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ABSTRACT

Medium to long-term precipitation forecasting plays a pivotal role in water resource management and development of
warning systems. Recently, the Copernicus Climate Change Service (C3S) database has been releasing monthly forecasts
for lead times of up to three months for public use. This study evaluated the ensemble forecasts of three C3S models over
the period 1993–2017 in Iran’s eight classified precipitation clusters for one- to three-month lead times. Probabilistic and
non-probabilistic criteria were used for evaluation. Furthermore, the skill of selected models was analyzed in dry and wet
periods  in  different  precipitation  clusters.  The  results  indicated  that  the  models  performed  best  in  western  precipitation
clusters,  while  in  the  northern  humid  cluster  the  models  had  negative  skill  scores.  All  models  were  better  at  forecasting
upper-tercile  events  in  dry  seasons  and  lower-tercile  events  in  wet  seasons.  Moreover,  with  increasing  lead  time,  the
forecast  skill  of  the  models  worsened.  In  terms  of  forecasting  in  dry  and  wet  years,  the  forecasts  of  the  models  were
generally close to observations, albeit they underestimated several severe dry periods and overestimated a few wet periods.
Moreover,  the  multi-model  forecasts  generated  via  multivariate  regression  of  the  forecasts  of  the  three  models  yielded
better  results  compared  with  those  of  individual  models.  In  general,  the  ECMWF and  UKMO models  were  found  to  be
appropriate for one-month-ahead precipitation forecasting in most clusters of Iran. For the clusters considered in Iran and
for the long-range system versions considered, the Météo France model had lower skill than the other models.
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Article Highlights:

•  The  UKMO  and  ECMWF  models  performed  well  in  forecasting  monthly  precipitation  in  Iran,  especially  in  western
clusters.

•  The multi-model forecasts generated via multivariate regression of the three selected C3S models yielded better results
compared with those of individual models.

•  No major effect of ENSO on Iran’s seasonal precipitation regime was detected.
 

 
 

1.    Introduction

Accurate  precipitation  forecasting  is  a  key  component
in  water  resources  decision  making.  In  particular,  accurate
and  timely  forecasting  of  monthly  and  seasonal  precipita-
tion and streamflow improves the performance of meteorolo-
gical  and  hydrological  drought  early  warning  systems.
Moreover, meteorological forecasts increasingly rely on pre-
cipitation numerical models.

Seasonal  forecasts  were initially based on estimates of

signal-to-noise ratios that assumed full knowledge of ocean
and/or land conditions, such that the variance of climate vari-
ables related to lower boundary forcing represented the sig-
nal.  However,  it  has  been  shown  that  the  interaction
between  the  atmosphere,  sea  ice,  land  and  ocean  are  also
important (Doblas-Reyes et al., 2013). Seasonal climate fore-
casting centers around the world now routinely run coupled
ocean–atmosphere  general  circulation  models  (GCMs).
GCMs parameterize physics on coarse grids but involve coup-
ling  of  ocean  and  atmosphere  modules.  The  main  aim  of
GCMs is to produce intra- to interseasonal forecasts driven
by the slowly evolving boundary conditions, such as sea sur-
face temperature (SST) (Duan et al., 2019).
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Ensemble forecasting is  a  technique used in numerical
forecasts  such  that,  instead  of  a  single  forecast,  a  series  of
forecasts  depicting  a  wide  range  of  future  possible  condi-
tions in the atmosphere are produced. Nowadays, various cen-
ters produce ensemble forecasts of meteorological variables,
such as precipitation and temperature, at different lead times
from hourly to yearly, on a global scale, using numerical solu-
tions of atmospheric hydrodynamic equations based on differ-
ent initial conditions. Such forecasts have offered new oppor-
tunities in the water management sector. The Copernicus Cli-
mate  Change  Service  (C3S)  database  has  recently  released
the products of several significant European centers.

The  C3S  database  combines  weather  system  observa-
tions  and  provides  comprehensive  information  on  the  past,
present  and  future  weather  conditions.  The  service,  run  by
ECMWF  on  behalf  of  the  European  Union,  provides  sea-
sonal  forecasting  protocols  on  its  website.  The  C3S  Sea-
sonal Service is publicly available through the Climate Data
Store.  Since  the  C3S  database  has  been  only  recently
launched, not much research on its evaluation has been repor-
ted. Forecast skill assessment can provide valuable informa-
tion  for  forecasters  and  developers  such  that  decision
makers  may  adopt  appropriate  strategies  to  mitigate  cli-
mate-related risks.

