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ABSTRACT

The variations in the wave energy and the amplitude along the energy dispersion paths of the barotropic Rossby waves
in zonally symmetric  basic flow are studied by solving the wave energy equation,  which expresses that  the wave energy
variability  is  determined by the divergence of  the group velocity and the energy budget  from the basic  flow. The results
suggest that both the wave energy and the amplitude of a leading wave increase significantly in the propagating region that
is  located south of the jet  axis and enclosed by a southern critical  line and a northern turning latitude.  The leading wave
gains  the  barotropic  energy  from the  basic  flow by  eddy  activities.  The  amplitude  continuously  climbs  up  a  peak  at  the
turning latitude due to increasing wave energy and enlarging horizontal scale (shrinking total wavenumber). Both the wave
energy  and  the  amplitude  eventually  decrease  when  the  trailing  wave  continuously  approaches  southward  to  the  critical
line.  The  trailing  wave  decays  and  its  energy  is  continuously  absorbed  by  the  basic  flow.  Furthermore,  both  the  wave
energy  and  the  amplitude  oscillate  with  a  limited  range  in  the  propagating  region  that  is  located  near  the  jet  axis  and
enclosed  by  two  turning  latitudes.  Both  the  leading  and  trailing  waves  neither  develop  nor  decay  significantly.  The  jet
works as a waveguide to allow the waves to propagate a long distance.
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Article Highlights:

•  A method that can calculate the wave energy and amplitudes of Rossby waves along energy dispersion paths is proposed.
•  Leading Rossby waves may develop significantly in the propagating regions located south of the jet and bounded by a

critical line and a turning latitude.
•  Both  leading  and  trailing  Rossby  waves  can  propagate  a  long  distance  in  the  propagating  region  near  the  jet  axis  and

bounded by two turning latitudes.
 

 
 

1.    Introduction

The propagation of  a  Rossby wave is  accompanied by
energy transmission. Yeh (1949) first applied the concept of
group velocity  to  investigate  the  energy dispersion process
of Rossby waves. He pointed out that when the group velo-
city  is  larger  than  the  phase  velocity,  new waves  could  be
formed  ahead  of  the  initial  waves  (downstream  effect),
whereas  when the group velocity  is  smaller  than the  phase
velocity,  new  waves  could  possibly  appear  upstream
(upstream  effect). Longuet-Higgins  (1964) discussed  the

energy dispersion process on a β-plane and a sphere. He sug-
gested that energy spreads toward the east (the group velo-
city is larger than zero) for short waves and toward the west
(the  group  velocity  is  smaller  than  zero)  for  long  waves
when the zonal wavenumber k is greater than zero. His find-
ings  were  summarized  as  an  Longuet-Higgins  circle.
Hoskins and Karoly (1981) studied the energy dispersion of
barotropic  Rossby  waves  on  a  sphere  with  different  basic
zonal winds. By specifying a constant angular velocity, they
solved the  propagation  path  of  wave energy analytically,  a
great circle on a sphere, known as the great circle route the-
orem. Karoly (1983) extended wave ray theory to a zonally
varying  basic  state  and  discussed  cross-equatorial  wave
propagation. Hoskins and Ambrizzi (1993) analyzed station-
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ary  Rossby  wavenumber  profiles  and  ray  path  refraction
and pointed out that the theoretical results are remarkably con-
sistent with the findings of observational teleconnection stud-
ies. Yang and Hoskins (1996) further discussed the range of
propagation  wavenumbers  for  nonstationary  Rossby  waves
in different zonal basic flows. Li and Li (2012) and Li et al.
(2015) rigorously  discussed  the  propagation  of  stationary
Rossby  waves  in  a  horizontally  nonuniform  background
flow.

Most of these studies highlighted the energy dispersion
routes  of  different  wavenumbers  and  the  cross-equatorial
propagation characteristics for stationary Rossby waves, but
neglected  to  investigate  the  wave  energy  variations  along
the energy dispersion routes. Hoskins and Karoly (1981) ana-
lyzed the variations in the amplitudes along wave rays by dir-
ectly  applying  the  wave  action  conservation  equation
derived by Bretherton and Garrett (1969). They pointed out
the inverse proportional relationship between the wave amp-
litude and the square root of the meridional wavenumber. Li
and Nathan (1994) also derived an inverse proportional rela-
tionship  by  introducing  a  damping  coefficient.  However,
they  only  calculated  the  variation  in  wave  amplitudes  and
did not discuss the wave energy. Both wave amplitudes and
wave energy vary in the energy dispersion process and are
important  to  understand the  development  of  Rossby waves
(Lu  and  Zeng,  1981). Chen  and  Chao  (1983) pointed  out
that  a  leading  (trailing)  Rossby  wave  will  develop  to  the
south  (north)  of  the  westerly  jet  in  the  barotropic  atmo-
sphere, as was also observed by Lu and Zeng (1981) with a
different  method.  Recently, Kang  and  Li  (2016) attempted
to discuss the development of Rossby waves by calculating
the wave energy along wave ray paths. However, their discus-
sion  was  very  inadequate.  For  example,  they  did  not  com-
pare  the  wave  energy  with  the  wave  amplitude  variation,
and  they  did  not  expound  the  behaviors  of  the  wave  ray,
wave amplitude and wave energy along the ray path.

In addition, the variations in the amplitudes and energy
of  nonstationary  waves  have  rarely  been  discussed  due  to
the difficulty in directly solving the divergence of the group
velocity.  Although Li  and  Nathan  (1994) analytically
expressed  amplitudes  as  a  function  of  latitude,  their  ana-
lytic  solution  is  valid  only  when  considering  damping,
which would mean that the energy of the barotropic system
is  no  longer  conserved.  Furthermore,  Rossby  waves  might
develop  significantly  if  both  the  amplitudes  and  the  wave
energy  exceed  a  critical  value  in  the  propagation  process
(Lu and Zeng, 1981). Therefore, it is necessary to calculate
both the amplitudes and the wave energy in the energy disper-
sion process.  In this  paper,  we investigate the variations in
amplitudes  and  wave  energy  along  the  energy  dispersion
routes of nonstationary Rossby waves.

