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ABSTRACT

Accurate  prediction  of  tropical  cyclone  (TC)  intensity  remains  a  challenge  due  to  the  complex  physical  processes
involved in TC intensity changes. A seven-day TC intensity prediction scheme based on the logistic growth equation (LGE)
for the western North Pacific (WNP) has been developed using the observed and reanalysis data. In the LGE, TC intensity
change is  determined by a growth term and a decay term. These two terms are comprised of  four free parameters which
include a time-dependent growth rate, a maximum potential intensity (MPI), and two constants. Using 33 years of training
samples, optimal predictors are selected first, and then the two constants are determined based on the least square method,
forcing the regressed growth rate from the optimal predictors to be as close to the observed as possible. The estimation of
the growth rate is further refined based on a step-wise regression (SWR) method and a machine learning (ML) method for
the  period  1982−2014.  Using  the  LGE-based  scheme,  a  total  of  80  TCs  during  2015−17  are  used  to  make  independent
forecasts.  Results  show  that  the  root  mean  square  errors  of  the  LGE-based  scheme  are  much  smaller  than  those  of  the
official intensity forecasts from the China Meteorological Administration (CMA), especially for TCs in the coastal regions
of  East  Asia.  Moreover,  the  scheme  based  on  ML  demonstrates  better  forecast  skill  than  that  based  on  SWR.  The  new
prediction scheme offers strong potential for both improving the forecasts for rapid intensification and weakening of TCs as
well as for extending the 5-day forecasts currently issued by the CMA to 7-day forecasts.
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Article Highlights:

•  A  7-day  TC  intensity  prediction  scheme  based  on  the  LGE  for  the  WNP  has  been  developed  using  the  SWR  and
LightGBM schemes.

•  The  LGE-based  scheme  has  better  forecast  skills  than  the  CMA  official  forecasts,  especially  for  TCs  in  the  coastal
regions of East Asia.

•  The  new  prediction  scheme  exhibits  strong  potential  for  an  extension  of  the  CMA's  current  5-day  forecasts  to  7-day
forecasts.

 

 
 

 

1.    Introduction

Tropical  Cyclones  (TCs)  are  among  the  most  import-

ant  disastrous  weather  systems  over  the  western  North
Pacific  (WNP),  which  are  often  accompanied  by  violent
winds, heavy rains, and even storm surges before and after
landfall, causing considerable damage and economic losses.
Therefore,  improving  TC  forecasts  is  of  great  importance
for disaster prevention.

With  increasingly  precise  observational  data,  continu-
ous  development  of  numerical  weather  prediction  models,
advances in data assimilation, and a more in-depth understand-
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ing of the physical mechanisms which determine TC tracks,
the forecast skill of TC tracks over the WNP has been continu-
ously improved in the past several decades (see a review by
Heming  et  al.,  2019).  In  sharp  contrast,  TC  intensity  fore-
cast  errors  over  the  WNP  have  not  shown  any  significant
reduction  since  the  2000s  (Dong  et  al.,  2019; Li  et  al.,
2020).  In  addition,  the  China  Meteorological  Administra-
tion (CMA) currently makes TC intensity forecasts at a lead
time of five days. Tropical cyclone intensity over the North
Atlantic is also challenging to predict at long-range forecast
times (Cangialosi, 2020). Given the complexity of the issue
and  its  great  importance  to  society,  improving  the  forecast
skill  of  TC  intensity  and  extending  the  lead  time  of  fore-
casts have become important and urgent matters (Xu et al.,
2010; Cangialosi, 2020).

It is vital to understand the factors affecting TC intens-
ity. Large-scale environmental conditions have been well doc-
umented  as  to  their  key  roles  in  controlling  TC  intensity
changes (Elsberry et al., 2013). Since TC genesis and develop-
ment  involve  complex  air-sea  interactions,  TC  intensity
change is closely related to the pre-storm sea surface temperat-
ure (SST) and sea surface heat flux (Knutson et  al.,  2010).
The  vertical  wind  shear  (VWS)  and  maximum  potential
intensity  (MPI)  also  significantly  affect  TC  intensity
changes (Emanuel  et  al.,  2004; Zeng et  al.,  2007; Wang et
al.,  2015a, b). Apart from large-scale environmental condi-
tions, TC internal dynamics (e.g., TC structure and convect-
ive bursts) have also been recognized to significantly affect
TC intensity changes (Wang and Wu, 2004). However, for a
TC at any given time, the key factors affecting its intensity
change also have uncertainties due to the complex,  nonlin-
ear processes involved (Duan et al., 2005). Therefore, clarify-
ing the relative importance of factors controlling TC intens-
ity remains a challenge.

