.  Cloud  base  height  consistency  of  the  MMCR and  the
radiosonde.

 

Fig. 7.  (a) Reflectivity factor profile measured by cloud radar
at  0701  LST  3  June  2016.  (b)  Temperature  and  relative
humidity curves with altitude obtained from sounding at 0701
LST 3 June 2016.
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which might contain meteorological signals, must be extrac-
ted first, and then the number of extreme points contained in
this main spectrum is calculated. Assuming the radar noise
is Gaussian white noise, the piecewise averaging method is
used  to  remove  the  unwanted  noises  (Fabry  et  al.,  1997).
The specific steps of feature extraction are as follows:

(1) The entire spectrum is divided into 16 segments and
the average value of each segment is calculated;

(2) The minimum mean value is used as the noise level;
(3) The signal-to-noise ratio of each spectral point is cal-

culated;
(4)  The  threshold  value  of  the  signal-to-noise  ratio  is

set,  the  points  below  this  threshold  are  removed,  and  the
main spectrum is retained.

Figures  9 and 10 show  an  example  of  the  extracted
main  spectrum  from  clear-air  echoes  and  cloud  echoes.  In
order  to  better  distinguish  the  clear-air  echoes  and  cloud
echoes,  as  many  features  as  possible  are  extracted  for  the
main spectrum. Presently, 28 features are extracted and are lis-
ted in Table 4 in section 4.2.

For all the extracted features, histograms are made and
analyzed.  For  example,  the  reflectivity  factor  histogram  is
shown  in Fig.  11,  which  shows  that  separating  the  cloud
echoes  from  the  clear-air  echoes  by  the  histogram  of  the
reflectivity  factor  is  possible.  In  most  cases  the  reflectivity
factor  values  of  the  two  objects  are  obviously  different,
while in fewer cases the reflectivity factor values of the two
objects are mixed, which makes it difficult to separate them
with a high degree of accuracy. Therefore, by analyzing the
degree  of  separation  along  the  histograms  of  the  features,
the  capability  of  each  feature  for  distinguishing  the  two
types of echoes can be evaluated.

4.2.    Feature selection

In  this  study,  there  are  28  features  (Table  4)  extracted
from clear-air echoes and cloud echoes. The purpose of con-
structing the sample feature set is to send the features of the
clear-air  echoes  and  cloud  echoes  to  the  neural  network
model  for  training,  and let  the  algorithm model  automatic-
ally  learn  the  corresponding  characteristics  of  the  clear-air

 

Fig. 10. Extracted main spectrum (red) from cloud echo at 4.8 km
height at 1030 LST 19 April 2016.

 

 

Fig. 8. General framework of the algorithm for clear-air echo recognition.

 

Fig.  9.  Extracted  main  spectrum  (red)  from  clear-air  echo  at
450 m height at 1414 LST 19 April 2016.
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echoes  and  cloud  echoes  so  that  more  accurate  classifica-
tion  of  clear-air  echoes  and  cloud  echoes  can  be  achieved.
The  number  of  features  is  large  and  there  is  often  redund-
ancy  between  them,  whose  mutual  information  value  is
large.  At the same time,  the correlation between some fea-
tures of the sample is not high. Therefore, if all the features
are used for classification, the effect is not good and it also
increases the complexity of subsequent learning algorithms.

Therefore, it  is necessary to optimize the feature set and to
form  a  feature  subset.  In  this  study,  the  Relief  algorithm
(Amjady  et  al.,  2010)  is  used  to  achieve  the  feature  selec-
tion.

The Relief algorithm is a nonlinear instance-based fea-
ture selection technique. In this study, the problem is to distin-
guish which class each sample belongs to—clear-air echoes
or non-clear-air (or cloud in this case) echoes. Based on the
correlation between the features and the classes, weights are
calculated and assigned to the features of each sample. The
weight  reflects  the  ability  of  each  feature  to  distinguish
between the two classes.

X = {x1, x2, · · · , xn} n

xi = [xi,1, xi,2, · · · , xi,N]T

N xi(i = 1,2, ...,n)

xi

H(x)

M(x) jth( j = 1,2, ...,N)
xi Wi, j

Let  represent  all  sample  points
including  both  clear-air  and  cloud  echoes,  and

 represent  the  feature  vector  (a  total
of  features)  of  sample .  For  a  given  ran-
domly  selected  sample xi,  the  algorithm  will  obtain  the
nearest sample to sample xi as measured by the Euclidian dis-
tance in the feature space. The nearest sample of sample 
in the clear-air echo class (near hit) is denoted as  and
the  one  from  the  opposite  class  (near  miss)  is  denoted  as

.  The  weight  for  the  feature  of
sample , ,  is  initialized  as  zero  and  updated  during
each iteration by the following: 

 

Fig.  11.  Reflectivity  factor  including  11  706  clear-air  echo
sample points and 43 128 cloud echo sample points.