Manzanas  et  al.  (2019) bias-corrected  and  calibrated
C3S ensemble seasonal forecasts for Europe and Southeast
Asia.  The  study  adopted  the  ECMWF-SEAS5,  UKMO-
GloSea5  and  Meteo  France  System5  models  with  a  one-
month  lead  time.  For  post-processing,  simple  bias  adjust-
ment  (BA)  and  more  sophisticated  ensemble  recalibration
(RC) methods were employed, with the RC methods improv-
ing the reliability  and outperforming the BA methods.  The
seasonal precipitation forecasts at the global scale were evalu-
ated by Manzanas et al. (2014), who concluded that the best
predictive  skills  were  obtained  in  September–October  and
the poorest in March–May. MacLachlan et al. (2015) found
that UKMO-GloSea5 had great forecast skill and reliability
in predicting the North Atlantic Oscillation and Arctic Oscilla-
tion. Li and Robertson (2015) evaluated the ensemble fore-
cast  skill  of  the  ECMWF,  Japan  Meteorological  Agency
(JMA)  and  CFSv2  models  (seasonal  center  model  of  the
NCEP)  for  summer  and  up  to  a  four-week  lead  time.  All
three  models  provided  good  results  for  the  first-week  lead
time.  The  forecast  skill  significantly  declined  in  most
clusters (except in some tropical clusters) during the second
to  fourth  weeks.  The  precipitation  forecast  skill  of  the
ECMWF  model  was  significantly  better  than  those  of  the
other two models, especially for the third and fourth weeks.
Shirvani and Landman (2016) studied the seasonal precipita-
tion  forecast  skills  of  the  North  American  Multi-Model
Ensemble  (NMME),  two  coupled  ocean–atmosphere  mod-
els and one two-tiered model, over Iran. They found low fore-
cast skill for most models at all lead times, except in the Octo-
ber–December period at lead times of up to three months.

Crochemore  et  al.  (2017) evaluated  the  seasonal  fore-
cast skill of precipitation and river flow in 16 watersheds in

France.  The  hindcasts  of  the  ECMWF  seasonal  precipita-
tion model (System 4) with a 90-day lead time were evalu-
ated and post-processed using SAFRAN data (Météo France
reanalysis product). They employed linear scaling (LS) and
monthly  and  annual  distribution  mapping  to  post-process
the raw precipitation data. The results indicated an increase
in precipitation forecast skill after applying post-processing
methods. Bett et al. (2017) assessed the skill and reliability
of wind speed in GloSea5 seasonal forecasts corresponding
to  winter  and  summer  seasons  over  China.  The  results
showed that the winter mean wind speed was skillfully fore-
casted along the coast  of  the South China Sea. Lucatero et
al.  (2018) examined  the  skill  of  raw  and  post-processed
ensemble  seasonal  meteorological  forecasts  in  Denmark.
They took advantage of the LS and quantile mapping (QM)
techniques to bias-correct ECMWF precipitation, temperat-
ure  and  evapotranspiration  ensemble  forecasts  on  a  daily
basis. The focus was on clusters where seasonal forecasting
was  difficult.  They  concluded  that  the  LS  and  QM  tech-
niques  were  able  to  remove  the  mean  bias.  Regarding  the
estimation of dry days and low precipitation amounts, the effi-
ciency  of  QM  was  better  than  that  of  LS. Mishra  et  al.
(2019) provided  one  of  the  most  comprehensive  assess-
ments  of  seasonal  temperature  and  precipitation  ensemble
forecasts of the EUROSIP multi-model forecasting system.
One equally and two unequally weighted multi-models were
also constructed from individual models, for both climate vari-
ables,  and  their  respective  forecasts  were  also  assessed.
They found that the simple equally weighted multi-model sys-
tem  performed  better  than  both  unequally  weighted  multi-
model  combination  systems. Zhang  et  al.  (2019) evaluated
the  ability  of  the  seasonal  temperature  forecasts  of  the
NMME over west coast areas of the United States. In gen-
eral,  the skill  of the one-month lead time NMME forecasts
was  superior  or  similar  to  persistence  forecasts  over  many
continental  clusters,  while  the  skill  was  generally  stronger
over the ocean than over the continent.  However,  the fore-
cast  skill  along  most  west  coast  clusters  was  markedly
lower than in the adjacent ocean and interior, especially dur-
ing the warm seasons.

To the best of our knowledge, no research has yet been
reported in which the precipitation forecasts of the C3S data-
base  have  been  comprehensively  evaluated.  In  this  study,
the ECMWF, MF (Météo France) and UKMO ensemble pre-
cipitation forecasts were extracted from the C3S database in
Iran’s  geographical  area  for  a  period  of  approximately  24
years  (1993–2017).  The forecasts  were  compared with  sta-
tion  data  in  different  precipitation  clusters.  Evaluation  of
raw  forecasts  was  performed  in  two  stages:  deterministic
and probabilistic assessment.

2.    Methods and study area

The C3S project was introduced in early 2017 and has
since  been  routinely  releasing  forecast  products.  These
products,  which  are  taken  from  several  European  centers,
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are  updated monthly  (13th  day of  the  lunar  month at  1200
UTC) for  up  to  a  six-month  lead time.  Lead time refers  to
the period of time between the issue time of the forecast and
the beginning of the forecast validity period. Long-range fore-
casts  based  on  all  data  up  to  the  beginning  of  the  forecast
validity  period  are  said  to  be  of  lead  zero.  The  period  of
time between the issue time and the beginning of the valid-
ity  period  will  categorize  the  lead.  For  example,  a  March
monthly forecast issued at the end of the preceding January
is said to be of one-month lead time. The C3S climate data
store  is  currently  supported  by  the  ECMWF,  UKMO,  MF,
Centro  Euro-Mediterraneo  sui  Cambiamenti  Climatic,  and
Deutscher Wetterdienst centers. The NCEP, JMA and Bur-
eau of Meteorology centers will be added in the near future.
In the data store, a global-scale meteorological observed data-
set has been used to obtain hindcasts since 1993 and may be
used to improve forecast  quality.  The characteristics of  the
forecasting  systems  and  their  production  methods  in  the
C3S are presented in Table 1.