Despite  the  challenges,  various  methods  have  been
developed  and  applied  to  TC  intensity  forecasts.  Methods
used  in  current  operational  TC  intensity  forecasts  can  be
roughly classified into five categories: (1) simple extrapola-
tion based on the successive initial approximations (Dvorak,
1975; Velden et al., 1998); (2) statistical methods using empir-
ical  relationships  between  the  change  in  TC  intensity  and
the  various  preceding  factors  (e.g., DeMaria  and  Kaplan,
1994; Knaff et  al.,  2005; Chen et al.,  2011); (3) dynamical
approaches  based  on  global  or  regional  numerical  models
(eg., Kurihara et al., 1993; Bender et al., 2007; Ma and Tan,
2009);  (4)  dynamical-statistical  methods  with  a  combina-
tion  of  the  statistical  and  dynamical  approaches  (eg.,
DeMaria and Kaplan, 1997; Knaff et al., 2005); and (5) sim-
plified dynamical system models based on simplified differen-
tial equations (eg., DeMaria, 2009). Among these, the simpli-
fied dynamical system model is especially promising due to
its  simplicity  and  reliable  skill.  For  example, DeMaria
(2009) developed  a  TC  intensity  prediction  scheme  based
on a logistic growth equation (LGE) for the North Atlantic
and  eastern  Pacific  basins.  Both  hindcasts  and  forecasts
showed that the LGE-based scheme demonstrates better fore-

cast  skill  than  the  current  statistical  approaches,  and  thus
has been regarded as one of the best  individual  models for
TC  intensity  forecasts  at  the  National  Hurricane  Center
(NHC) as shown in Cangialosi (2020). However, at present,
the LGE model (LGEM) was only developed for TC intens-
ity  forecasts  over  the  North  Atlantic  and  eastern  Pacific
basins.  No  effort  has  been  devoted  to  the  development  of
such a scheme for TC intensity prediction for the WNP.

Recently, increasing efforts have been made to improve
TC intensity predictions using machine learning (ML) meth-
ods  (Baik  and  Hwang,  1998; Huang  et  al.,  2016; Cloud  et
al., 2019; Jin et al., 2019; Su et al., 2020). For example, Jin
et  al.  (2019) established  a  TC  intensity  prediction  scheme
based  on  an  eXtreme  Gradient  BOOSTing  (XGBOOST)
method. More recently, Su et al. (2020) developed a probabil-
istic forecast scheme for TC rapid intensification (RI) using
ML, which shows better predictive skill than the NHC opera-
tional RI consensus. In general, ML methods can be effect-
ively deployed for TC intensity prediction since they have a
great advantage in deducing the nonlinear and uncertain pro-
cesses which lead to TC intensity changes.  However,  most
of  the  current  ML-based  approaches  have  been  developed
for short-lead-time TC intensity forecasts.

In this study, we will introduce a seven-day TC intens-
ity  prediction  scheme for  the  WNP based on  the  combina-
tion of the LGEM and the Light Gradient Boosting Machine
(LightGBM) model, which is an implementation of fast boost-
ing on decision tree (Ke et al., 2017). We will demonstrate
that  the  newly  developed  scheme  has  a  good  potential  for
optimizing  the  operational  TC  intensity  forecasts.  The
remainder  of  this  paper  is  organized  as  follows.  The  data
and  methodology  are  described  in  section  2.  The  proced-
ures involved in constructing the LGE-based scheme, includ-
ing selecting predictors, fixing the parameters, and training
the models are presented in section 3. The forecast perform-
ance  of  the  LGEM  is  evaluated  in  section  4.  Section  5
provides  a  real-time  application  of  the  LGEM.  Discussion
and conclusions are given in section 6. 

2.    Data and methodology
 

2.1.    Data

The  TC  best-track  dataset  over  the  WNP,  containing
the maximum sustained surface wind speed and location (lon-
gitude  and  latitude)  information  in  6-hour  intervals,  was
obtained from the Shanghai  Typhoon Institute (STI)  of  the
China  Meteorological  Agency  (CMA).  In  this  study,  TC
intensity  is  defined  as  the  maximum  two-minute  average
10-m wind speed (V). TCs with V ≥ 17 m s−1 were selected
as samples to develop the LGEM. We note that all data over
land  were  excluded  since  the  maximum  potential  intensity
(MPI)  included  in  the  LGEM  is  limited  to  the  ocean.  TC
samples  during  1982−2014  were  used  to  construct  the
LGEM, while those which occurred during 2015−17 were util-
ized as independent samples to evaluate the prediction skills
of  the  LGEM. Figure  1 shows  the  numbers  of  the  training
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and test samples, in which the training samples account for
more than 90% of the total samples. To further evaluate the
performance  of  the  LGEM,  the  official  real-time  forecast
data  of  TC  intensity  from  the  CMA  during  2015−19  were
derived from the TC operational database at the STI.