The  remainder  of  this  paper  is  organized  as  follows:
The  dispersion  relationship  and  hence  wave  ray  theory  for
barotropic Rossby waves are introduced in section 2. Some
useful inferences are also discussed. The energy dispersion
behavior  (the  variations  in  the  wave  energy  and  the  amp-
litudes along the wave ray) in a westerly jet prototype back-

ground with the meridional gradient of absolute vorticity lar-
ger  than  zero  is  analyzed  in  section  3.1.  The  situation
involving a similar westerly jet but with a meridional gradi-
ent  of  absolute  vorticity  smaller  than  zero  at  certain  latit-
udes  is  analyzed  and  discussed  in  section  3.2.  The  results
for  the  observed  zonal  basic  flow  are  investigated  in  sec-
tion 3.3. Lastly, the conclusions and discussion are presen-
ted in section 4.

2.    Wave ray theory

Following Hoskins and Karoly (1981), the barotropic vor-
ticity equation can be written as the Mercator projection of a
sphere,  (

∂

∂t
+ ūM

∂

∂x

)
∇2ψ+βM

∂ψ

∂x
= 0 , (1)

t x x ψ
ūM βM

where  is time;  is the -axis in a Mercator projection;  is
the  horizontal  streamfunction  perturbation;  and  are
the  zonal  wind  and  meridional  gradient  of  absolute  vorti-
city in a Mercator projection, respectively. These two terms
are expressed as  

ūM =
ū

cosφ

βM =
2Ω
a

cos2φ− ∂

∂y
1

cos2φ

∂
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(
ūMcos2φ
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where  is the Earth’s angular velocity of rotation,  is the
radius  of  the  Earth  and  represents  the -axis  in  a  Mer-
cator projection.

exp[i (kx+ ly−ωt)]
The dispersion relationship for the wave-form solution

 of Eq. (1) is 

ω = ūMk− βMk
k2+ l2

= Ω (k, l,y) , (3)

where k, l,  and ω are  the  zonal  wavenumber,  meridional
wavenumber,  and circular frequency, respectively.  Accord-
ing to Eq. (3), the meridional propagation of Rossby waves
requires 

l2 =
βM

(ūM− c)
− k2 ⩾ 0 , (4)

c = ω/k l2 < 0
l2 = 0

where  is the zonal phase velocity. When , the
meridional propagation is trapped. The latitude where 
is  called  the  turning  latitude;  a  wave  ray  shifts  direction
from north to south (or from south to north) when arriving
at the turning latitude, which reflects a wave ray similar to
how a mirror  reflects  lights.  Therefore,  the turning latitude
is a natural boundary of a wave ray.

l2 = 0When , Eq. (4) becomes 

ūM− c =
βM

k2 . (5)

ūM βMThis means that  and  should satisfy Eq. (5) at the
turning latitude(s) when the zonal wavenumber and the circu-
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ūM

ūM
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lar frequency are fixed. South of the jet center,  is gener-
ally monotonically increasing. If  is also monotonic, Eq.
(5) determines at most one turning latitude; if  is double-
valued  south  of  the  jet  center,  Eq.  (5)  determines  at  most
two  turning  latitudes.  North  of  the  jet  center,  is  gener-
ally monotonically decreasing, and the situation is the same
as that south of the jet center. To conclude, if  is mono-
tonic in the jet, there will be at most one turning latitude; if

 is double-valued, there will be at most two turning latit-
udes; if  is triple-valued, there will be at most three turn-
ing latitudes; and so on. Therefore, it is obvious that the num-
ber of turning latitudes is determined mainly by , which
consists of two parts: the meridional gradient of the planet-
ary vorticity and the relative vorticity.  The former depends
on  the  rotation  of  the  Earth  and  monotonically  decreases
with  latitude,  and  the  latter  is  determined  mainly  by  the
second derivative of .  Consequently, the variation in 
is determined mainly by the second derivative of . In any
range where the second derivative of  increases from a neg-
ative to a positive value and the corresponding slope value
is larger than that of the absolute meridional gradient of the
planetary vorticity, whose slope is negative,  would be a
double-valued  function  of  the  latitude  in  that  range.  This
range could appear south of the jet center, north of the jet cen-
ter, or near the jet center depending on the specific distribu-
tion  of .  In  any  range  not  far  from  the  jet  center,  the
second  derivative  of  decreases  to  a  negative  minimum
value  at  the  jet  center  and then increases.  Therefore,  if  the
second derivative of  in the range is larger than the abso-
lute meridional gradient of the planetary vorticity (correspond-
ing to a sharper jet),  would be a double-valued function.

ūM = c
l2→∞

ūM

On  the  other  hand,  the  latitude  where  (and
hence )  defines another boundary of  the same wave
ray along which the ray would infinitely tend toward the latit-
ude but never approach it. It is a critical line and near which
the  wave  is  trapped  and  the  Wentzel−Kramers−Brillouin
method  is  invalid.  The  phase  velocity  is  a  specific  value
when the zonal wavenumber and the circular frequency are
fixed. Since  is generally a double-valued function of latit-
ude,  it  is  easy  to  deduce  that  there  would  be  two  critical
lines situated north and south of the jet center, respectively.

In this case, it  is clear that the wave energy dispersion
path,  represented  by  the  wave  ray,  would  not  propagate
across the entire sphere but would be restricted to a limited
region  surrounded by  critical  lines,  by  turning  latitudes,  or
by both a critical line and a turning latitude. Based on differ-
ent  combinations  of  critical  lines  and  turning  latitudes,  we
conclude  that  there  are  three  types  of  wave  energy  disper-
sion  regions.  The  first  type  is  surrounded  by  two  critical
lines; the second type is surrounded by a critical line and a
turning latitude; and the third type is surrounded by two turn-
ing  latitudes.  It  should  be  noted  that Yang  and  Hoskins
(1996) already  mentioned  these  three  types  of  propagation
regions.  However,  they  did  not  carefully  analyze  the  vari-
ations  in  the  wave  energy  and  the  amplitudes  along  the
wave rays in these types of propagation regions, which will
be highlighted and discussed explicitly in this paper.

βM = 0
βM = 0 βM > 0

βM < 0

l2 = 0− k2 < 0 βM = 0

Now  let  us  examine  another  important  latitude  where
,  which  is  the  necessary  condition  for  barotropic

instability.  does not necessarily appear. If  in
a  westerly  jet,  Rossby  waves  would  be  stable.  If 
within  a  certain  region  in  a  westerly  jet,  Rossby  waves
would have a chance to become unstable. According to Eq.
(4),  when .  This  means  that  Rossby
waves cannot propagate across the latitude. Therefore, even
though the existence of the latitude is a necessary condition,
this latitude would never be located along the path of wave
propagation.