In  this  study,  the  ECMWF,  MF  and  UKMO  monthly
ensemble  precipitation  hindcasts  of  the  C3S  database  in
Iran’s geographical area (25°–40°N, 44°–64°E) at an approx-
imate 25-km spatial resolution (0.25° × 0.25°) were extrac-
ted  for  a  period  of  24  years  (1993–2017)  at  a  three-month
lead  time  with  a  monthly  time  step.  Observed  point  data
were extracted for 100 synoptic stations, operated by the Ira-
nian Meteorological Organization, spread over eight differ-
ent  precipitation  clusters  as  classified  by Modarres  (2006)
based  on  the  geography  and  climate  using  the  Ward
method. Figure  1 shows  a  map  of  Iran’s  precipitation
clusters,  over  which  the  locations  of  100  stations  used  in
this  study are overlaid.  Cluster  G1 involves arid and semi-
arid clusters of central and eastern Iran, subject to high coeffi-
cient of variation and low precipitation. Cluster G2, spread
in three distinct clusters (as shown in Fig. 1), mostly encom-

passes  highland  margins  of  G1.  Cluster  G3  involves  cold
clusters  in  northwestern  Iran,  while  cluster  G4  represents
warm and temperate  clusters  along the  Persian Gulf  north-
ern  coast.  Cluster  G5  involves  areas  over  the  western  bor-
der along the Zagros Mountains. Cluster G6, enjoying high
precipitation, represents areas along the coast of the Caspian
Sea  in  northern  Iran.  Cluster  G7  is  similar  to  G5  but
receives  more  precipitation  and  encompasses  two  distinct
clusters.  In  addition,  cluster  G8  is  similar  to  G6,  but
receives more precipitation. Table 2 lists the number of sta-
tions and characteristics of the precipitation clusters.

Using the inverse distance weighting method (Ozelkan
et al., 2015), the forecast data were interpolated to the selec-
ted  stations,  and  then  monthly  precipitation  forecasts  were
compared  with  observed  data.  Evaluation  criteria  were
employed in two stages, including deterministic and probabil-
istic assessment. It should be noted that the averages of the
evaluation criteria in each precipitation cluster are reported
in  this  study.  All  the  evaluation  criteria  formulae  used  in
this study are presented in Table 3.

2.1.    Evaluation criteria

For deterministic evaluation, the Pearson correlation coef-
ficients were used to compare the forecast values with those
of  the  observed.  The  root-mean-square  error  skill  score
(RMSESS) was also adopted, to calculate the error intensity
of  the  forecasted  monthly  precipitation.  Since  each  cluster
has  different  mean  precipitation,  the  skill  score  of  this  cri-
terion was used for a fair assessment. The RMSESS is 1 for
a perfect forecast, and 0 when the forecast equals the climato-
logy. It should be noted that in order to prevent dispersion,
anomaly forecasts and observations were used for calculat-
ing  the  RMSE.  A  monthly  anomaly  is  the  actual  monthly
value minus the climatology of the same month (i.e., the aver-
age over 1993–2017).

Table 1.   Details of the selected numerical forecast models.

Origin Lead time
Resolution of model
(horizontal/vertical)

Forecasts Hindcasts

Ens. size and
start dates Production

Ens. size and
start dates Production

ECMWF
     (SEAS5)

1–7
     months

Dynamics: TCO319 cubic
    octahedral grid; Physics:
     O320 Gaussian grid
     (36 km) / 91 levels in
     vertical, to 0.1 hPa
     (80 km)

51 members start on
     the 1st

Real-time 25 members start on
     the 1st

Fixed dataset

UKMO
     (GloSea5)

1–7
     months

N216: 0.83° × 0.56°
     (approx. 60 km in
     midlatitudes) / 85 levels
     in vertical, to 85 km

2 members start
     each day

Real-time 7 members on the 1st,
     7 members on the
     9th, 7 members on
     the 17th, 7 members
     on the 25th

On-the-fly

MétéoFrance
     (System5)

1–7
     months

TL255: 0.7° Gauss reduced
     grid / 91 levels in vertical,
      to above 0.2 hPa

51 members: 26
     start on the first
     Wednesday after
     the 19th; 25 start
     on the first
     Wednesday after
     the 12th

Real-time 15 members start on
     the first Wednesday
     after the 19th

Fixed dataset
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For  the  probabilistic  evaluation,  the  continuously
ranked probability  score (CRPS) and the relative operating
characteristic  (ROC) were used.  To calculate  the ROC, for
each  category  (low/middle/upper  tercile)  a  binary  observa-
tion  (0:  the  category  occurred,  1:  the  category  was  not
observed)  and  a  probabilistic  (between  0  and  1)  forecast
were created.  The latter  is  derived based on the number of
members predicting the category, out of the total number of
available  members.  Then,  for  each  tercile  category,  based
on the values of hit and false alarm rates that were obtained
based  on  a  probability  threshold  varying  from  0  to  1,  the
ROC curve was drawn and the area under the curve was calcu-
lated.  Finally,  the  ROC skill  score  (ROCSS)  was  computed
as  2A −  1,  where A is  the  area  under  the  ROC curve.  The
ROCSS range is −1 to 1, where zero indicates no skill when
compared  to  the  climatological  forecasts  and  1  represents
the  perfect  score  (Manzanas  et  al.,  2014).  Moreover,  using

the CRPS, the agreement of the cumulative distribution func-
tion  (CDF)  forecasts  with  the  observed  CDF  was  studied.
The perfect score for the CRPS criterion is 0. The CRPS cri-
terion was calculated based on Ferro et al.  (2008). As with
the  reason  for  using  the  RMSEss,  the  CRPS  skill  score
(CRPSss)  was  used for  a  fair  assessment  between clusters.
The CRPSss was determined based on the relationship presen-
ted in Table 3.

