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ABSTRACT

Hazardous  events  related  to  atmospheric  precipitation  depend  not  only  on  the  intensity  of  surface  precipitation,  but
also on its type. Uncertainty related to determination of the precipitation type (PT) leads to financial losses in many areas of
human  activity,  such  as  the  power  industry,  agriculture,  transportation,  and  many  more.  In  this  study,  we  use  machine
learning  (ML)  algorithms  with  the  data  fusion  approach  to  more  accurately  determine  surface  PT.  Based  on  surface
synoptic observations, ERA5 reanalysis, and radar data, we distinguish between liquid, mixed, and solid precipitation types.
The  study  domain  considers  the  entire  area  of  Poland  and  a  period  from  2015  to  2017.  The  purpose  of  this  work  is  to
address the question: “How can ML techniques applied in observational and NWP data help to improve the recognition of
the surface PT?” Despite testing 33 parameters, it was found that a combination of the near-surface air temperature and the
depth of the warm layer in the 0–1000 m above ground level (AGL) layer contains most of the signal needed to determine
surface  PT.  The  accrued  probability  of  detection  for  liquid,  solid,  and  mixed  PTs  according  to  the  developed  Random
Forest  model  is  98.0%,  98.8%,  and  67.3%,  respectively.  The  application  of  the  ML technique  and  data  fusion  approach
allows to significantly improve the robustness of PT prediction compared to commonly used baseline models and provides
promising results for operational forecasters.
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Article Highlights:

•  Surface synoptic observations, ERA5 reanalysis, and radar data are combined.
•  The  data-fusion  approach  can  significantly  improve  the  detection  of  precipitation  types  in  comparison  to  simple

classification trees.
•  Machine learning models indicate the highest skill for the near-surface air temperature and the depth of the melting layer.
•  The machine learning technique and data fusion approach can be used in operational forecasting.

 

 
 

1.    Introduction

According  to  the  Glossary  of  Meteorology,  the  term
“precipitation ”  denotes  “all  liquid  or  solid  phase  aqueous
particles  that  originate  in  the  atmosphere  and  fall  to  the
earth’s  surface”  (American  Meteorological  Society,  2019).
In practice, the atmospheric precipitation type (PT) can take
liquid,  solid  or  mixed  forms.  Liquid  precipitation  refers  to
drizzle  and  rain,  while  mixed  precipitation  includes  freez-

ing drizzle, freezing rain, and a mix of rain and snow. Solid
precipitation consists of snow, snow grains, ice pellets, hail,
snow pellets/graupel and ice crystals (Thériault et al., 2010;
Reeves et al., 2014).

PTs  are  strongly  determined  by  thermodynamic  and
boundary-layer  processes.  The vertical  temperature  profile,
horizontal  and  vertical  air  motion,  moisture  content,  cloud
microphysics,  size  distribution  of  droplets,  precipitation
rate, hydrometeor interactions, and their initial-phase composi-
tion all have a strong influence on the resulting surface PT
(Reeves et al., 2016).

In operational forecasting, the temperature profile plays
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typically the most important role in the determination of PT
(Reeves et  al.,  2014; Stewart  et  al.,  2015).  In  midlatitudes,
the  classic  example  of  a  rapid  transitions  between  solid,
liquid or mixed PT is a passage of a warm front composed
of a warmer air layer (T > 0°C) overlaying a colder one (T <
0°C) (Groisman et al., 2016; Matte et al., 2019). Hydromet-
eors, which are in a solid state in the early stages, begin to
melt as they fall through the warmer air layers. The degree
of melting depends on the ambient temperature and size of
condensation  nuclei.  Moreover,  the  collision  of  ice  pellets
and  snowflakes  can  also  impact  the  degree  of  melting
(Thériault et al., 2010; Kämäräinen et al., 2017).

Typically,  two  main  procedures  have  been  used  to
determine  PT  in  atmospheric  models  (Matte  et  al.,  2019).
The first uses microphysics equations to predict the mixing
ratio and concentration of hydrometeors (Morrison and Mil-
brandt,  2015)  while  the  second,  the  so-called  “diagnostic
approach”, is more frequently applied. The latter is based on
the vertical profile of variables such as air temperature, relat-
ive humidity, mixing ratio and/or lapse rate applied as prox-
ies for determination of PT (Bourgouin, 2000; Reeves et al.,
2014; Czernecki et al., 2019).