According to Eq. (3), the group velocity can be derived as  
cg,x =

∂ω

∂k
= c+

2βMk2

K4

cg,y =
∂ω

∂l
=

2βMkl
K4

, (6)

K2 = k2+ l2where  is  the  square  of  the  total  wavenumber.
Three additional useful relations are  

Dgω

Dt
=
∂Ω

∂t
= 0

Dgk
Dt
= −∂Ω

∂x
= 0

Dgl
Dt
= −∂Ω

∂y
= k

(
−∂ūM

∂y
+

1
K2

∂βM

∂y

) , (7)

Dg/Dt = ∂/∂t+ cg · ∇

y,k, l

ω

where  represents  the  rate  of  change
along the wave ray and cg is the group velocity. The first equa-
tion in  Eq.  (7)  states  that  the  circular  frequency  is  con-
served along the wave ray because the frequency is independ-
ent  of  time  in  the  dispersion  relationship  of  Eq.  (3).  The
second equation in Eq. (7) predicts the invariance of k along
the wave ray since the  dispersion relationship in  Eq.  (3)  is
invariable in the x direction. Equation (6) and the third equa-
tion  in  Eq.  (7)  constitute  a  complete  system  of  equations
with  three  variables  ( )  and  three  equations.  The  wave
ray  routes  can  be  obtained  by  applying  the  Runge−Kutta
method  to  integrate  the  system  numerically.  It  should  be
noted  that,  along  the  wave  ray, l could  also  be  directly
solved  according  to  Eq.  (3)  since  and k do  not  change
along  the  wave  ray.  This  is  equivalent  to  solving  the  third
equation in Eq. (7).

According  to Bretherton  and  Garrett  (1969),  the  wave
action conservation equation is 

∂F
∂t
+∇ ·

(
Fcg

)
= 0 , (8)

F = E/ω′ E = K2A2/4

ω′ = ω− ūMk

where  is  the  wave action density,  is
the  wave  energy  density  (wave  energy  averaged  over  a
period), A is  the  wave  amplitude,  and  is  the
intrinsic frequency. Wave action density is a combined vari-
able to fulfill the formal conservation. It is not convenient to
discuss the variations of the wave energy and the amplitude.
Therefore,  Eq.  (8)  can  be  easily  rewritten  as  the  wave
energy equation 
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∂E
∂t
+∇ ·

(
Ecg

)
= 2E

(
kl
K2

∂ūM

∂y

)
. (9)

Following the group velocity, the individual variability
of the wave energy is 

DgE
Dt
= E

(
−∇ · cg+

2kl
K2

∂ūM

∂y

)
. (10)

Equation (10) demonstrates that the individual variabil-
ity  of  the  wave  energy  along  a  ray  is  determined  by  two
factors.  The first  one,  represented by the divergence of  the
group  velocity,  denotes  the  concentration  or  dispersion  of
the energy. If the wave energy is concentrated along its disper-
sion path,  the wave energy will  increase.  According to Liu
and Liu (2011), 

1
2

klA2 ∂ūM

∂y
= −u′v′

∂ūM

∂y
. (11)

Therefore,  the  second  one,  represented  by  the  product
of the wave scale and the gradient of the basic flow, denotes
the barotropic energy budget of the wave. If it is larger than
zero,  the  wave  extracts  barotropic  energy  from  the  basic
flow  by  eddy  activities,  which  leads  to  an  increase  in  the
wave energy.

∇ · cg

∇ · cg = 0
cg

δS
cg

∇ · cg = 0
cg ·δS = constant
∇ · cg , 0 cg ·δS

cg ·δS = cg,xδx+ cg,yδy
δx δy

Equation (10)  provides  a  method to  calculate  the  vari-
ations in the wave energy and hence the amplitude along a
ray  and  distinguishes  the  effects  of  the  energy  concentra-
tion  or  dispersion  and  the  wave  energy  budget  from  the
basic flow on the wave energy. It has explicit physical mean-
ing, although it is non-conservative. Therefore, it is more suit-
able to apply the wave energy equation. However, Eq. (10)
cannot  be  directly  integrated  along  a  ray  by  utilizing  the
group velocity expression in Eq. (6) because the group velo-
city  values  neighboring  the  wave  ray  are  unknown (Light-
hill,  1978).  Therefore,  it  is  hard  to  calculate  along  a
ray.  Inspired  by Lighthill  (1978) and Karoly  and  Hoskins
(1982),  a  new  method  is  proposed  here.  Since 
means that  is  a solenoidal vector field (Lighthill,  1978),
in terms of the cross-sectional area  of a thin ray tube (tubu-
lar surface made up of rays, to which of course  is univer-
sally  tangential),  can  be  expressed  as

 along  a  ray.  If  above  derivation  works,
 means that  varies along a ray. According to

Karoly  and  Hoskins  (1982), ,  where
 and  are  the  section  areas  in x-  and y-  axis,  respect-

ively. Therefore, 

∇ · cg = lim
δt→0

(
cg ·δS

)
t+δt
−

(
cg ·δS

)
t(∣∣∣cg

∣∣∣ · |δS|)
t
δt

, (12)

δt
∇ · cg

where the subscript t denotes time and  represents a short
time interval. According to Eq. (12),  along a wave ray
can be easily solved by applying the values of the group velo-
city along the ray. Then, the wave energy Eq. (10) can be eas-
ily solved.

A  developing  Rossby  wave  may  be  accompanied  by
increasing wave energy or amplitude, or both. Then, how to
define a developing Rossby wave becomes a real question.
Here, we adopt the definition by Lu and Zeng (1981), who
pointed  out  that  a  perturbation  develops  only  if  both  its
energy  and  amplitude  increase.  Compared  with  the  criteria
that highlight either the wave energy or the amplitude, it is a
strict  one.  They made such a definition based on two reas-
ons. One is that,  although the wave energy is increasing, it
is dispatched into larger areas due to larger horizontal scale
(e.g., longer wavelength). This leads to a decrease in the amp-
litude.  In such a case,  the wave is  not  significant  and even
decays a little. The other one is that, although the amplitude
is  increasing,  the  wave energy is  decreasing.  Of  course,  as
they  suggested,  the  concentration  of  the  wave  energy  in  a
small  local  region can also make significant  transient  local
synoptic phenomena. This is of interest too. Since a develop-
ing Rossby wave is defined by both an increase in the wave
energy  and  the  amplitude,  a  decaying  wave  is  defined  by
both a decrease in the wave energy and the amplitude.