The  evaluation  results  were  interpreted  on  a  monthly,
three-month  average,  and  annual  basis.  On  the  monthly
basis, the performance of each model was individually invest-
igated  in  all  12  months;  whereas  for  the  3-month  average,
the average precipitation in all four seasons was determined.
Then, forecasts were evaluated in three (lower,  middle and
upper) tercile categories.

2.2.    Multi-model forecasts

Three  selected  models  were  combined  to  generate
multi-model  forecasts  using  the  simple  arithmetic  mean
(MMM),  multivariate  regression  (MRMM),  and  bias-
removed  (BRMM)  techniques.  In  the  MMM,  simply  the
mean  of  the  three  model  forecasts  was  calculated  in  each
time step.

In  the  MRMM  combination,  a  multivariate  regression
was developed to combine the forecasts of the three models
based on the following relationship (Zhi et al., 2012): 

MRMM = O+
1
N

∑N

i=1
ai

(
Fi−F i

)
, (1)

O Fi

F i ai

where  is the mean observed value,  is the ith model fore-
cast value,  is the mean of the ith model forecast value, 
is  the  weight  of  the ith  model,  which can be  calculated  by
the least-squares method, and N is the number of models parti-
cipating  in  the  MRMM  (Krishnamurti  et  al.,  2000, 2003;
Zhi et al., 2012).

In  the  BRMM approach,  a  multi-model  was  generated
based on the following relationship (Zhi et al., 2012): 

BRMM = O+
1
N

∑N

i=1

(
Fi−F i

)
. (2)

The  correlation  coefficient  and  relative  root-mean-

 

Fig.  1.  Layout  of  the  observation  stations  and  G1–G8
precipitation  clusters  [the  boundaries  of  the  eight  groups  are
based on the research of Modarres (2006)].

Table 2.   Details of the precipitation clusters and the number of selected stations in each cluster (Kolachian and Saghafian, 2019).

Cluster
No. of
stations

Area
(km2)

Longitude
(°E)

Latitude
(°N)

Mean
elevation (m)

Mean annual prec.
(mm yr−1) Characteristics

G1 27 847601 48.5–62.3 25.3–36.4 1238.7 186.23 Arid and semi-arid clusters in central
     Iran

G2 20 192090 48.3–61.2 27.2–37.5 1064.3 246.68 Highland margins of G1
G3 19 128587 44.4–48.5 35.9–39.7 1368.9 350.39 Northwestern cold cluster
G4 15 266031 48.0–57.8 25.6–32.3 368.5 265.36 Coast of the Persian Gulf
G5 6 79172 45.9–47.2 33.6–35.3 1231.8 235.03 Zagros Mountains cluster
G6 6 57230 49.8–54.4 34.1–36.9 685.2 803.25 Lowland margins of the Caspian Sea
G7 3 36420 49.2–49.7 30.6–30.8 22.7 425.35 Zagros Mountains cluster (precipitation

     in G7 is higher than G5)
G8 3 15299 48.9–49.6 37.3–38.4 −17.8 1472.26 Lowland margins of the Caspian Sea

     (precipitation in G8 is higher than G6)
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square  error  (RRMSE) were  used to  evaluate  and compare
the skills of individual forecast models with the constructed
multi-models.  These criteria were selected based on a sim-
ilar  study  by Zhi  et  al.  (2012).  Since  precipitation  varies
greatly  among  clusters,  the  RMSEs  of  each  cluster  were
divided by the mean observed value of  the same cluster  to
make  a  fair  assessment.  It  should  be  noted  that  the  evalu-
ations  in  this  part  of  the  study  were  carried  out  separately
for the four seasons.

2.3.    Evaluation based on drought indices

The  Standardized  Precipitation  Index  (SPI)  was  also
adopted,  to  evaluate  the  skill  of  the  models  to  forecast
dry/wet  years.  The  SPI  represents  the  number  of  standard
deviations (SDs) that observed cumulative precipitation devi-
ates from the climatological average (Guttman, 1999). To cal-
culate the SPI, the gamma distribution was fitted to 30 years
(1987–2017) of monthly precipitation series and then conver-
ted into the standard normal  distribution.  The mean SPI of
the  stations  in  each  of  the  eight  precipitation  clusters  were
determined  and  intercompared.  The  SPEI  package
(Beguería and Vicente-Serrano, 2017) was employed to calcu-
late the SPI in R software.

Further, to study the effect of climatic signals on precipit-
ation  changes  in  the  study  period,  the  Oceanic  Niño  Index
(ONI)  was  extracted  (https://ggweather.com/enso/oni.htm)
and then El Niño, La Niña and neutral years (phases) were
identified  over  the  study  period.  Furthermore,  the  relation-
ship between the ENSO phases  and the SPI  was examined
and interpreted. It should be noted that events were defined
as  five  consecutive  overlapping  three-month  periods  at  or
above  the  +0.5°C  anomaly  for  El  Niño  events  and  at  or
below  the  −0.5°C  anomaly  for  La  Niña  events.  The
threshold was further divided into weak for 0.5°C to 0.9°C
SST anomalies, moderate (1.0°C to 1.4°C), strong (1.5°C to

1.9°C), and very strong (≥ 2.0°C) events (Rojas, 2020).
Also,  regarding  the  effect  that  ENSO  may  impose  on

the  skill  of  different  models,  tercile  plots  (Nikulin  et  al.,
2018) were used to examine the sensitivity of the skill to El
Niño,  La  Niña,  and  neutral  years.  The  tercile  plots  were
drawn using the visualizeR package in R software (Frías et
al., 2018).