Proper  identification  of  PT  is  important  for  the  initial
stage of numerical modeling. The initial error may increase
uncertainty in the forecasting of PT, which may appear later
as  a  systematic  error.  A  proper  identification  of  rain  and
snow is less troublesome than mixed PT. The latter is usu-
ally defined as a mixture of partially melted larger hydromet-
eors  and/or  completely  melted  smaller  ones  (Kain  et  al.,
2000). The degree of partial melting has quite an influence
on  the  PT.  An  additional  problem  is  that  microphysical
schemes  in  operational  numerical  weather  prediction
(NWP) models often do not account for mixed-phase hydro-
meteors  (Thériault  and  Stewart,  2010).  Another  reason  for
the  uncertainty  in  forecasting  the  specific  PT  is  related  to
the  reliability  of  NWP  models.  In  some  situations,  a  vari-
ation  of  only  0.5°C  is  sufficient  to  induce  a  transition
between  different  phases  of  hydrometeors,  while  the  fore-
cast uncertainty is usually larger (0.5°C–4.0°C; Bourgouin,
2000; Coniglio et al., 2010; Reeves et al., 2014).

Given these  limitations,  it  is  not  surprising that  opera-
tional  forecasting of  PT is  often based on both the explicit
and  the  implicit  methods.  The  lower-tropospheric  mixing
ratio  and  air  temperature  are  used  as  input  data  to  determ-
ine  the  PT  by  explicit  methods,  while  the  temperature  and
moisture  of  the  ambient  environment  are  used  by  implicit
methods.  However,  usually  none  of  the  two  aforemen-
tioned methods is significantly better (Reeves et al., 2014).

The PT and the possibility of its  prediction are crucial
for  decision  making  in  terms  of  economics  and  human
health  protection,  especially  with  respect  to  significant  cli-
mate  change  in  the  foreseeable  future.  According  to IPCC
(2013), the increase in global mean air temperature will  be
accompanied by an increasing number of hazardous weather
conditions like heavy precipitation, large hail, freezing rain
and icing. This will also have a major financial impact, espe-

cially  in  midlatitudes  (e.g. Vajda  et  al.,  2014; Borsky  and
Unterberger, 2019). The currently observed climate change
also  impacts  the  ratio  of  specific  PTs,  with  a  systematic
increase in the probability of liquid precipitation, and a gen-
eral shift  toward more rain and less snow (Mekis and Vin-
cent,  2011),  as  well  as  an  increase  in  freezing  rain  (Hane-
siak and Wang, 2005). According to Cheng et al. (2011) and
Lambert  and  Hansen  (2011),  future  occurrence  of  freezing
rain over North America will be shifted substantially north-
ward.

Accurate  forecasting  of  the  PT is  important  in  numer-
ous areas of  human life,  but  especially in the field broadly
defined  as  social  safety  (Ikeda  et  al.,  2013).  Therefore,  we
want to answer the question: “How can machine learning tech-
niques  applied  in  observational  and  NWP  data  help  to
improve  the  recognition  of  the  surface  PT? ”  We  aim  to
achieve this goal by estimating the accuracy of the post pro-
cessing–based  solution  that  might  be  applied  by  means  of
machine learning (ML) algorithms with a combination of mul-
tiple data sources, leading to further improvements in NWP-
based forecasting systems. Among many modeling attempts
that have been made for identification of PTs (Allen et  al.,
2015; Gagne et al., 2017; Ukkonen et al., 2017), only a few
used a combination of NWP data with real-time remote sens-
ing  observations  (Gagne  et  al.,  2017; Czernecki  et  al.,
2019). Therefore, it is especially valuable to investigate the
application  of  the  so-called  data  fusion  approach,  which  is
becoming increasingly popular thanks to advances in compu-
tational  power  capacity  (Gagne  et  al.,  2017; McGovern  et
al.,  2017; Czernecki  et  al.,  2019).  In  this  paper,  three  PTs
(according to SYNOP report codes) were taken into considera-
tion: (i) liquid precipitation (drizzle and rain); (ii) mixed pre-
cipitation  (freezing  drizzle,  freezing  rain,  mix  of  rain  and
snow); and (iii) solid precipitation (snow, snow grains, ice pel-
lets, sleet, snow pellets/graupel, ice crystals).