Over  the  past  decade,  the  WNP  Intensity  Prediction
Scheme  developed  by  the  STI  (WIPS; Chen  et  al.,  2011)
has  been  continuously  operating  and  has  generally  shown
good skill  among the CMA’s operational  intensity forecast
models (Chen et al., 2019). In this study, we used the same
inputs as the operational WIPS model, including potential pre-
dictors  and  MPI.  Following  the  WIPS  model,  we  used  the
6-hourly reanalysis data with a horizontal resolution of 2.5° ×
2.5°  from  the  National  Centers  for  Environmental  Predic-
tion  and  National  Center  for  Atmospheric  Research
(NCEP/NCAR)  (Kalnay  et  al.,  1996)  to  calculate  the  vari-
ous environmental  predictors.  Note  that  the location of  TC
center  is  also  needed  to  calculate  the  predictors  in  this
study. The weekly optimum interpolation (OI) SST V2 data
at  a  horizontal  resolution  of  1°  ×  1°  from  the  National
Oceanic  and  Atmospheric  Administration  (NOAA)  (Reyn-
olds  et  al.,  2002)  were used to  calculate  the ocean predict-
ors  after  linear  interpolation  into  6-hourly  data.  Further-
more, the NCEP Global Forecasting System (GFS) forecast
fields  (Yang  et  al.,  2006)  during  2017−19  were  also  used
for additional applications. 

2.2.    Methodology
 

2.2.1.    The LGE

Following DeMaria  (2009),  the  generalized  prediction
equation for TC intensity (V) based on the LGE can be writ-
ten as 

dV
dt
= κV −βV

(
V

Vmpi

)n

, (1)

where dV/dt is the intensity tendency, Vmpi is the MPI, κ is
the time-dependent growth rate, and β and n are two posit-
ive constants that determine the magnitude of diffusive pro-
cesses caused by the ocean and atmosphere. The TC intens-
ity tendency is mainly determined by the growth and the diffu-
sion  processes.  The  first  term of  the  right-hand side  of  the
equation  is  the  intensity  growth  term,  which  is  determined

by the degree of (un) favorable environmental  factors.  The
second term reflects  the diffusive processes,  which include
the  increase  in  friction  that  occurs  along with  the  intensity
growth  and  the  damping  process  that  occurs  when  the  TC
moves into colder SSTs or an otherwise unfavorable atmo-
spheric environment. For simplicity, the 6-h forward differ-
ence will be used to approximate V every six hours from 6
to 168 h. 

2.2.2.    LightGBM

In this study, we applied a step-wise regression (SWR)
method and an ML method for the LGE-based TC intensity
forecast. Here, the ML method used is LightGBM, which is
a fast, distributed, high-performance gradient boosting frame-
work based on decision tree algorithms (Ke et al., 2017). It
originates from the Gradient boosting decision tree (GBDT)
but possesses significant improvements in resolving its scalab-
ility  and  long  computational  time  by  adopting  a  leaf-wise,
tree growth strategy and introducing novel techniques. Previ-
ous  studies  have  demonstrated  that  the  LightGBM  offers
good  prediction  performance,  consumes  short  computa-
tional time, and is a promising ML method (Ju et al., 2019;
Zhang  et  al.,  2019).  In  addition,  since  the  average  lifetime
of  TCs  is  about  one  week,  the  number  of  samples  rapidly
decreased from 21330 to 3905 for the predictions every six
hours  from  6  hto  168  h  (seven  days; Fig.  1).  The  Light-
GBM is well-balanced in processing such great changes of
samples. Therefore, we will apply it to the LGEM construc-
tion and compare its prediction performance with that of con-
ventional regression. 

2.2.3.    RMSE

Here, the Root Mean Square Error (RMSE) was used to
evaluate the intensity prediction skills of the LGEM. The cal-
culation formula of the RMSE is written as 

RMSE =

√
1
m

∑m

i=1
( fi−oi)2 , (2)

where the term fi refers to the value of a forecast V for the
forecast time i, and the term oi is the value of V from observa-
tion. m is the number of the sample. 

2.2.4.    POD and FAR

The skill of TC rapid intensification and rapid weaken-

 

 

Fig. 1. The numbers of training and testing samples for different forecast times at 6-h intervals.
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ing forecasts was evaluated utilizing the probability of detec-
tion  (POD)  and  the  false  alarm  rate  (FAR)  (Wilks,  2006).
The POD is the percentage of time that rapid intensification
or rapid weakening events are correctly identified. The FAR
is the ratio of the number of times that an event is forecast
to occur but does not, divided by the total number of times
that an event does not occur.

To quantify the relative importance of the potential pre-
dictors in affecting TC intensity changes, we employed the
Lindeman,  Merenda,  and  Gold  method  (LMG; Lindeman,
1980)  of  the  relaimpo  package  (Groemping,  2006)  within
the R environment for statistical computing (R Core Team,
2013).  The  LMG method  takes  the  average  of  the  sequen-
tial sums of squares over all orderings of regressors, which
addresses  both  the  direct  effects  and  those  effects  adjusted
for other regressors in the model. 