3.    Results

The  average  monthly  forecasted  precipitation  over  the
24 years of the study period with a one-month lead time is
compared in Fig. 2 with the average monthly recorded precip-
itation  at  synoptic  stations.  One  may  note  that  the  MF
model  yielded  poor  performance  in  most  clusters  and  sea-
sons. However, the ECMWF and UKMO models had accept-
able  performance,  particularly  in  low-precipitation  and  dry
months,  as  well  as  in  low-precipitation  clusters  (such  as
G1). For G4 and G1, which together cover the greatest area
of  Iran,  ECMWF and  UKMO underestimated  precipitation
in  high-precipitation  months,  but  overestimated  precipita-
tion in G2, G3 and G5, although the UKMO performed some-
what  better  than  the  ECMWF  in  highland  snow-covered
areas. For G6 and G8, the models underestimated precipita-
tion considerably in fall,  but provided better estimates than
the reference forecasts in other seasons. All in all, in G5 and
G7, the UKMO and ECMWF models forecasted the precipita-
tion closer to observations.

In the following, first, the total precipitation forecasted
during  the  study  period  will  be  evaluated.  Then,  the  sea-
sonal precipitation is examined in different clusters and ter-
ciles, and the performance of the models in different months
is  also  interpreted.  Then,  the  skills  of  multiple  models  are
compared with individual models, and finally, based on the

Table 3.   Evaluation criteria used in this study (Tao et al., 2014; Aminyavari et al., 2018).

Verification measure Formula Description
Perfect/no

skill

Pearson’s correlation coefficient
r =

∑(
F −F

)
(O−O)√∑

(F −F)
2
√∑

(O−O)
2

Linear dependency between forecast and
     observation

1/0

Root-mean-square error
RMSE =

√
1
N

∑[
(F −F)− (O−O)

]2 Closeness between anomaly forecast and
     anomaly observation

0

Root-mean-square error skill
     score

RMSESS = 1− RMSE
RMSEref

To understand values of RMSE 1

Relative root-mean-square error
     skill score

RRMSE =
RMSE

O
To understand values of RMSE 0

Continuously ranked probability
     score

CRPS =
∫

[PF (x)−PO (x)]2dx How well did the probability forecast the
     category into which the observation fell?

0/1

CRPS skill score CRPSss = 1− CRPS
CRPSref

Accuracy of the Probabilistic Quantitative
     Precipitation Forecasts (PQPFs)
     compared to the climatology

⩽ 01/

Relative operating
     characteristic skill score

ROCSS = 2A − 1, A is the area
     under the ROC curve

Accuracy of PQPFs the in forecasting the
     occurrence or non-occurrence of events

⩽ 01/

F O CRPSref

Notes: F, O, PF and PO denote the forecast, corresponding observation, probability of precipitation and observed frequency, respectively; N is the
amount of forecast and observation pairs. Similarly,  and  denote the forecast average and observation average.  is the CRPS of the reference
probability forecast, typically calculated from the climatology. 1 for perfect skill and 0 for no skill.
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drought index, the quality of forecasts is evaluated.

3.1.    Evaluation of total forecasts

The  Pearson  correlation  coefficient  results  in Fig.  3
show  that  ECMWF  and  UKMO  performed  best  in  the  G5
and G7 clusters, with over 70% significant correlation with
observations.  But,  the  correlation  coefficients  of  MF  were
below 0.5 in most precipitation clusters. In the G6 and G8 pre-
cipitation clusters, encompassing the north of Iran, all mod-
els had correlation coefficients of less than 0.5, which were
lower than in other clusters. Moreover, the skill of the mod-
els  decreased with  an increase  in  lead time.  Overall,  based
on  this  criterion,  the  ECMWF  model  was  in  better  agree-
ment with the observations compared with the other two mod-

els, although UKMO was slightly better than ECMWF for a
three-month lead time. Moreover, the SD of the correlation
coefficients of the stations in each cluster is shown to under-
stand  the  degree  of  dispersion  in  the  evaluation  result.  As
seen in the figure, in most clusters the SD is low and mod-
els perform the same at most stations. Only in clusters 6 and
8  is  the  SD  slightly  higher,  which  also  affects  the  evalu-
ation results of these two clusters.

Pearson’s product-moment correlation statistical signific-
ance  test  was  also  performed,  to  determine  whether  the
degree of correlation between models and observations was
reliable.  The P-values  of  the  significance test,  as  shown in
the table within Fig. 3a, indicates that the P-value in all mod-

 

 

Fig. 2. Average monthly forecasted precipitation values of ECMWF, UKMO and MF, along with observed data, in
precipitation clusters with a one-month lead time.
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els and clusters is less than 0.05, implying statistical signific-
ance of the correlation between the forecast models and obser-
vations. Only for the MF model in G6 cluster is the P-value
slightly greater than 0.05.