2.    Data and methods

Three data sources are used to evaluate PT: surface syn-
optic  observations  (SYNOP  reports),  meteorological  radar
data  (maximum column  reflectivity),  and  ERA5  reanalysis
on model levels (full names of parameters and their abbrevi-
ations  are  presented  in Table  1).  Data  concern  the  area  of
Poland and the period from 2015 to 2017. All observations
are  merged  into  one  homogeneous  database  by  assigning
radar reflectivity and reanalysis-derived variables to the cor-
responding geographical location of observed PT. In the fol-
lowing  subsections,  further  details  on  each  dataset  are
provided.

2.1.    Surface synoptic observations (SYNOP reports)

Surface  synoptic  observations  with  hourly  resolution
were taken from the 44 meteorological  stations maintained
by the Polish Institute  of  Meteorology and Water  Manage-
ment−National  Research  Institute  (IMGW-PIB; Fig.  1).  A
total  of  8645 manned observations  of  PT were  considered.
PTs  were  gathered  into  three  main  categories  according  to
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the subdivision used in the METAR reports for: (1) liquid pre-
cipitation (drizzle and rain);  (2) mixed precipitation (freez-
ing  drizzle,  freezing  rain,  mix  of  rain  and  snow);  and  (3)
solid  precipitation  (snow,  snow  grains,  ice  pellets,  sleet,
snow pellets/graupel or ice crystals) (Thériault et al., 2010;
Reeves et al., 2014). The sample size was 6269 (72.4%), 98
(1.1%), and 2278 (26.5%) cases (percentages) for the afore-
mentioned  categories,  respectively.  Hail  events  were  not
taken  into  account  as  we  found  only  12  hail  reports  in  the
period  of  analysis  and  most  precipitation  algorithms  con-
sider them usually as a separate category (Czernecki et  al.,
2019). Additionally, information about other near-surface met-
eorological variables such as air temperature, specific humid-
ity and wind speed were also taken into account.

2.2.    ERA5 reanalysis

Reanalysis allows generation of a synthetic dataset in a
location with no observational record or for a longer period
of time regardless of possible inhomogeneities in in-situ meas-

Table 1.   List of ERA5, surface data, and remote sensing data parameters used in this study.

Group Full name Abbreviation Units

Temperature related parameters 0–3 km temperature lapse rate LR03 °C km−1

Temperature at 2 m AGL T2 °C
Temperature at 10 m AGL T10 °C
Temperature at 100 m AGL T100 °C
Temperature at 250 m AGL T250 °C
Temperature at 500 m AGL T500 °C
Temperature at 1000 m AGL T1000 °C
Temperature at 1500 m AGL T1500 °C
Temperature at 2000 m AGL T2000 °C
Temperature at 2500 m AGL T2500 °C
Temperature at 3000 m AGL T3000 °C

Height of 0°C isotherm ISO_0_HGT m AGL
0–1 km Warm Layer Depth WLD01 m

Humidity parameters Specific Humidity at 2 m AGL Q2 g kg−1

Specific Humidity at 10 m AGL Q10 g kg−1

Specific Humidity at 100 m AGL Q100 g kg−1

Specific Humidity at 250 m AGL Q250 g kg−1

Specific Humidity at 500 m AGL Q500 g kg−1

Specific Humidity at 1000 m AGL Q1000 g kg−1

Specific Humidity at 1500 m AGL Q1500 g kg−1

Specific Humidity at 2000 m AGL Q2000 g kg−1

Specific Humidity at 2500 m AGL Q2500 g kg−1

Specific Humidity at 3000 m AGL Q3000 g kg−1

Wind parameters Wind Speed at 10 m AGL WS10 m s−1

Wind Speed at 100 m AGL WS100 m s−1

Wind Speed at 250 m AGL WS250 m s−1

Wind Speed at 500 m AGL WS500 m s−1

Wind Speed at 1000 m AGL WS1000 m s−1

Wind Speed at 1500 m AGL WS1500 m s−1

Wind Speed at 2000 m AGL WS2000 m s−1

Wind Speed at 2500 m AGL WS2500 m s−1

Wind Speed at 3000 m AGL WS3000 m s−1

Remote sensing data parameters Maximum radar reflectivity in 0.25° boxes CMAX dBZ