3.    Model development
 

3.1.    Predictor selection

Factors affecting TC intensity vary from basin to basin.
DeMaria (2009) constructed the North Atlantic and eastern
North  Pacific  LGEMs  based  on  the  predictors  from  the
simple  Statistical  Hurricane  Intensity  Prediction  Scheme
(SHIPS).  As  mentioned  above,  the  potential  predictors  in
this  study  were  selected  based  on  the  WIPS.  As  shown  in
Table 1, these predictors include the climatology and persist-
ence predictors and the atmospheric and oceanic predictors
for each 6-h forecast interval out to 168 h (seven days). Sim-
ilar  to  the  WIPS,  all  of  these  were  derived  along  the  TC
tracks. The MPI was estimated using the equation by Knaff
et al. (2005). Moreover, we tested the other three common for-
mulas  of  MPI  over  the  WNP  as  inputs  (DeMaria  and

Kaplan, 1994; Baik and Paek, 1998; Zeng et al., 2007). The
results show that the MPI developed by Knaff et al. (2005)
used in the LGE-based model generally shows better skill in
forecasting  TC  intensity  than  others.  Therefore,  the  MPI
developed by Knaff et al. (2005) was selected in this study.
Following Knaff  et  al.  (2005),  the maximum value of  MPI
is set to 95 m s−1 (185 kt) to avoid unreasonable MPI.

Since the predictors are vital  to a statistical  model,  we
first  reexamine  them using  correlation  and relative  import-
ance analyses. Note that all of the predictors, as well as the
predictands, were normalized before they were further ana-
lyzed. Figure 2 illustrates the scatter distributions of the poten-
tial  predictors  and  the  24-h  TC  intensity  tendency  from
1982 to 2014. As expected, these predictors show high correl-
ations with the 24-h TC intensity change that is  significant
at the 99% confidence level except for the average 200-hPa
divergence (DIV20).  Most  notable is  the strong correlation
between the MPI and the 24-h TC intensity change, with a
correlation coefficient of 0.48. Note that there are two reas-
ons  for  the  relationship  being  examined  only  for  the  24-h
TC intensity change. The first is because the 24-h centered
time difference will be used to determine β and n and to calcu-
late the “observed” κ as indicated in the next section, which
is consistent with DeMaria (2009). The other is because the
6-h forward difference will  be used to predict  TC intensity
as indicated in section 2.2.1, which means that the predict-
ors at  the previous six hours of each forecast  time are also
important.  Compared  to  24-h  TC intensity  change,  6-h  TC
intensity change shows similar correlations with the poten-
tial predictors (not shown).

Further, we calculated the relative contributions of each
factor  that  affects  TC  intensity  change  using  the  LMG
method  as  introduced  in  section  2.  As  shown  in Fig.  3,
among  all  of  the  factors,  the  previous  12-h  intensity

Table 1.   Description of the potential predictors.

Predictors Units Description

VWS m s−1 The averaged vertical wind shear between 200 and 850 hPa within a radius of 5 degrees of the TC center
CMV m s−1 The meridional component of TC moving speed

TMP20 K The averaged 200-hPa temperature within a radius of 5–10 degrees of the TC center
VOR85_lon ° The longitude of the greatest vorticity at 850 hPa in the range of 2 degrees (4 degrees) of the TC center at

0–24 h (>24 h) forecasts
VOR85_lat ° The latitude of the greatest vorticity at 850 hPa in the range of 2 degrees (4 degrees) of the TC center at

0–24 h (>24 h) forecasts
RH5030 % The averaged relative humidity at 500–300 hPa within a radius of 5–10 degrees of the TC center
RH8570 % The averaged relative humidity at 850–700 hPa within a radius of 5–10 degrees of the TC center
PENV hPa The averaged sea level pressure within a radius of 5–10 degrees of the TC center
SST °C Sea surface temperature at the TC center
H50 gpm The 500-hPa geopotential height at the TC center

AT850 K The 850-hPa temperature difference relative to the left and right semicircle of TC moving path
DIV20 s−1 The averaged divergence at 200 hPa within a radius of 5–10 degrees of the TC center
DIV85 s−1 The averaged divergence at 850 hPa within the radius of 5–10 degrees of the TC center
AV85 s−1 The averaged absolute vorticity at 850 hPa within a radius of 5–10 degrees of the TC center
AU m s−1 The averaged zonal wind at 200 hPa within the radius of 0–5 degrees of the TC center
MPI m s−1 Maximum potential intensity

DV12 m s−2 Previous 12-h intensity change
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Fig. 2. Scatter plots of environmental factors and 24-h TC intensity changes. The regressed line is marked in each subplot,
and the corresponding correlation coefficient is shown in the lower right corner.

 

 

Fig. 3. Distribution of relative importance (%) of potential predictors.
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(DV12),  MPI,  the  latitude  of  the  greatest  vorticity  at  850
hPa  (VOR85_LAT),  and  SST  contribute  the  most  to  TC
intensity changes, with contributions of 33.0%, 8.3%, 5.6%,
and 5.5%, respectively, all of which are statistically signific-
ant  above  the  95% bootstrap  confidence  level.  In  contrast,
the  absolute  vorticity  and  temperature  difference  between
right and left semicircle relative to the TC track at 850-hPa
and 500-hPa geopotential heights contribute the least to TC
intensity. The following optimal predictors were selected to
construct the LGEM according to the above analyses based
on  the  correlation  and  relative  importance:  DV12,  MPI,
VWS, AU, TMP20, VOR85_LAT, VOR85_LON, RH8570,
RH5030, and SST, each of which made contributions larger
than 0.5%. 