The evaluation results of the RMSE skill score in Fig. 4
indicate that the models were more skillful in western Iran.
However,  in  G3,  encompassing  northwestern  Iran,  the
ECMWF  model  had  a  negative  skill  score  and  performed
poorly  in  comparison  with  the  reference  forecasts.  Simil-
arly, UKMO provided poor forecasts in G3. The model also
produced  poor  forecasts  for  the  high-precipitation  G8
cluster.

The  CRPSss  results  in Fig.  5 demonstrate  that,  in  G4,
G5 and G7, the models had closer CDFs to those of the obser-
vations  and  performed  quite  well  in  the  clusters  located  in
western Iran.

In  general,  the  annual  evaluation  results  indicated  that
the models provided better forecasts in western and southwest-
ern Iran. In contrast, the models performed quite poorly in pre-
cipitation clusters in northern Iran. The ECMWF model out-

performed  the  UKMO  model  in  most  evaluation  criteria.
The MF forecasts were poor. The gray cells in Figs. 4 and 5
are differentiated because their values are far from the other
scores.

In Figs.  4, 5 and 7, the numbers in the squares corres-
pond  to  the  average  score  for  the  entire  cluster  (i.e.,  aver-
aged  over  all  stations  within  the  cluster),  while  the  small
sized numbers indicate the SDs of the scores across all the sta-
tions in the cluster.

Also,  to  understand  why  the  forecasts  were  better  in
G1, G2, G4, G5 and G7, as compared with those in G3, G6
and  G8,  the  time  series  of  total  annual  precipitation  is
shown in Fig. 6. The results of the evaluation are fully consist-
ent with Fig. 6, showing why the models have varying evalu-
ation scores in different clusters.

3.2.    Evaluation of three-month average precipitation

In this section, the evaluation scores are reported based
on three-month average observations and hindcasts at a one-
month  lead  time.  Based  on Fig.  7,  both  the  UKMO  and

 

 

Fig. 3. Evaluation using the (a) mean and (b) SD of the Pearson correlation coefficient in each cluster. The table in
panel  (a)  shows  the P-values  of  the  three  models  in  the  eight  clusters  (perfect  score  for  the  Pearson  correlation
coefficient is 1).
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ECMWF  models  yielded  positive  skill  scores  in  most
clusters (with the exception of northern climates in the G3,
G6  and  G8  clusters),  indicating  that  the  models  forecasted
the  probability  of  occurrence  better  than  the  climatology.
All three models had better proficiency scores in higher and
lower  terciles  than  in  the  middle  tercile.  In  the  summer,
according to Fig. 7, the performance of all models declined
compared  to  those  in  other  seasons,  whereas  only  the
UKMO model scored higher in the G7 cluster.

For the fall season, the ECMWF model forecasted light
precipitation better than heavy precipitation. In this season,
the MF model yielded a more accurate detection and lower
false alarm rate than in other seasons. Overall, similar to the
findings of Manzanas et al. (2014), all models produced bet-
ter forecasts in this season than in the other seasons. In the
G5  and  G7  precipitation  clusters,  all  three  models  per-
formed better compared to the other seasons and precipita-
tion  clusters.  In  a  similar  study  by Shirvani  and  Landman
(2016),  the  best  performance  was  found  in  the  fall  season.
In winter, the performance of models was similar to that in
the spring season, but with lower skill scores.

3.3.    Evaluation of monthly precipitation

In this section, the performance of the models was invest-

igated  on  a  monthly  basis  in  eight  precipitation  clusters.
According to the Pearson correlation coefficients  shown in
Fig.  8,  it  is  clear  that  the  correlation  coefficient  decreased
with increasing lead time. There was also no specific depend-
ence between the lead time and the month of the year. The
models produced good forecasts in spring months in dry cli-
mates,  and in December in wet climates at  two- and three-
month lead times.

The  ECMWF  model  performed  best  in  November,
while  it  had  its  poorest  performance  in  August  in  most
clusters.  For  western  clusters  in  Iran,  such  as  G7,  which
receive  greater  precipitation  compared  to  central  clusters,
the model performed better in summer months than in other
seasons; however, poorer forecasts were achieved in Febru-
ary. As mentioned in section 3.1, ECMWF did not provide
acceptable  performance  in  northern  clusters.  The  UKMO
model was to a certain extent  similar  in its  performance to
the ECMWF model, except that it performed best in dry cent-
ral  clusters  in  the  winter.  The  UKMO  model  performed
quite poorly in northern clusters in May. The MF forecasts
did  not  correlate  well  with  the  observations  in  all  months.
For  most  clusters,  this  model  provided  better  forecasts  in
March and April.

Also, to better assess the forecasts in different months,

 

 

Fig.  4.  Evaluation using the RMSESS in  eight  precipitation clusters  (RMSESS is  1  for  “perfect”  forecast  and 0 for
“forecast equals climatology”).
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scatterplots  of  monthly  forecasts  over  the  study  period  are
provided in Fig. 9. Based on the results of this study, the mod-
els had their best forecasts in G7 but their weakest ones in
the G8 precipitation cluster. For the sake of brevity, scatter-
plots of only these two clusters are presented. According to
Fig. 9a, in G7, observed precipitation was zero in the sum-
mer months, while the highest correlation occurred in Janu-
ary between the observations and ECMWF forecasts. From
June  to  September,  observed  precipitation  in  this  cluster
was close to zero, so the highest ROCSS in section 3.2 was
obtained in this period. This highlights that the ROCSS is con-
ditioned on the observation such that the models accurately
forecast  dry  conditions  over  that  cluster.  Also,  in  rainy
months,  the  ECMWF and  UKMO models  performed  well,
and the scores shown in Fig. 9 may be attributable to the fore-
cast skill.