3.    Results

We propose a westerly jet prototype to characterize the
midlatitude westerly  jet  in  the  Northern Hemisphere  (NH).
This jet prototype is expressed as 

u = u0e−4
( φ−φ0

b

)2
, (13)

u0 φ0 bwhere the coefficients , , and  denote the intensity, posi-
tion, and width of the westerly jet, respectively. This west-
erly jet either can or cannot meet the necessary condition by
setting  different  coefficient  values.  Then  the  variations  in
the  wave  energy  and  the  amplitudes  can  be  discussed.
Finally, observed westerlies are applied to facilitate a compar-
ison with the theoretical westerly jet.

βM3.1.    Westerly jet with  larger than zero

φ0 = π/4 b = π/4

βM

By  setting u0=15  m  s−1, ,  and ,  we
present a westerly jet prototype located at 45°N with a max-
imum wind speed of 15 m s−1 (Fig. 1a). If we define the e-
folding  wind  speed  location  as  the  westerly  jet  boundary,
the effective jet width is 45°, and the boundaries are separ-
ated from the jet center (45°N) by 22.5° each. We find that
the values of  are larger than zero (Fig. 1b) in this west-
erly jet.

For Rossby waves at the synoptic scale, the correspond-
ing wavelength is on the order of 1000 km. Here, we set the
zonal wavenumber to k= 8 (the corresponding wavelength is
approximately 3500 km at 45°N). The areas where the wave
energy can propagate present certain behaviors with differ-
ent wave periods (Fig. 2a). For a very short period (T= 2 d),
wave  propagation  is  restricted  to  a  narrow  strip,  which  is
very close to the North Pole. The northern boundary of this
narrow strip is the turning latitude denoted by the solid line,
while  the  southern  boundary  is  the  critical  line  denoted  by
the dash-dotted line. On one hand, the westerly is very weak
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near  the  North  Pole.  On  the  other  hand,  a  two-day  wave
period is  too short  for  Rossby waves at  the  synoptic  scale.
Therefore,  this  narrow  strip  is  a  mathematical  solution
without  physical  meaning.  For  a  longer  period  of T =  5  d,
this mathematical narrow strip moves equatorward. Besides,

two extra bands appear south of the strip. The northern band
is situated at 70.2°−71.9°N (too narrow to be a physical solu-
tion),  while  the  southern  band  is  located  at  30.6°−45.2°N.
Both bands are surrounded by both a turning latitude and a
critical  line.  For a  longer  period (T = 10 d),  the expanding

 

 

βM

Fig.  1.  Distribution  of  the  (a)  westerly  jet  and  (b)  meridional  gradient  of  the  potential
vorticity .

 

 

Fig.  2.  Energy  dispersion  regions  (shaded)  enclosed  by  a  turning  latitude
(solid line) and by a critical line (dash-dotted line): (a) for zonal wavenumber
k = 8; (b) for a period of T = 10 d.
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southern  band  moves  equatorward  to  22.2°−37.7°N,  while
the northern band and the narrow strip disappear. This situ-
ation  is  similar  for  the  case  in  which  the  period  is  longer
than 10 days.

The  time  scale  of  a  synoptic  Rossby  wave  is  on  the
order  of  approximately 10 days. Figure 2b further  portrays
the  variation  in  the  propagating  areas  with  the  zonal
wavenumber  from  2  to  12,  featuring  planetary-  to  large-
scale Rossby waves with fixing the wave period to T = 10 d.
For  a  small  wavenumber k =  2  (corresponding  wavelength
is approximately 1.4 × 107 km, planetary scale), the propagat-
ing area is limited to a narrow band, which is very close to
the North Pole, and this solution has no physical meaning. It
suggests  that  planetary-scale  Rossby  waves  with
wavelengths larger than 1.4 × 107 km cannot propagate on
the  sphere  with  a  10-day  period.  For  a  larger  wavenumber
of k = 4 (corresponding wavelength is approximately 0.7 ×
107 km,  planetary  scale),  the  narrow  strip  moves  equator-
ward.  In  addition,  south  of  the  narrow  strip,  there  exists  a
wider band at 30.6°−71.9°N. This wider band is surrounded
by two critical lines. For a larger wavenumber of k = 8 (synop-
tic  scale),  the  wider  band  narrows  and  moves  equatorward

to 22.2°−37.7°N, while the narrow strip near the North Pole
disappears. The situation is similar for the case where k > 8.

We  further  calculate  the  wave  energy  and  the  amp-
litudes along the rays by specifying k = 8 and T = 10 d. The
leading wave source (initial l > 0, and here the term leading
wave is defined by kl> 0) is set at point (0°, 23°N), which is
close  to  the  critical  line  (22.2°N),  while  the  trailing  wave
source (initial l < 0, and here the term trailing is defined by
kl < 0) is set at point (0°, 37°N), which is close to the turn-
ing  latitude  (37.7°N).  Within  20  integral  days,  the  leading
ray (Fig. 3a) propagates northward and is reflected by the turn-
ing  latitude  to  become  a  trailing  wave.  Along  the  leading
ray, the wave energy (solid line in Fig. 3b) increases to a max-
imum value when the ray is arriving at 30°N at around 8.4
days, and decreases a little when the ray arrives at the turn-
ing  point  at  around  10.4  days.  After  that,  the  wave  energy
increases again to the same maximum value at around 12.4
days,  and  then  decreases  to  close  to  the  initial  value  at  20
days.  Although  the  wave  energy  decreases  when  the  ray
tends to the turning latitude, the extent to which it decreases
is  smaller  than  the  extent  of  increase  caused  by  the  enlar-
ging  horizontal  scale  (decreasing  total  wavenumber K,

 

 