3.2.    Construction of the LGEM over the WNP

With the optimal predictors and the LGE as introduced
in  section  2,  the  LGE-based  TC  intensity  forecast  scheme
over the WNP is developed based on the TC best-track data
and the reanalysis data in this study. A separate set of submod-
ules is used to predict TC intensity every six hours, from 6 h

to 168 h.
Figure  4 summarizes  the  workflow in  constructing the

LGEM. The workflow consists  of  three  parts:  data  prepro-
cessing,  model  development,  and  model  prediction.  In  the
data  preprocessing,  the  optimal  predictors  and  predictands
every six hours from 0 to 168 h were calculated using the his-
torical  CMA  TC  best-track  data,  NCEP/NCAR  reanalysis,
and NOAA SST data during 1982−2017. The training data-
set during 1982−2014 is used to build the LGEM by fitting
the  two  constant  parameters  of  β and  n  and  estimating  the
growth rate κ. The two constants are determined by the least
square method which makes the regressed growth rate from
the optimal predictors as close as possible to the "observed"
growth  rate.  The  growth  rate  is  further  estimated  based  on
the SWR and LightGBM, respectively. Furthermore, the test-
ing dataset during 2015−17 is used to indicate the perform-
ance of the LGEM by predicting κ and then the TC intens-
ity. Finally, the CMA real-time forecast dataset of TC intens-
ity is compared to the LGEM to further evaluate its forecast
potential.
 

 

 

Fig.  4.  A  schematic  diagram  of  the  prediction  system  of  LGEM,  including  data  preprocessing,  model
development, and model prediction.
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3.3.    Estimation of the constants β and n

In order to determine the values of β and n, Eq. (1) can
be written as 

κ =

(
1
V

)
dV
dt
+β

(
V

Vmpi

)n

, (3)

where dv/dt was calculated from the best-track intensities of
TCs  over  water  during  1982−2014  using  a  24-h  centered
time difference, similar to DeMaria (2009). First, we discret-
ized β from 0 to 0.05 using 0.001 intervals and n from 0 to 5
using an increment  of  0.1  according to  the  values  over  the
Atlantic (DeMaria, 2009) in which the final values of β and
n were 1/24 and 2.5. Using historical observed TC intensity
and MPI data, we can calculate the "observed" κ (denoted as
κ1) values with Eq. (3). Then, we can also obtain the estim-
ated κ (denoted  as κ2)  based  on  the  regression  equations
using the above optimal  predictors  derived from reanalysis
data. κ1 and κ2 were recalculated with different values of β
and n which  were  determined  by  minimizing  the  square
errors between κ1 and κ2. Figure 5 shows the distribution of
total square errors of the growth rate κ between observation
and regression as a function of β and n based on the samples
during  1982−2014.  The  total  square  error  reaches  a  min-
imum of  18.035  when  the  values  of β and n are  0.023  h−1

and 2.3, respectively, which are very close to their counter-
parts over the Atlantic (β = 0.025 h−1 and n = 2.6). This sug-
gests  that  although  the  factors  which  affect  TC  intensity
changes  are  different  over  the  WNP  compared  to  the
Atlantic  basins,  the  values  of β and n are  similar  to  each
other. 

3.4.    Estimation of the growth rate κ
According to DeMaria (2009), the growth rate κ is a func-

tion  of  large-scale  variables  and  persistence  predictors,
which  are  time-dependent.  After  determining  the  constant
parameters  of  β and  n,  we  can  obtain  the  exact  values  of
“observed” κ using Eq. (3). Then, the SWR and LightGBM

were  used  to  train  and predict κ using  the  optimal  predict-
ors and the “observed” κ, respectively. As mentioned above,
the training dataset during 1982−2014 was used to train the
relationship between predictors and κ.  As a result,  a  separ-
ate  set  of  regression  models  and  a  separate  set  of  Light-
GBM models were built to predict κ every six hours from 6
to 168 h. Using these two sets of models and the testing data-
set during 2015−17, we can predict κ at each forecast time.
Given that κ and other parameters in Eq. (1) are known, the
LGEM  with  a  forward-time-differencing  scheme  was  used
to predict the intensity (V) at each forecast time. 

4.    Model performance verifications

In  this  section,  the  SWR-based  and  LightGBM-based
LGEMs  over  the  WNP  will  be  compared  with  the  official
intensity  forecasts  from the  CMA based  on  two long-lived
cases  in  2015  and  based  on  comprehensive  cases  during
2015−17.  The  case  study  will  be  demonstrated  in  section
4.1, and then all sample verification will be summarized in
section 4.2. 

4.1.    Case study demonstration

The  test  cases  are  Typhoon  Maysak  (201504)  and
Typhoon Champi (201525), both of which were maintained
for more than 10 days over the WNP and experienced rapid
intensification,  but  exhibited  different  tracks  and  intensity
changes. Figures 6a–6d show tracks and intensities for these
two TCs. Maysak formed east of Pohnpei on 27 March as a
tropical storm, intensified to a category super typhoon on 31
March with the intensity of 65 m s−1, and weakened to a trop-
ical  storm  before  striking  the  Philippines.  Champi  formed
northeast of the Marshall Islands on 13 October, intensified
to a typhoon on October 16, and reached peak intensity with
the intensity of 55 m s−1 on 18 October. Then, Champi star-
ted  to  weaken  but  experienced  a  short-lived  re-intensifica-
tion  on  22  October.  It  became  an  extratropical  cyclone  on
25 October before fully dissipating on 28 October.