Table 4.   The weight of each feature.

Feature Weight

1 Reflectivity factor Z 0.213
2 Doppler velocity V 0.028
3 Spectral width W 0.026
4 Spectrum width (SW) 0.049
5 Kurtosis (K) 0.048
6 Skewness (S) 0.035
7 Number of spectral peaks (NSP) 0.007
8 Location of spectral peak (LSP) 0.009
9 Mean of main spectrum (MMS) 0.123
10 Horizontal difference of reflectivity factor (Zx) 0.018
11 Horizontal difference of doppler velocity (Vx) 0.004
12 Horizontal difference of spectral width (Wx) 0.003
13 Horizontal difference of spectrum width (SWx) 0.001
14 Horizontal difference of kurtosis (Kx) 0.007
15 Horizontal difference of skewness (Sx) 0.023
16 Horizontal difference of number of spectral peaks (NSPx) 0.026
17 Horizontal difference of location of spectral peak (LSPx) 0.011
18 Horizontal difference of mean of main spectrum (MMSx) 0.007
19 Vertical difference of reflectivity factor (Zy) 0.010
20 Vertical difference of doppler velocity (Vy) 0.015
21 Vertical difference of spectral width (Wy) 0.001
22 Vertical difference of spectrum width (SWy) 0.001
23 Vertical difference of kurtosis (Ky) 0.004
24 Vertical difference of skewness (Sy) 0.013
25 Vertical difference of number of spectral peaks (NSPy) 0.019
26 Vertical difference of location of spectral peak (LSPy) 0.007
27 Vertical difference of mean of main spectrum (MMSy) 0.005
28 Height (H) 0.296
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Wi, j =Wi, j+ |xi, j−Mi, j(x)| − |xi, j−Hi, j(x)|
(i = 1,2, ...,n; j = 1,2, ...,N) . (1)

After a given number of iterations, the weight of all can-
didate  features  will  be  updated  based  on  the  selected
samples. The weight of a feature represents its capability in
classifying the samples based on that feature.

(H : 0.296)
(MMS : 0.123) (Z : 0.213)

H
Z

Using  the  above-mentioned  Relief  algorithm  to  per-
form a validity analysis on all the features in the sample fea-
ture  set,  the  weight  value  of  each  feature  can  be  obtained,
which  is  shown  in Table  4.  In  order  to  see  the  difference
between  each  feature  weight  more  visually,  the  results  are
shown in a bar chart in Fig. 12. Obviously, there are three fea-
tures with larger weights than others, and their correspond-
ing features are height ,  mean of main spectrum

 and  reflectivity  factor ,  which
form the  optimal  feature  subset.  This  optimal  subset  of ,
MMS, and  will ultimately be used to achieve the classifica-
tion of clear-air echoes and cloud echoes.

4.3.    Identification algorithm

In this study, we use a feed-forward neural network archi-
tecture and the back propagation of error training algorithm
(Bai  et  al.,  2016). Figure  13 shows  the  framework  of  the
neural  network  algorithm.  The  algorithm  inputs  the  data
from  the  input  layer,  processes  it  in  the  hidden  layer,  out-
puts the current result from the output layer, then enters the
backward propagation, calculates the error between the pre-
dicted value and the true value, and sequentially derives the
forward  direction  for  each  neuron.  Then,  the  eigenvalues
are updated to minimize the cost function by means of gradi-
ent  descent,  and the  weights  and thresholds  of  the  connec-
ted neurons are  updated according to  the errors  of  the hid-
den layer neurons. This iterative process will be carried out
in a cycle until the pre-set stopping conditions are reached.
The  details  of  the  classification  of  cloud echoes  and clear-
air echoes using this algorithm are as follows.

The  neural  network  includes  one  input  layer,  two hid-
den layers, and one output layer. The first hidden layer con-
tains  eight  neuron  units,  the  second  hidden  layer  contains

six neuron units, and the output layer has two neuron units.
We  take  the  three  optimal  features  extracted  earlier  as
inputs for the neural network, and the output is a vector of
continuous values with a component for the possible classific-
ation. The output ranges from 0.0 to 1.0, representing in the
meantime the confidence of a membership classification in
each class, and will be treated as the input for the decision cri-
terion. The decision criterion is a method of interpreting the
neural  network  output  vector  and  converting  it  into  a  dis-
crete  decision state.  In  this  study,  we use  a  “winner-takes-
all” function to choose the output with the highest value as
the classification result. The two neural network outputs are
either clear-air echoes or cloud echoes.