 

Fig. 1. Location of meteorological radar sensors (red triangles)
with 125-km buffer zones. Black points and numbers show the
locations  of  meteorological  stations.  Black  dashed  lines
indicate ERA5 grid nodes.
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urement  (e.g.,  relocation  of  stations,  data  gaps,  changes  in
measuring techniques)  (Allen and Karoly,  2014; de  Leeuw
et al., 2015; Ukkonen et al., 2017).

In this study we used ERA5, whose production started
in 2016 (Hersbach et al., 2020). The ERA5 reanalysis is dis-
tributed  with  a  0.25°  horizontal  grid  spacing,  137  vertical
sigma levels, and a 1-h temporal resolution. The nearest obser-
vational dataset from a meteorological station was assigned
to  a  nearest  grid  point  (by  geographical  distance)  from
ERA5 that corresponds to a given location and time (Fig. 1).
For  the  purposes  of  this  analysis,  air  temperature,  specific
humidity,  and  zonal  and  meridional  winds  were  interpol-
ated  to  vertical  profiles  (from  ERA5  hybrid-sigma  model
levels)  for  altitudes  of  2  (10  for  wind  components  only),
100,  250,  500,  1000,  1500,  2000,  2500 and 3000 m above
ground level (AGL). In addition, the height of the freezing
level and vertical temperature lapse rate in the 0–3000 AGL
layer  were  also  computed  to  account  for  melting  and  mix-
ing processes. The depth of the melting layer was another vari-
able that  was also computed,  and defined as a layer within
0–1 km AGL where air temperature was above 0°C. This para-
meter was calculated based on vertically (linearly) interpol-
ated  data  with  a  resolution  of  1  m.  In  total,  29  parameters
derived  from  ERA5  reanalysis  were  taken  into  account
(Table 1).

2.3.    Radar data

The  POLRAD  weather  radar  network,  maintained  by
IMGW-PIB, consists of eight C-band Doppler radars: Met-
eor  500C  (Poznań,  Brzuchania,  Świdwin),  Meteor  1500C
(Legionowo,  Gdańsk),  and  the  dual-polarimetric  Meteor
1600C (Pastewnik, Rzeszów, Ramża) of Selex ES (formerly
Gematronik)  (Ośródka  et  al.,  2014)  (Fig.  1).  In  this  study,
we used a product of maximum radar reflectivity (CMAX).
The original temporal resolution of 10 min was aggregated
to a maximum hourly value and then regridded from a 1 km
to  0.25°  grid  to  match  the  ERA5  resolution.  For  each
SYNOP report,  the  nearest  (by  geographical  distance)  grid
point  (and  corresponding  timeframe)  from  POLRAD  was
assigned.  In  order  to  account  for  the decreasing magnitude
of the radar beam along with an increasing distance, our res-
ults  consider  only  those  stations  located  no  more  than  125
km away from the radar site.

2.4.    The  ML  approach  and  definition  of  relevant
predictors

ML algorithms enable the analysis of large amounts of
data and can deliver more accurate results than traditionally
applied  statistical  linear  regression  models.  Classification
problems (as stated in this study) can be solved by a super-
vised learning approach that learns on the basis of the input
data  and  then  uses  an  uncovered  regularity  from historical
data  to  classify  new observations.  That  classification prob-
lem may be defined as a binary (e.g., precipitation is liquid
or not?) or multi-class form (as in this case: liquid, solid or
mixed precipitation). The Random Forest (RF) results were
classified  as  the  probability  that  allows  to  distinguish

between mixed, liquid, and solid PTs. The RF implementa-
tion was performed in the R programming language within
the  “ranger ”  package  (Wright  and  Ziegler,  2017).  The
model was built with 100 trees and split into a minimum of
5 nodes for each variable. Model parameters not mentioned
in the above part  were set as default  based on the “ranger”
and  “caret ”  packages  of  the  R  programming  language
(Kursa  and  Rudnicki,  2010; R  Core  Team,  2015; Kuhn,
2020).