Fig. 3. (a) The wave ray path (solid black dots denoting the 1-day interval) of the leading wave (wave source is set to
23°N) for k = 8 and T = 10 d.  (b) The variations in the wave energy (solid line),  amplitude (dash-dotted line) and
total wave number (dotted line) along the leading ray (b). (c) The variations in the wave energy and the amplitude
against  the  latitude.  (d)  The  variations  in  the  divergence  of  the  group  velocity  (dash-dotted  line, D),  the  energy
budget from the basic flow (dotted line, G),  and their sum (change rate of the wave energy) along the leading ray.
The straight lines in (a, c) are the critical line (22.2°N) and turning latitude (37.7°N).
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shown  by  the  dotted  line  in Fig.  3b).  Therefore,  the  amp-
litude continuously increases to a maximum value of around
10.9  times  at  the  turning  latitude  (dash-dotted  line).  The
above  variations  along  the  ray  suggests  that  the  wave
energy  (solid  line  in Fig.  3c)  increases  and  then  decreases
against the latitude while the amplitude (dash-dotted line in
Fig. 3c) monotonically increases against the latitude, which
is consistent with previous studies that stated that the pole-
ward  increase  in  amplitude  is  inversely  proportional  to  the
square  root  of  the  absolute  meridional  wavenumber  (e.g.,
Hoskins and Karoly, 1981; Li and Nathan, 1994).

kl > 0
∂ūM/∂y > 0

The variation  in  the  wave  energy  can  be  explained  by
the divergence of the group velocity (D) and the barotropic
energy from the basic flow (G) according to Eq. (10). From
Fig. 3d, both D (dash-dotted line) and G (dotted line) contrib-
ute to the change rate of the wave energy (solid line). When
the  ray  leaves  the  source  toward  the  turning  latitude,  it
moves increasingly faster, leading to D < 0, which denotes
dispersion of the wave energy. Therefore, D plays a negat-
ive role in determining the wave energy. Meanwhile, the lead-
ing  ray  ( )  and  the  positive  gradient  of  the  basic  flow
( , due to being south of the jet axis) jointly lead
G >  0,  which  means  that  the  wave  extracts  the  barotropic
energy from the basic flow by eddy activities. Therefore, G
plays  a  positive  role  in  determining  the  wave  energy.  It  is
now  clear  that  the  wave  energy  increases  when G out-

weighs D (from source to around 30°N), and then decreases
when D outweighs G (from  30°N  to  the  turning  latitude),
when the ray is moving from the south to the turning latit-
ude. For the leading wave ray, a period exists when both the
wave energy and the amplitude increase. According to the cri-
terion  introduced  in  the  above  section,  the  wave  may
develop significantly during the period.

The trailing wave ray marches southeast toward the crit-
ical  line  within  20  days  (Fig.  4a).  The  wave  energy  along
the ray approaches to 1.1 times when the ray arrives at 30°N
at around 1.5 days, and then continuously decreases to close
to zero at 20 days (solid line in Fig. 4b). Although the increas-
ingly  slower  group  velocity  makes  the  convergence  of  the
wave energy (D > 0, dash-dotted line in Fig. 4d), it only out-
weighs the negative energy budget from the basic flow (G <
0,  dotted  line  in Fig.  4d)  within  1.5  days.  Therefore,  the
change rate (solid line in Fig. 4d) is larger than zero and the
wave energy has a slight increase during the period. Longer
than 1.5  days,  the  effect  of G outweighs  that  of D and the
change rate  is  smaller  than zero.  The decrease in the wave
energy means that the wave energy is absorbed by the basic
flow.  The  amplitude  monotonically  decreases  (dash-dotted
line in Fig. 4b), which is mainly caused by the shrinking hori-
zontal  wave  scale  (increasing  total  wavenumber K,  dotted
line in Fig. 4b) when the ray moves toward the critical line.
For  the  trailing  wave,  it  decays  because  both  the  wave

 

 

Fig. 4. As in Fig. 3 but for the trailing wave (wave source is set to 37°N).
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energy and the amplitude decrease in most cases.

βM3.2.    Westerly jet with  smaller than zero

b = 0.3

βM

βM < 0

By setting  and fixing the values of the other two
parameters  as  in  the  above  subsection,  we  establish  a
sharper  westerly  jet  (Fig.  5a).  The  effective  jet  width  is
17.2°,  and the boundaries are separated at the jet  center by
8.6°  each.  Due  to  the  sharp  shape,  is  no  longer  larger
than zero on the entire sphere. An area with  emerges
at 53.4°−58.5°N (Fig. 5b).

βM < 0

The  propagating  area  (Fig.  6)  presents  certain  similar
behaviors.  When  fixing k =  8  for  the  synoptic  scale,  no
Rossby  waves  can  propagate  within  a  very  short  period,
such  as T =  2  d  (Fig.  6a).  There  is  one  wide  transmission
band located at  38.9°−52.5°N for  a  longer  period of T =  5
days.  Within  this  band,  the  wave  ray  would  move  directly
toward any critical line. Since a wave decays when it moves
toward the  critical  line,  no case  has  been discussed for  the
band with two critical lines. There are two bands situated at
35.7°−48.6°N and 55.6°−56.4°N for a longer period of T =
10 d.  It  is  interesting that  the northern narrow band is  loc-
ated  in  the  region.  The  southern  wide  band  moves
equatorward and is split into two parts by two appearing turn-
ing latitudes for an even longer period of T = 20 d. The south-
ern part is located at 33.4°−36.7°N, while the northern part
is  situated  at  37.1°−47.3°N.  The  northern  narrow  band
travels  poleward  and  shrinks  to  58.0°−58.2°N.  The  bands
move  differently:  the  southernmost  band  moves  equator-
ward,  the  middle  band tends  toward the  jet  center,  and the
northernmost  band  travels  poleward  for  a  much  longer

βM > 0

βM < 0

period.  Compared  with  the  case,  two  major  differ-
ences exist. The first is that the propagation region enclosed
by  two  turning  latitudes  and  located  near  the  jet  axis
becomes a major transmission channel for waves with a relat-
ively  long  wave  period.  The  second  is  that  the  wave  can
propagate in the  region, despite it being too narrow
to be a physical solution.

βM < 0

βM < 0

We further  set  the  wave period to T =  20 d  to  discuss
the variation in the propagating area with the zonal wavenum-
ber  (Fig.  6b).  Here,  the  period  is  set  to  20  days  because
there  are  two  representative  propagating  bands  when  the
period is 20 days, while there is only one when the period is
10  days.  For k =  2,  there  are  two  bands  located  at
38.9°−52.4°N and 53.5°−57.6°N. The northern zone sits  in
the  region. For k = 4, there are still two bands, with
the  southern  one  at  35.7°−52.5°N  and  the  northern  one  at
55.6°−57.5°N. For k = 8, there are three bands, as have been
described  before.  For k >  9,  there  are  only  two  narrow
bands, located in the subtropics and high latitudes. Accord-
ing to the above discussion, we calculate rays and correspond-
ing wave energy and amplitude variations in the two wider
propagating bands by specifying k = 8 and T = 20 d, but neg-
lect the northernmost narrow band although it  is  located in
the  region.