Figures 6c and 6d show the evolution of the observed val-
ues  of  the  growth  rate κ for  these  two TCs.  It  can  be  seen
that κ for Typhoon Maysak maintained a positive and high
value  during  the  early  stages  of  TC  genesis  and  develop-
ment,  and  then  reached  a  second  maximum  6–12  hours
before  Maysak  reached  peak  intensity.  Afterwards, κ star-
ted to gradually decay before becoming negative during the
decaying period. The evolution of κ in Typhoon Champi is
similar  to  that  in  Typhoon  Maysak,  but κ in  Typhoon
Champi also experienced another peak before TC re-intensi-
fication. It should be noted that in the early stages, although
the  value  of κ is  large  due  to  conducive  environmental
factors which support TC development at this stage, the net
effect of κ is relatively small due to the small TC intensity.
At the development and peak stages, the changes in κ are con-
sistent  with  those  in  TC  intensity  with  leading  indicators,
which  suggests  that  the  effect  of κ is  vital.  This  indicates
that κ in Eq. (1) indeed is reasonable in promoting TC devel-
opment.

 

κ

Fig. 5. The distribution of total square errors of the growth rate
 between observation and regression as a function of β and n

based on the samples during 1982−2014. Here, β is discretized
from  0  to  0.05  using  with  0.001  intervals  and  n  from  0  to  5
using with an the increment of 0.1.
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Figures  6e–6h show  the  maximum  winds  from  the  7-
day  forecasts  of  the  SWR-based  and  LightGBM-based
LGEMs and the CMA best track for Typhoon Maysak and
Typhoon Champi.  Both LGEMs reproduce every aspect  of
the  intensity  evolution  of  corresponding  TCs  reasonably
well. It is worthy to note that the LightGBM-based scheme
demonstrates better skill  in predicting the rapid intensifica-
tion  and  re-intensification  of  the  TCs  with  a  smaller  mean
bias and a smaller spread than the SWR-based scheme. In con-
trast, the SWR-based scheme incurs large errors in predict-
ing TC peak intensity. To further compare the forecast per-
formance, we calculated the RMSEs of two LGEMs for two

cases at lead times from 24 to 168 h every 24 h. As shown
in Table 2, the RMSEs in the LightGBM-based scheme are
smaller than those in the SWR-based scheme except for the
144-h and 168-h forecasts for Typhoon Champi. We also com-
pared the forecasts of the LGEM with those from the CMA
(not  shown)  and  found  that  the  LGEM  forecasts  generally
show better forecasting skill at every time. The evidence sug-
gests  that  the  LGEM, especially  the  ML scheme,  seems to
be promising in predicting TC intensity. 

4.2.    Comprehensive verifications

To confirm the results from the above case test, we fur-

 

 

Fig. 6. (a, b) Tracks for Maysak and Champi in 2015 and (c, d) the corresponding intensity (blue) and the calculated
growth rate κ (red) at 6-h intervals based on the CMA best track data; The 7-day forecasts of the intensity (unmarked
color lines) for (e, g) Maysak and (f, h) Champi in 2015 at different forecast times with 6-h intervals based on (e, f)
SWR-based and (g, h) LightGBM-based LGEMs and the corresponding CMA best-track intensity (red dotted line).
In (e–h),  those unmarked color  lines mean 7-day TC intensity predictions with 6-h intervals,  and the first  point  of
each line indicates the initial forecast time.
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ther examine the forecast performance of the LGEM based
on 2015−17 TC samples, which include 80 TCs. First, we cal-
culated  the  RMSEs  of  the  7-day  dV/dt forecasts  in  Eq.  (1)
from the  SWR-based and LightGBM-based LGEMs at  6-h
intervals for the independent cases during 2015−17. Since a
forward-time-differencing scheme every 6 h from 6 to 168 h
was  used  to  predict V at  each  forecast  time,  dV/dt denotes
the  rate  of  TC  intensity  change  between  the  forecast  time
and 6 h before the forecast  time.  Generally,  the RMSEs of
the dV/dt forecasts at 6–168 h are similar, ranging from 1.09 ×
10−4 m  s−2 to  1.38  ×  10−4 m  s−2 for  the  LightGBM-based
LGEM and from 1.07 × 10−4 m s−2 to 1.32 × 10−4 m s−2 for
the  SWR-based  LGEM.  The  small  changes  in  RMSEs  of
the  dV/dt forecasts  among  different  forecast  times  suggest
that the LGEM has a good potential for making longer-time
TC intensity forecasts (DeMaria, 2009; Cangialosi, 2020), fur-
ther noting that the longer-time forecast errors might be due
to the cumulative errors of TC intensity forecasts.