5.    Case study and results

This section presents the results by applying the above
algorithm to the MMCR echoes. Due to instrument mainten-
ance, the observation data of the four instruments are not con-
tinuous.  At  the  same  time,  there  are  almost  no  clear-air
echoes  at  the  bottom  of  cloud  radar  echoes  in  winter  in
Beijing.  Therefore,  not  every  day’s  radar  echoes  can  be
used as a test sample to verify the effectiveness of the recogni-
tion  algorithm.  The  MMCR’s  data  from  March  2016  to
August  2016  are  used,  and  there  are  82  days  of  available
data.  The  data  samples  can  be  divided  into  two  different
weather  scenarios.  The  first  is  that  the  regions  of  cloud
echoes  and  clear-air  echoes  are  separate  from  each  other.
The second scenario is when regions of low cloud, clear-air
echoes,  and  precipitation  are  all  intermingled  together  at
low  levels  of  the  atmosphere.  The  first-scenario  radar
echoes  belong  to  simple  weather  conditions,  and  there  are
54 days.  The second-scenario radar  echoes belong to  com-
plex conditions, and there are 28 days. In both scenarios, the
number of cloud-echo and clear-air-echo points are counted
before  and  after  the  algorithm  recognition  is  performed,
from which the clear-air-echo recognition rate is calculated.

Table 5 shows the statistics of the clear-air-echo recogni-
tion rate when the pixel points on the radar echoes are coun-
ted.  For  the  simple  radar-echo  scenario,  there  are  513  409

 

Fig.  12.  Weight  of  each  feature  (feature  1:  height;  feature  9:
spectral mean; feature 28: reflectivity factor).

 

Fig. 13. Framework of the neural network algorithm.
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points  being  actual  clear-air  echoes  and  4  821  474  points
actual  cloud  echoes.  After  applying  the  recognition
algorithm, the number of clear-air echoes being recognized
is  492  165  and  the  number  of  cloud  echoes  is  4  842  718
with 21 244 clear-air echo points being recognized as cloud.
Therefore,  for  these  simple  weather  conditions,  the  clear-
air-echo recognition  rate  is  95.86%.  Similarly,  in  the  com-
plex  weather  scenarios,  there  are  420  896  points  being
actual  clear-air  echoes  and  3  321  780  points  actual  cloud
echoes. From the algorithm recognition, 371 998 points are
recognized  as  clear-air  echoes  and  3  370  678  points  as
cloud  echoes.  Thus,  the  clear-air-echo  recognition  rate  is
88.38% in the complex weather conditions.

For  further  evaluation  of  the  new  recognition
algorithm, we used three cases that include simple and com-
plex weather conditions. The data of 3 April 2016 were repres-
entative of a simple weather condition, while the data of 19
April  and  27  April  2016  were  representative  of  complex
weather conditions. The three cases were excluded from the
algorithm training,  and are investigated in detail  to test  the
validity  and efficiency of  recognition.  The clear-air  echoes
and  cloud  echoes  of  the  two  days  have  already  been  veri-
fied  with  the  data  from  the  MMCR,  the  laser  ceilometer,
and the all-sky camera.

5.1.    Simple weather condition: 3 April 2016

Figure 14a shows the observed reflectivity  factor  on 3
April  2016.  The  day  was  a  cloudy  day,  and  the  regions  of
cloud  and  clear-air  echoes  were  separate  from  each  other.
The  echoes  at  heights  above  3  km  are  cloud  echoes  while
the echoes at altitudes below 3 km are clear-air echoes.

Because of the radar self-interference, the echo image dis-
plays some noises,  such as the thin strips of  echoes shown
in Fig.  14a.  Thus,  a  3  ×  3  convolution  kernel  of  mean  is
used  to  smooth  the  radar  echo  images  after  filtering  the
clear-air echoes, and the outcome of the final filtered clear-
air echoes is shown in Fig. 14b.

Overall, Fig. 14b illustrates a very satisfactory identifica-
tion result, whereas the clear-air echoes are filtered out com-
pletely.  By  statistical  analysis,  there  are  98  162  echoes  in
the  original  radar  returns,  and  the  number  of  clear-air
echoes  is  8931.  The  number  of  clear-air  echoes  in  the  ori-
ginal image that was correctly identified as clear-air echoes
by  the  recognition  algorithm is  8845,  indicating  that  about
99.14%  of  clear-air  echoes  are  successfully  identified  and
eliminated.