Figures  7 and 8 portray  the  situations  for  the  leading
and  trailing  wave  rays  in  the  southernmost  band,  which  is
enclosed by a southern critical line (33.4°N) and a northern
turning latitude (36.7°N). The leading wave source is placed
near the critical line and the ray propagates northeast to the

 

 

βM

Fig.  5.  Meridional  distribution  of  the  (a)  westerly  jet  and  (b)  meridional  gradient  of  the
potential vorticity .
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Fig.  6.  Energy  dispersion  regions  (shaded)  bounded  by  a  turning  latitude
(solid  line)  and  by  a  critical  line  (dotted-dashed  line):  (a)  for  zonal
wavenumber k = 8; (b) for a period of T = 20 d.

 

 

Fig. 7. (a) The wave ray path (solid black dots denoting the 1-day interval) of the leading wave (wave source is
set to 33.5°N) for k = 8 and T = 20 d. (b) The variations in the wave energy (solid line), amplitude (dash-dotted
line) and total wave number (dotted line) along the leading ray. (c) The variations in the wave energy and the
amplitude against the latitude. (d) The variations in the divergence of the group velocity (dash-dotted line, D),
the energy budget from the basic flow (dotted line, G), and their sum (change rate of the wave energy) along
the leading ray. The straight lines in (a, c) are the critical line (33.4°N) and turning latitude (36.7°N).

JANUARY 2021 LI ET AL. 57

 

  



turning latitude and then turns southeast to tend to the crit-
ical line (Fig. 7a). Both the wave energy and the amplitude
increase to the maximum values when the ray arrives at the
turning latitude and then decreases when the ray leaves the
turning latitude (Fig. 7b), which means that both monotonic-
ally increase with the latitude (Fig. 7c). The maximum wave
energy  is  10.4  times,  while  maximum  amplitude  is  17.1
times its  initial  value.  The wave may develop significantly
or  even  break  with  the  huge  increments.  According  to  Eq.
(10),  the  huge  increase  in  the  wave  energy  can  be  mainly
attributed to the barotropic energy from the basic flow (dot-
ted line in Fig. 7d), rather than the convergence of the wave
energy  (dash-dotted  line  in Fig.  7d).  It  suggests  that  the
wave  gains  barotropic  energy  from  the  basic  flow  when  it
propagates  toward  the  turning  latitude,  although  increas-
ingly  faster  group  velocity  disperses  its  energy  during  the
same period. The increase in the wave energy, as well as the
enlarging  horizontal  scale  (shrinking  total  wavenumber K,
see  the  dotted  line  in Fig.  7b),  causes  the  huge  increase  in
the amplitude.

βM > 0
Let  us  now  compare  its  difference  with  the  leading

wave in  the  westerly  jet  with  discussed previously.
The wave energy reaches its peak on the way to the turning
latitude  for  the  previous  leading  ray  (Fig.  3c)  while  at  the
turning  latitude  for  this  leading  ray  (Fig. 7c).  This  may  be
explained by the gradient of the basic flow (or structure of
the jet). The sharper a jet is, the stronger the gradient of the

βM < 0

βM < 0

basic flow is. Therefore, the barotropic energy absorbed by
the leading wave may outweigh the energy divergence due
to faster  and faster  group velocity  during the whole  period
when the  ray  leaves  its  source  to  the  turning  latitude.  This
leads to a continuously increasing wave energy. The wider a
jet  is,  the  weaker  the  gradient  of  the  basic  flow  is.  There-
fore, the absorbed energy by the wave cannot outweigh the
energy divergence all the time. In the period it loses its pre-
dominance,  the  wave  energy  begins  to  decrease.  Since  the

 region associates with the sharper jet,  we may con-
clude that the leading wave may develop more significantly
in the jet with a  region.

The trailing wave source is placed near the turning latit-
ude  and  the  ray  directly  propagates  to  tend  to  the  critical
line (Fig. 8a). Both its wave energy and amplitude (Fig. 8b)
decrease  along  the  marching  ray  and  monotonically
decrease  with  decreasing  latitude  (Fig.  8c).  The  wave
energy is absorbed by the basic flow (dotted line in Fig. 8d),
although  increasingly  slower  group  velocity  converges
more  energy  (dash-dotted  line  in Fig.  8d).  The  decreasing
wave  energy,  together  with  the  shrinking  wave  scale  (dot-
ted line in Fig. 8b), contributes to the decreasing amplitude.
Therefore,  the  trailing  wave  decays  when  it  propagates
toward the critical line.

Figures  9 and 10 portray  the  situations  for  the  leading
and trailing wave rays in the middle band, which is enclosed
by two turning latitudes  (37.1°N and 47.3°N).  The leading

 

 

Fig. 8. As in Fig. 7 but for the trailing wave (wave source is set to 36.5°N).
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wave  source  is  placed  near  the  southern  turning  latitude.
The marching ray is alternately reflected by the two turning
latitudes to form a wave-like structure (Fig. 9a). For conveni-
ence,  we  only  analyze  the  period  when  the  ray  leaves  its
source  for  the  first  northern  turning  latitude.  The  wave
energy  reaches  the  maximum  value  of  1.33  times  on  the
way  (43°N)  to  the  northern  latitude  and  declines  to  1.18
times at the northern latitude (solid line in Figs.  9b and c).
The  increase  and  decrease  in  the  wave  energy  can  be
explained by the combined effects of the energy divergence
and the barotropic energy budget (Fig. 9d). The rays moves
increasingly faster when it leaves the source toward the north-
ern  latitude.  Therefore,  the  energy  dispersion  causes  the
decrease in the wave energy during the whole period. When
the ray leaves its source to arrive at 43°N within around 2.5
days,  the  barotropic  energy  from the  basic  flow outweighs
the energy divergence and the wave energy increases to the
maximum  value.  When  the  ray  continues  moving  toward
the northern latitude (43°−47.3°N), the energy divergence out-
weighs  the  barotropic  energy  budget  and  the  wave  energy
decreases. Notice that when the ray moves from the jet axis
(45°N)  at  around  2.7  days  to  the  northern  turning  latitude
(47.3°N)  at  around  3.2  days,  the  wave  begins  to  lose  its
energy to the basic flow due to the negative gradient of the