Figure 7 displays the RMSEs of the 7-day intensity fore-
casts from the two LGEMs and the 5-day forecasts from the
CMA  at  24-h  intervals  for  independent  cases  during
2015−17. In general, RMSE increases with the longer fore-
cast times for all three kinds of forecasts. A prominent fea-

ture  in Fig.  7 is  that  the  CMA  forecast  errors  were  larger
than those from both the SWR-based and LightGBM-based
LGEMs  at  all  forecast  times.  The  differences  between  the
SWR-based  LGEM  and  the  CMA  forecasts  were  statistic-
ally significant above the 95% confidence level at 48 h and
120 h. and those between LightGBM-based LGEM and the
CMA forecasts were statistically significant above the 95%
confidence level  at  24–120 h.  This indicates a good poten-
tial  for  the  LGEM  to  produce  reliable  TC  intensity  fore-
casts.  Another  interesting  feature  is  that  the  LightGBM-
based  LGEM  showed  smaller  errors  than  the  SWR-based
LGEM for all of the forecast periods except the 168 h fore-
cast, suggesting an advantage for the LightGBM method in
improving  TC intensity  forecasts  compared  to  the  conven-
tional SWR method.

It  is interesting and important to evaluate the perform-
ance  of  the  LGEM-based  model  in  forecasting  TC  rapid
intensification  and  rapid  weakening.  Here,  we  used  the
POD and the FAR to make an evaluation based on the test-
ing  dataset  during  2015−17.  To  increase  sample  size,  we
defined rapid intensification and rapid weakening as the val-
ues  of  the  24-h  intensity  change  DV24 ≥ 12  m  s−1 and
DV24 ≤ −12 m s−1, respectively. There is a total of 182 and

Table 2.   RMSEs of intensity forecasts for Maysak and Champi in 2015 at 24, 48, 72, 96, 120, 144, 168 h forecasts. Smaller RMSEs
between the two methods are shown in boldface.

Forecast Time (h)

Maysak Champi

LGEM (SWR) LGEM (LightGBM) LGEM (SWR) LGEM (LightGBM)

24 5.1 5.0 5.3 3.7
48 6.1 4.9 8.0 4.7
72 7.3 6.1 9.5 5.4
96 9.2 7.5 10.3 7.7

120 9.0 6.5 9.8 9.1
144 8.3 4.9 9.1 9.8
168 8.0 4.3 8.5 10.4

 

 

Fig.  7.  Averaged  RMSEs  (m  s−1)  of  the  7-day  intensity  forecasts  from  the
SWR-based and LightGBM-based LGEMs and the 5-day forecasts  from the
CMA at 24-h intervals for independent cases during 2015−17.
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162 events during 2015−17 that demonstrated rapid intensific-
ation  and  rapid  weakening,  respectively.  Since  the  Light-
GBM-based  LGEM  has  better  skill  at  24-h  forecasts  than
the SWR-based LGEM (Fig. 7), we only examined the per-
formance of the LightGBM-based model.  For the 2015−17
WNP  samples,  the  PODs  of  TC  rapid  intensification  and
rapid  weakening  forecasts  were  35%  and  41%,  while  the
FARs of them were 29% and 13%, respectively. Their effect-
ive time is at 24-h lead time. The POD of rapid intensifica-
tion forecasts  for  WNP TCs based on the LGEM is  gener-
ally  comparable  to  that  for  Atlantic  hurricanes  from  the
NHC  official  forecasts  during  2015−17  (Fig.  6 of Cangia-
losi et al., 2020).

We  further  evaluate  the  spatial  distribution  of  differ-
ences  in  RMSEs  between  the  CMA  and  the  LightGBM-
based LGEM forecasts as shown in Fig. 8. The positive differ-
ence  indicates  better  skill  for  the  LightGBM-based  LGEM

forecasts  compared  to  those  of  the  CMA  operational  fore-
casts. The differences in RMSEs in Fig. 8 show nearly spa-
tially uniform positive values at all forecast times, which sug-
gests  that  the  LGEM can potentially  improve upon current
official  forecasts  from  the  CMA.  The  improvement  of  the
LGEM compared to the CMA forecasts is particularly note-
worthy  in  coastal  regions  since  the  intensity  forecasts  for
TCs  in  the  coastal  regions  are  of  great  importance  for  dis-
aster prevention.

Figure 9 presents the spatial distribution of RMSEs for
the LightGBM-based LGEM forecasts  at  144 h and 168 h.
Both show that RMSEs over most of the WNP are smaller
than  11  except  over  the  high  latitudes  southeast  of  Japan
where the RMSE is slightly larger. Compared to the RMSE
of the current CMA operational forecasts at 120 h (Fig. 8),
the  LGEM  is  promising  at  longer  forecast  times.  In  this
sense,  the  LGEM  exhibits  strong  forecasting  potential  for

 

 

Fig. 8. The spatial distribution (m s−1) of differences in RMSEs between the CMA and the LightGBM-based LGEM
forecasts during 2015−17 at (a) 24, (b) 48, (c) 72, (d) 96, and (e) 120 h.
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extending  the  CMA  forecast  length  from  the  current  five
days to seven days. 