5.2.    Complex weather condition: 27 April 2016

Figure  15a shows  the  reflectivity  factor  of  stratiform

clouds and clear-air echoes on 27 April 2016. We saved the
reflectivity factor data samples of Fig. 15a and sent them to
the  trained  BP  neural  network  system.  The  BP  neural  net-
work  system  recognizes  the  samples  and  divides  all  the
samples into clear-air echoes and cloud echoes. Finally, we
filtered  out  the  clear-air  echoes  and  showed  only  the
samples of cloud echoes as shown in Fig. 15b. In this experi-
ment, the new recognition method is very effective in terms
of  the  overall  recognition  effect.  The  total  number  of
samples  of  the  echo  points  is  110  348  and  the  number  of
clear-air echo points is 22 376. Through the new algorithm
in this paper, 91.25% of clear-air echoes are successfully iden-
tified. Comparing Figs. 14b and 15b, the size and thickness
of clouds have no effect on the accuracy of the algorithm of
identifying clear-air echoes.

5.3.    Complex weather condition: 19 April 2016

Figure 16a shows a complicated distribution of reflectiv-
ity  factor  on 19 April  2016.  In Fig.  16a,  echoes  of  heights

 

Fig.  14.  (a)  Reflectivity  factor  of  3  April  2016.  (b)  Result  of
reflectivity factor after filtering clear-air echoes.

Table 5.   The clear-air-echo recognition rate.

 Number of actual points before recognition  Number of points after recognition

Radar echo scenarios Clear-air echo Cloud echo Clear-air echo Cloud echo
Clear-air echo

recognition rate

Simple 513 409 4 821 474 492 165 4 842 718 95.86%
Complex 420 896 3 321 780 371 998 3 370 678 88.38%
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above 3 km are cloud echoes while echoes of heights below
3  km  are  mixed  with  precipitation  echoes,  low  cloud
echoes,  and  clear-air  echoes.  It  is  known  that  the  echoes
from  the  elliptical  circle  in  the  area  below  the  figure  are
cloud echoes or precipitation echoes by combining the laser
ceilometer,  the  L-band radiosonde,  and the  all-sky camera.
From the statistics, there are 118 635 echoes in the original
radar images, and the number of clear-air echoes is 20 219.
Like the processes of the filtering and recognition algorithm
of clear echoes used for the previous case, the result after fil-
tering  out  the  clear-air  echoes  is  shown  in Fig.  16b.  After
recognition, there are 1887 clear-air echoes left, indicating a
90.67%  recognition  accuracy.  Comparing Figs.  16a and b,
we  can  see  that  some  of  the  three  echo  regions  of  the
marker are filtered out while the cloud echoes and precipita-
tion echoes are retained. The part enclosed by the ellipse in
Fig. 16b is a clear-air echo that is mistaken for cloud echo.
The  reason  is  that  the  reflectivity  factor  of  the  echo  is  too
close to the reflectivity factor of the low cloud echo. There-
fore, it is necessary to extract more features that can effect-
ively distinguish cloud echoes from clear-air echoes.

Through the above case studies, our automatic recogni-
tion  algorithm  can  effectively  identify  the  clear-air  echoes
whether  in  simple  cases  or  in  the  complicated  situation  of
cloud-water mixing.

6.    Conclusion

In  this  study,  an  algorithm  is  developed  to  automatic-
ally  identify  clear-air  echoes  in  MMCR  observations.  The
algorithm consists of three steps: feature extraction from the
Doppler  spectrum  of  the  MMCR,  optimization  of  the  fea-
ture  subset  through  feature  selection  using  the  Relief
algorithm, and identification and filtering of clear-air echoes
using  the  neural  network  algorithm.  After  all  experimental
data  were  counted,  the  recognition  accuracy  of  clear-air
echoes  in  simple  and  complex  weather  conditions  reached
95.86%  and  88.38%,  respectively.  Finally,  we  show  three
experimental  cases  and  give  the  corresponding  recognition
effect of clear-air echoes. One of them is a relatively complic-
ated  case  where  the  cloud  and  clear-air  echoes  are  inter-
mingled due to precipitation, while the other two are simple
cases where the cloud and clear-air echoes are separate.

From the case studies, it is recognized that the method
has a technical challenge and needs to be improved in future
studies. The feature extraction method needs to be improved
to extract the features that are more efficient in distinguish-
ing clear-air echoes from clouds.
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