∂ūM/∂y < 0basic  flow  ( ).  This  means  that  both  the  energy
divergence and the energy budget term play a negative role
in determining the wave energy when the leading ray moves
north  of  the  jet  axis  but  south  of  the  turning  latitude.  The
total  wavenumber  increases  to  the  maximum  value  at
42.7°N and then decreases to close to the initial value at the
turning latitude with a limited change range (dotted line in
Fig. 9b), suggesting a slight shrinking and then enlarging of
the  horizontal  scale.  The  amplitude,  however,  shows  more
complex  variation.  It  increases,  decreases  and  increases
when  the  ray  moves  from  the  source  to  38.7°N  (from  the
beginning  to  around  1.7  days),  from  38.7°N  to  41.7°N
(from 1.7 to 2.4 days), and from 41.7°N to the northern turn-
ing latitude (from 2.4 to 3.2 days) in succession (dash-dot-
ted line in Figs. 9b and c). The increase in the first range is
caused by the greater increasing wave energy; the decrease
in the second range is caused by the greater shrinking scale;
and the increase in the third range is  caused by the greater
enlarging scale.

Similar to the leading ray, the initial trailing ray is reflec-
ted alternately by the southern and the northern turning latit-
udes  (Fig.  10a).  The  wave  energy  increases  to  the  max-
imum value on the way (around 43°N) to the southern turn-
ing latitude (solid  line  in Figs.  10b and c).  As can be seen

 

 

Fig. 9. As in Fig. 7 but for the leading wave (wave source is set to 37.14°N). The straight lines in (a, c) are the two
turning latitudes (37.1°N and 47.3°N). The solid black dots on the ray (a) denote the half day interval. The time in (b,
d) is terminated when the ray first arrives at the northern turning latitude.
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from Fig.  10d,  the  increase  in  the  wave  energy  is  mainly
caused  by  the  energy  convergence  due  to  increasingly
slower  group  velocity.  Of  course,  the  trailing  wave  also
absorbs the barotropic energy from the basic flow when it is
north  of  the  jet  axis.  The  decrease  in  the  wave  energy  is
mainly  caused by  the  predominant  energy lost  to  the  basic
flow.  The  total  wavenumber  also  reaches  the  maximum
value  on  the  way  to  the  southern  latitude  (dotted  line  in
Fig.  10b),  suggesting  a  shrinking  and  then  enlarging  hori-
zontal  scale.  The  amplitude  decreases,  increases  and  then
decreases  along  the  marching  ray  (dash-dotted  line  in
Fig. 10b). Its variation pattern against the latitude is highly
similar to the leading ray as discussed above.

According to the above analysis, it is clear that both the
wave  energy  and  the  amplitude  oscillate  against  the  initial
value  for  both  the  leading  and  trailing  waves.  The  max-
imum  increase  does  not  exceed  40%  for  the  wave  energy,
and 10% for the amplitude. The increase or decrease is relat-
ively  small  compared  with  leading  rays  in  the  propagating
region enclosed by a critical line and a turning latitude. There-
fore,  waves  neither  develop  significantly  nor  decay  in  the
propagating region enclosed by two turning latitudes. They
are  relatively  stable  and  can  propagate  a  long  distance
through the alternate reflection by each turning latitude. Fur-
thermore, the propagating region is mainly located near the
jet axis, suggesting the jet as a waveguide to allow waves to

propagate a long distance.

3.3.    Observed atmosphere westerly jet

βM < 0

βM < 0

We further investigate the propagating regions by examin-
ing  the  observed  zonal  wind  distribution.  The  zonal  wind
data  come from the NCEP reanalysis  (Kalnay et  al.,  1996)
provided  by  the  NOAA/OAR/ESRL  PSD,  Boulder,  Color-
ado,  USA,  from  their  website  at https://www.esrl.noaa.
gov/psd/. The major features of the annual, winter (Decem-
ber−January−February,  DJF),  and  summer  (June−July−
August,  JJA) mean zonal wind are the two strong westerly
jets  that  dominate  the  subtropics  in  each hemisphere  and a
moderate easterly around the equator (Fig.  11a).  The west-
erly  jet  in  the  NH  weakens  and  moves  poleward  from
winter  to  summer,  presenting  significant  seasonal  vari-
ations.  For  the  annual  mean  zonal  wind,  there  are  two
regions (82.1°−90°S and 66.8°−73.9°S) where  in the
Southern  Hemisphere,  while  there  is  only  one  such  region
(84.5°−90°N)  in  the  NH  (Fig.  11b).  Excluding  the  two
regions  very  close  to  the  poles,  where  westerlies  are  weak
and  even  easterlies  prevail,  there  is  only  one  effective
region  (66.8°−73.9°S)  corresponding  to  weak  westerlies
with  speeds  of  3  m  s−1.  The  region  also  moves  poleward
from  southern  winter  (JJA)  to  summer  (DJF).  Although
there is a  region, the distribution of the propagating
region (Fig. 12) looks very similar to that of the westerly pro-

 

 

Fig. 10. As in Fig. 9 but for the trailing wave (wave source is set to 47.29°N).
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βM > 0totype  with .  The  major  propagating  region  in  the
NH is enclosed by a southern critical line and a northern turn-
ing latitude and moves poleward from winter to summer.

Figures 13 and 14 portray the situations for the leading
and  trailing  wave  rays  in  the  region  that  is  enclosed  by  a
southern  critical  line  (22.3°N)  and  a  northern  turning  latit-

 

 

βM

Fig. 11. (a) Meridional distribution of the annual (solid line), DJF (dash-dotted line), and JJA
(dotted line) mean zonal wind, and (b) the corresponding meridional gradient of the potential
vorticity .