5.    Application

A  case  study  for  Typhoon  Krosa  (201910)  which
entails  a  combination  of  CMA  operational  track  forecasts
and  predictors  estimated  from the  GFS  forecast  fields  will
be  presented  as  an  example  of  how the  LGEM predictions
could  provide  real-time  intensity  predictions  over  much  of
the  5-day  forecasting  period.  Typhoon  Krosa  formed  at
0006 UTC 6 August  2019 and strengthened to an intensity
of 28 m s−1 just one day later. Note that the CMA currently
only  issues  5-day  forecasts  for  TC  track  and  intensity,  so
this case provides a 5-day forecast, however, the LGEM can
extend the forecast to seven days or longer. The forecasting
procedure  is  similar  to Fig.  4,  but  the  training  dataset
includes  all  samples  during  2017−19  based  on  the  CMA
track  forecasts  and  GFS  predictor  forecasts,  except  for
Typhoon Krosa (2019), and the testing dataset only includes
the data from Krosa. Except for β and n, all of the other para-
meters were reconstructed based on the GFS forecast data.

Figure  10 shows  the  5-day  intensity  forecasts  for
Typhoon  Krosa  in  2019  from  0006  UTC  7  August  2019
based on SWR-based LGEM and the CMA. The LGEM fore-
cast is generally consistent with the observation, but there is
a large bias at  the initial  and ending stages.  The difference
between  the  LGEM  forecasts  and  the  observation  is  less
than that between the CMA official forecast and the observa-
tion,  noting  further  that  the  CMA  forecasts  show  a  lower
skill  during the decaying period. Therefore, the LGEM has
the  potential  to  contribute  to  improving  TC  intensity  fore-
casts over the WNP. 

6.    Discussion and Conclusions

In this study, we extended the LGE-based TC intensity
prediction scheme for the North Atlantic and Eastern Pacific
developed by DeMaria (2009) to the WNP and constructed

the  7-day  LGE-based  intensity  prediction  scheme  for  TCs
unaffected by landfall over the WNP using the observed and
reanalysis data.  With 33 years of training samples,  optimal
predictors, including climatology and persistence predictors
and atmospheric and oceanic predictors,  were first  selected
based  on  the  analyses  of  correlation  and  relative  import-
ance. Then, the two constants in the LGE were determined
by  the  least  square  method,  which  forces  the  regressed
growth rate from the optimal predictors to be as close to the
observations as possible. The growth rate κ was further estim-
ated based on the SWR and the lightGBM methods, respect-
ively.  Independent  forecasts  for  80  TCs  during  2015−17
show that  the  LGE-based  scheme demonstrates  better  skill
in predicting the TC intensity over the WNP than the CMA
operational  official  forecasts,  especially  for  TCs  near  the
coastal  regions  of  East  Asia.  Moreover,  the  lightGBM-
based  scheme  demonstrates  better  forecast  skill  than  the
SWR-based  scheme.  It  suggests  that  the  forecasting  of κ
using the LGE-based scheme κ,  especially the combination

 

 

Fig. 9.  The spatial distribution (m s-1) of RMSEs for the LightGBM-based LGEM forecasts during 2015−17 at (a)
144 and (b) 168 h.

 

Fig.  10.  The  5-day  intensity  forecasts  for  Typhoon  Krosa  in
2019 from 0006 UTC 7 August 2019 (as 0 h in abscissa) based
on  the  LGEM  (green)  and  the  CMA  (orange),  and  the
corresponding CMA best-track intensity (black).
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of the ML and LGE-based scheme, is promising in predict-
ing  TC  intensity  over  the  WNP.  The  LGE-based  scheme
also  exhibits  strong  potential  for  accurately  forecasting
rapid intensification and weakening as well as providing for
an  extension  of  the  CMAs  5-day  forecasts  to  7-day  fore-
casts. Finally, an application of the newly developed LGE-
based scheme to real-time forecasts was demonstrated with
one TC case.

It  should  be  mentioned  that  the  forecasts  using  the
LGE-based scheme discussed in section 4 were based on the
observed TC tracks and the "true" predictors, which are not
available in real-time forecasts.  The purpose for a compar-
ison between the LGE-based scheme and the operational fore-
casts of CMA is not to showcase the better forecasting skill
of  our  model  compared  to  that  of  the  CMA  forecasts,  but
rather  to  bolster  confidence  for  further  application  of  the
newly  developed  LGE-based  scheme to  real-time  forecasts
in future work. Although a case study with a combination of
CMA  operational  track  forecasts  and  predictors  estimated
from the GFS forecast fields was tested and has shown poten-
tial, verifications with more TC cases or with multi-year fore-
casts  should  be  made  to  demonstrate  the  actual  perform-
ance  of  the  LGE-based  scheme  in  predicting  TC  intensity
over the WNP in future work. Note also that the LGE-based
scheme is only available for TCs unaffected by landfall, and
an inland decay model should be added to predict TC intens-
ity over land. Since both the SWR-based scheme and the light-
GBM-based scheme show good forecasting skill, we intend
to  apply  ensemble  forecasts  to  improve  TC  intensity  fore-
casts in follow-up efforts.
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