To avoid model overfitting, a bootstrap resampling was
used. This was done by splitting the training dataset into 10
folds,  with  30%  of  the  original  data  removed  from  each
fold. Also checked was that no more than 60% of mixed pre-
cipitation records could be used in each of the cross-valida-
tion chunks, to avoid overfitting for the smallest class. The
model was built on a clipped dataset of a near-surface air tem-
perature  ranging  from  −4.0°C  to  5.6°C.  This  was  done  in
order to avoid classification of trivial cases where only one
type  of  surface  PT  occurred,  and  could  potentially  bias
model performance. The trimmed database for modeling pur-
poses consisted of 2261 cases with 1091 (48.2%) of liquid,
98 (4.3%) mixed and 1077 (47.5%) solid PT events.

It  is  worth mentioning that  most  of  the meteorological
parameters  considered  are  cross-correlated.  Therefore,  the
decision to apply the RF algorithm was related to its robust-
ness  with  respect  to  multicollinearity  issues  (in  terms  of
obtained accuracy).  In  particular,  it  is  relevant  for  a  mixed
type of precipitation where a significant portion of the sig-
nal might overlap with other PTs. Prior studies have indic-
ated  that,  in  such  situations,  RF will  outperform other  ML
methods (Gagne et al., 2017; McGovern et al., 2017; Czer-
necki et al., 2019), considering also rare and severe weather
events.

Although the overall accuracy of ML models is one of
the  main  reasons  for  choosing  a  decision-tree  model,  it  is
also  important  to  underline  other  advantages  of  RF
algorithms.  These  are  related  to  finding  relevant  features
that impact the modeled process, as well as reducing the num-
ber  of  predictors  used.  To  perform  the  abovementioned
steps,  the  “Boruta ”  algorithm  was  used  (Kursa  and  Rud-
nicki, 2010). The calculated “relative influence” (Friedman,
2001) confirmed that all 30 chosen variables (Table 1) are rel-
evant and contain a signal stronger than random noise. This
means that all parameters are potentially useful in determin-
ing surface PTs. The variable importance was computed separ-
ately for each type of precipitation (liquid, solid, mixed) as
well  as  for  multi-class  combinations.  Scaled  values  (i.e.,
max = 100) of the variable importance indicate which predict-
ors  contribute  the  most  to  the  developed  model,  making  it
also possible to specify the top 15 parameters that impact a
given surface PT.

2.5.    Baseline model—classification trees

In order to address the question as to whether the pro-
posed RF model shows any added value, it was decided that
a  baseline  model  be  created  using  simplified  classification
trees. It is quite common forecasting practice to use T2 and
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T1000 values  to  determine  the  PT based  on  historical  data
or  user  experience.  A  similar  solution  was  adopted  in  this
study with a tree being built for a single variable that splits
the  main  node  into  two  sub-groups.  This  process  is  then
applied in  each sub-group,  but  in  order  to  avoid very deep
trees it  was decided that  a  maximum of three nodes would
be  used.  These  models  were  built  on  the  same database  as
for the RF model, but without application of the cross-valida-
tion procedure and for the single-class approach (i.e., single
PT vs. others).

The  obtained  threshold  values  for  the  three  models
remain in agreement with results described later on and pre-
sented in Figs. 2 and 3. For solid PT, the classification tree

is  based  on  threshold  values  of  T2  =  0.85°C and  T1000  =
−1.68°C; for mixed, T2 = 0.36°C, T2 = 1.45°C and T1000 =
−1.02°C; and for liquid PT the classification tree uses T2 =
0.85°C and T1000 = −0.97°C.