In the G8 precipitation cluster, most models underestim-
ated the observations, with only the ECMWF model overes-
timating  precipitation  in  the  summer  months.  Although
more precipitation occurred in winter than in spring, all mod-
els forecasted similar precipitation in these two seasons. All
three  models  underestimated  the  fall  and  winter  precipita-
tion.  The  ECMWF  model  was  a  better  performer  than  the
other models.

3.4.    Evaluation of multi-models

According  to Fig.  10a,  multi-models,  especially

MRMM, were better correlated with observations in most sea-
sons and clusters than individual models, although MRMM
had weaker forecasts in summer. The MF model in winter,
especially  in  rainier  clusters,  showed  no  correlation  with
observations.  Overall,  the  best  forecasts  for  the  multi-  and
individual models occurred in fall.

Figure  10b shows  the  evaluation  results  of  multi-  and
individual models using the RRMSE criterion. Of note is a
large  error  in  the  MF forecasts.  Despite  the  poor  perform-
ance  of  the  MF  model,  the  three  multi-models  tended  to
provide similar results to those of the ECWMF and UKMO
models,  which  represent  the  two  best-performing  indi-
vidual models. Note that among the three multi-models, the
MRMM provided the best overall results. The MRMM res-
ults  showed  that  the  model  combination  based  on  regres-
sion had a  positive  effect  on  reducing the  forecast  error  of
individual  models.  In  accordance  with  previous  studies
(Doblas-Reyes  et  al.,  2009; Bundel  et  al.,  2011; Ma  et  al.,
2012; Manzanas et al., 2014), the overall results in this sec-
tion  indicate  that  multi-models  are  effective  in  improving
the predictive skill of individual models.

3.5.    Evaluation of forecasted SPI

Figure  11 shows  the  time  series  of  observed  SPI  and
those corresponding to the ECMWF and UKMO model fore-
casts in eight precipitation clusters. The MF-derived SPI val-

 

 

Fig. 5. Evaluation using CRPSSS in eight precipitation clusters (perfect score for CRPSSS is 1).
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ues are not shown here because of its poor performance. El
Niño,  neutral  and La Niña years  were  extracted  during the
study period and added to Fig. 11. To better understand the
performance of models in forecasting dry and wet years, the

correlation  coefficient  between  the  SPI  of  the  models  and
that of the observation is shown in Fig. 11. In G1, both mod-
els  forecasted  the  wet  years  during  1995–2002  well,  albeit
with a slight overestimation by the UKMO model. Further-

 

 

Fig.  6.  Total  annaul  precipitation  values  of  the  ECMWF,  UKMO  and  MF  models,  along  with  observed  data,  in
precipitation clusters with a one-month lead time.
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more,  both models  forecasted the  observed 2000–2002 dry
period,  although  they  extended  the  drought  until  2004.  In
this  cluster,  the  models  forecasted  a  severe  wet  year  in
1996, but the year was neutral based on the ONI. This was
also the case for  the 2001 severe  drought,  which was a  La
Niña year  based on the  ONI.  Overall,  the  two models  per-
formed quite well in this cluster. In G2, the results were sim-
ilar  but  weaker  to  those  of  the  G1  cluster,  whereas  the
UKMO  model  had  poorer  forecasts  than  the  ECMWF
model.

In G3, the UKMO model forecasted the severity of the
SPI in wet and dry periods better than the ECMWF model.
It  should  be  noted  that,  while  1994  and  2008  were  severe
wet and drought years in the G3 precipitation cluster, respect-
ively,  El  Niño  and  La  Niña  prevailed  in  1994  and  2008.
Thus, climate indices are not a good sign of wet/dry condi-
tions  in  G3  in  such  years.  In  G4,  ECMWF  forecasted  the

drought/wetness  index  better  than  the  UKMO  model,
although  both  models  underestimated  the  dry  periods  in
2008–2012.  Considering  G5,  ECMWF  overestimated  the
drought from 2000 to 2003, while both models failed to fore-
cast the wet year in 2016. In G6, the UKMO model slightly
overestimated  the  dry  periods.  Both  models  forecasted  the
wet years from 1993 to 2000. However, the forecasted dura-
tion  and  intensity  of  wet  years  were  shorter  and  weaker,
respectively, than those observed.

Regarding  G7,  both  models  performed  well  and
ECMWF forecasted  the  wet  and dry  periods  quite  close  to
the observations. Finally, in G8, both models had average per-
formances and failed to forecast dry and wet periods. Over-
all,  the  models  performed well  in  forecasting dry/wet  peri-
ods  in  most  clusters  and,  nearly  in  all  clusters,  they  were
able  to  detect  the  reduction  in  precipitation  over  the
2000–2001 period.