 

 

Fig.  12.  Energy  dispersion  regions  (shaded)  bounded  by  a  turning  latitude
(solid line) and by a wave trap line (dot-dashed line) for the annual (red), DJF
(green) and JJA (blue) mean zonal wind: (a) for zonal wavenumber k = 8; (b)
for a period of T = 10 d.
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ude (38.5°N) in the annual mean zonal wind background by
specifying k = 8 and T = 10 d. The leading wave is placed
near the critical line and moves northward to the turning latit-
ude  and  turns  southward  to  the  southern  critical  line  to
become a trailing wave (Fig. 13a). The wave energy reaches
the maximum value and then decreases until the ray arrives
at the turning latitude, while the amplitude reaches the max-
imum value at the turning latitude (Figs. 13b and c). The baro-
tropic energy from the basic flow is a positive factor, while
the energy divergence is a negative one. The increase in the
wave  energy  happens  when  barotropic  energy  from  the
basic flows outweighs the energy divergence, and vice versa
(Fig.  13d).  The  leading  wave  can  develop  significantly
since both its wave energy and amplitude increase by a relat-
ively large amount when it moves toward the northern turn-
ing  latitude.  The  trailing  wave  moves  directly  toward  the
southern critical line (Fig. 14a). Within around 2.4 days, the
increase in the wave energy is the result of the energy conver-
gence  due  to  increasingly  slower  group  velocity.  Longer
than 2.4 days,  the decrease in the wave energy is absorbed
by the basic flow, although energy convergence still plays a
positive role (Fig. 14d). The decreasing wave energy, multi-
plied by the shrinking scale, contributes to the continuously
decreasing  amplitude.  The  trailing  wave  is  eventually
trapped by the critical line with decreasing wave energy and

amplitude and shrinking scale.

4.    Conclusions and discussion

In this paper we investigate the energy dispersion of non-
stationary Rossby waves by applying classic wave ray the-
ory  to  both  theoretical  and  observed  westerlies.  According
to  the  wave  energy equation  along a  ray,  the  variability  of
the wave energy is jointly determined by the divergence of
the group velocity and the product of the wave scale and the
gradient  of  the  basic  flow.  The  former  denotes  the  diver-
gence  and  the  convergence  of  the  wave  energy  that
decreases and increases the wave energy. The latter denotes
the barotropic energy budget through eddy activities. Wave
energy  increases  (decreases)  if  the  wave  gains  (loses)
energy  from  (to)  the  basic  flow.  We  propose  an  available
method  that  calculates  the  ratio  between  the  difference  in
the  group  velocity  speed  flux  and  the  volume the  ray  tube
passes  through  in  a  short  time  interval  to  solve  the  diver-
gence of the group velocity. The wave energy equation can
then  be  easily  solved  by  applying  numerical  integration
schemes.

The  calculation  results  suggest  that  the  wave  energy
and the amplitude present quite different features in differ-
ent  propagating  regions,  which  is  determined  by  the  struc-

 

 

Fig.  13.  As  in Fig.  3 but  for  the  leading  wave  (wave  source  is  set  to  23°N)  in  the  annual  mean  zonal  wind
background. The straight lines in (a, c) are the critical line (22.3°N) and turning latitude (38.5°N).
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βM < 0

ture of the basic flow by specifying the zonal wavenumber,
period and the source position of the wave. In the propagat-
ing regions enclosed by a southern critical line and a north-
ern turning latitude, a leading wave ray heads toward the turn-
ing latitude and becomes a trailing ray after it is reflected by
the  turning  latitude,  while  a  trailing  wave  moves  directly
toward the critical line. The leading wave energy reaches its
maximum value either on the way to the turning latitude or
at  the  turning  latitude.  The  increasingly  faster  group  velo-
city  disperses  the  wave  energy.  Therefore,  the  increase  in
the wave energy is mainly caused by the barotropic energy
gained  from  the  basic  flow  through  eddy  activities.  In  a
sharper  jet  that  associates  with  a  region,  the  wave
can absorb  more  energy from the  basic  flow and the  wave
energy  reaches  the  maximum value  at  the  turning  latitude.
The amplitude, in contrast, continuously increases to the max-
imum value at the turning latitude due to the shrinking hori-
zontal  wave  scale  (enlarging  total  wavenumber).  Since  a
period exists when both the wave energy and the amplitude
increase  simultaneously,  the  wave  may  develop  signific-
antly.  Along  the  trailing  wave  ray,  both  the  wave  energy
and  the  amplitude  eventually  decrease  when  approaching
the  critical  line,  although  the  wave  energy  may  increase
slightly  at  the  beginning  time.  This  means  that  the  wave
decays and is eventually trapped by the critical line.

In  the  propagating  region  that  is  near  the  jet  axis  and
enclosed by two turning latitudes, both leading and trailing

wave  rays  are  alternately  reflected  by  the  turning  latitudes
to form a wave-like structure. The wave energy increases on
the way to the northern turning latitude and then decreases
until  the  ray  arrives  at  the  northern  turning  latitude.  The
increase in the wave energy for the leading wave is mainly
caused by the barotropic energy from the basic flow, while
for  the  trailing  wave  it  is  the  convergence  of  the  wave
energy.  The  change  rate  of  the  wave  energy  is  relatively
small  due  to  matched  sizes  of  the  two  factors.  The  amp-
litude reaches its maximum value at the northern turning latit-
ude, while the minimum value is reached at the southern turn-
ing latitude. The variations in the amplitude are jointly determ-
ined by the wave energy and the wave scale. Both the wave
energy and the amplitude vary in a moderate range, suggest-
ing  that  the  waves  neither  develop nor  decay significantly.
Therefore, they can propagate a long distance along the jet
axis that acts as a waveguide for Rossby waves.

βM > 0

The  main  propagating  region  in  the  observed  zonal
wind  is  enclosed  by  a  southern  critical  line  and  a  northern
turning latitude. It is located south of the jet and moves pole-
ward  from  winter  to  summer.  The  variations  in  the  wave
energy and the amplitude are similar to situations in the theor-
etical  zonal  wind  with .  The  wave  energy  increases
and  then  decreases,  while  the  amplitude  monotonically
increases. Waves with suitable positions can develop signific-
antly.

It  should  be  noted  that  the  development  of  Rossby

 

 

Fig. 14. As in Fig. 13 but for the trailing wave (wave source is set to 38°N).
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βM < 0

waves  is  defined  as  the  simultaneous  increase  in  the  wave
energy and the amplitude, according to Lu and Zeng (1981).
However waves might also develop significantly to bring tran-
sient  synoptic  phenomena  in  local  regions  if  the  wave
energy  is  concentrated  but  the  amplitude  is  decreasing,  as
Lu  and  Zeng  (1981) suggested.  Therefore,  it  is  still  of
interest to further discuss the definition of the wave develop-
ment.  Besides,  when a  wave develops significantly,  it  may
be  unstable  to  induce  instability.  The  waves  seem  to
develop more significantly in the westerly jet with a 
region,  which  satisfies  the  classical  necessary  condition  of
barotropic  instability  (Kuo,  1949).  Therefore,  it  is  neces-
sary to discuss the criterion that a Rossby wave develops to
be unstable.
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