 

 

Fig. 7. Seasonal evaluation using ROCSS in eight precipitation clusters for three (L=lower, M=middle and U=upper) tercile
categories (ROCss is 1 for “perfect” forecast and 0 for “forecast equals climatology”): (a) spring (MAM, March–April); (b)
summer (JJA, June–August); (c) fall (SON, September–November); (d) winter (DJF, December–February).
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Fig.  8.  Monthly  evaluation  using  the  Pearson  correlation  coefficients  in  eight
precipitation clusters (perfect score for Pearson correlation is 1).
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In examining the effects of ENSO in the study period,
only heavy precipitation in 1995 could be marginally attrib-
uted  to  this  phenomenon.  Based  on  the  work  of Shirvani
and Landman (2016), although ENSO is the main factor in
seasonal  forecast  skill  (Manzanas  et  al.,  2014),  no  clearly
strong predictive capability was found in this study for Iran.
This may be partly attributable to the complicated precipita-

tion variability in relation to SST patterns.
Finally,  tercile  plots  were  used  to  evaluate  the  impact

of ENSO on the performance of models. For the sake of brev-
ity, only the results of the G5 cluster, which had the best fore-
cast results based on Fig. 7, are shown. According to Fig. 12a,
although  no  clear  relationship  could  be  found  between
model performance and ENSO conditions, the ECMWF mem-

 

 

Fig. 9. Scatterplots of monthly precipitation in two precipitation clusters: (a) G7; (b) G8.
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bers of the ensemble forecast in El Niño years were slightly
better  than  those  in  La  Niña  and  neutral  years.  Moreover,
according to Fig. 12b, the UKMO model did slightly better

in the La Niña years. All in all, there is no clear connection
between  ENSO phenomena  and  precipitation  predictability
at seasonal time scales in Iran.

 

 

Fig.  10.  Individual  and  multi-model  seasonal  evaluation  using  the  Pearson  correlation  coefficient  and  RRMSE  in
eight precipitation clusters (perfect score for Pearson correlation is 1, and for RRMSE it is 1). MAM, March–May
(spring); JJA, June–August (summer); SON, September–November (fall); DJF, December–February (winter).
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Fig. 11. Observed and forecasted SPI time series in G1 to G8 (the small 2 × 2 tables shown in the top-right
corner of each panel indicate the correlation between the model-forecasted SPI and those of observations. N,
neutral; W, weak; M, medium; S, strong; VS, very strong; E, El Niño; L, La Niña.
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4.    Conclusions

In  this  study,  ECMWF  (SEAS5),  UKMO  (GloSea5)

and  Météo-France  (System5)  monthly  precipitation  fore-
casts  within  the  C3S  database  over  the  period  1993–2017
were evaluated in eight precipitation clusters in Iran. The eval-

 

 

Fig. 12. Tercile plots for the (a) ECMWF and (b) UKMO models in the G5 cluster. The red color spectrum of each
square represents the probability for each category (below, normal, above). Dots show the corresponding observed
category for each year of the hindcast period. Numbers on the right show the ROCSS for each model and each tercile.
(ROCSS is 1 for “perfect” forecast and 0 for “forecast equals climatology”).
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uations were performed on an annual, seasonal and monthly
basis. The following conclusions may be drawn:

(1)  Based  on  the  deterministic  evaluation  of  the  fore-
casts,  the best correlation coefficients were achieved in the
G5 and G7 clusters in western Iran, while the poorest perform-
ance  was  associated  with  G6  and  G8  in  northern  Iran.
Moreover, in forecasting the precipitation amount, all three
models  had their  greatest  error  in  G3 in northwestern Iran.
The  models  performed  well  in  the  dry  central  and  eastern
clusters. The MF model had the greatest error among the mod-
els based on deterministic evaluation (Figs. 3 and 4).

(2) All models better forecasted upper-tercile events in
dry  seasons  and  lower-tercile  events  in  wet  seasons,  but
gained their lowest skill score in the middle category (Fig. 7)
(similar to Manzanas et al., 2014, 2018).

(3)  Based on  probabilistic  evaluation,  all  three  models
scored higher in the G5 and G7 precipitation clusters com-
pared to those of other clusters (Fig. 5)

(4) In all evaluations, the skill of the models decreased
with increasing lead time.

(5) In the monthly evaluation, the ECMWF model per-
formed  better  in  low-precipitation  clusters  in  fall  and  in
high-precipitation  clusters  in  summer.  On the  contrary,  the
model  performed  poorly  in  northern  clusters.  The  UKMO
model yielded somewhat similar results, except the model per-
formed better in low-precipitation clusters in the winter.  In
general,  all  three  models  overestimated precipitation in  the
summer (Fig. 8).

(6) The MRMM multi-model had better skill than indi-
vidual models (Fig. 10).

(7) The forecast models had relatively good skill in fore-
casting  dry  and  wet  years,  although  they  underestimated
some dry years and overestimated some wet years (Fig. 11).

(8) No specific relationship was found regarding the influ-
ence  of  the  ENSO  climatic  signal  on  model  performance.
The  models  did  not  yield  acceptable  forecasts  in  northern
clusters where higher precipitation and relatively lower tem-
perature prevail.

(9) In assessing the impact of climatic global signals on
severe precipitation, the year 1995 may be considered to be
significantly influenced by ONI phenomena, while no major
effect was detected in other periods.

All in all, the evaluation results demonstrated that both
the UKMO and ECMWF models perform well  in forecast-
ing monthly precipitation in Iran, especially in western precip-
itation clusters. However, it is not possible to clearly indic-
ate which of the two models performs better. In most precipit-
ation clusters at short lead times, the ECMWF model was bet-
ter correlated with the observations and its forecasts gained
higher  skill  scores.  On  the  contrary,  at  a  three-month  lead
time,  the UKMO model had higher correlation coefficients
with the observations in most precipitation clusters. The MF
model is not an appropriate precipitation forecast model for
Iran. Furthermore, the models are generally able to forecast
dry/wet occurrences in Iran.
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