2.6.    Verification measures

The RF and the baseline classification tree (BCT) mod-
els were evaluated based on assessment of the deterministic
forecast’s probability of binary events (Wilks, 2011). In the
present study, the obtained probabilities of an event’s occur-
rence for the RF model were subsequently classified into a
multi-category (3 × 3) contingency table. They show the fre-
quency  of  predictions  and  observations  in  the  various  bins

 

 

Fig. 2. Kernel Density Estimation and boxplots for selected types of precipitation (liquid, mixed and solid) according
to (a) temperature at 2m AGL (T2), (b) specific humidity (Q2), (c) height of the 0°C isotherm (ISO_0_HGT), (d) 0–3 km
temperature lapse rate (LR03), (e) Wind speed at 3000 m (WS3000), and (f) radar reflectivity (CMAX). The middle
value  on  the  boxplot  denotes  the  median,  with  box  extension  from  Q1  (first  quartile)  to  Q3  (third  quartile).  The
whiskers’ upper range is equal to Q3 + 1.5 × IQR (interquartile range), while the lower shows Q1 − 1.5 × IQR.
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similar to scatterplots for categories. The scheme of the con-
tingency  table  adopted  in  this  study  is  shown  in Table  2,
with the observed and forecasted events split into four categor-
ies: (a) number of correct hits; (b) false alarms; (c) misses;
and (d) correct rejections. In the table, n(Oi, Pj) is the num-
ber of predictions in category i that had observations in cat-
egory j; N(Pi) denotes the total number of predictions in cat-
egory i; N(Oj)  is  the  total  number  of  observations  in  cat-
egory j, where N is the total number of forecasts.

In the case of a perfect prediction, the obtained contin-
gency  tables  have  non-zero  elements  only  in  the  diagonal,
and zero  values  occur  only  outside  the  diagonal.  The fore-
cast’s  error  measure  is  obtained  from the  off-diagonal  ele-
ments of the contingency table. The marginal total of distribu-
tions (Ns on the right and at the bottom of the table) shows
the  accuracy  of  the  forecast  relative  to  the  observations
(Brooks and Doswell III, 1996).

Six  verification  measures  for  the  contingency  table
were calculated to assess the robustness of the RF and BCT
models. For all measures shown in Table 3, a particular PT
was tested against other events. The most fundamental meas-
ures  included the  following:  Hit  Rate  (H),  Proportion  Cor-
rect  (PC),  False  Alarm  Rate  (F),  and  False  Alarm  Ratio

(FAR).  Moreover,  it  was  decided  to  use  the  Critical  Suc-
cess Index (CSI) and Equitable Threat  Score (ETS),  which
are  more  suitable  for  rare  events,  as  in  our  case  for  the
mixed precipitation phenomenon, which is outnumbered by
solid and liquid PTs. The CSI (also called the Threat Score,
TS) and ETS are used to evaluate the number of correct hits
among all positive signals from the forecast of observations.
The difference between the CSI and ETS (also known as the
Gilbert  skill  score)  is  that  the  latter  one  additionally
accounts for hits associated with random chance (Table 3),
which may be more informative for imbalanced classes.

3.    Results

3.1.    Robust predictors that distinguish PTs

The Kernel Density Estimations (KDEs) show dependen-
cies of the probability distribution of liquid, mixed and solid
PTs as a function of air temperature, specific humidity, tem-
perature  lapse  rate,  wind speed,  and height  of  the  0°C iso-
therm, as well as radar reflectivity (Fig. 2). These visualiza-
tions were created to help identify sharp changes in probabilit-
ies among the used variables that may potentially be applied
as discriminators between the three investigated PTs.

The most remarkable factor for determination of PT is
the  air  temperature  at  2  m  AGL.  The  shapes  of  the  KDE
curves  for  liquid  and  solid  precipitation  are  relatively  sim-
ilar  (broad  and  flat),  and  different  from  the  shape  of  the
mixed  precipitation  curve  (Fig.  2a).  The  median  value  for
the liquid PT is 13.3°C, while for mixed it is 0.8°C and for
solid it is −4.6°C. Any PT may occur in a relatively narrow
range of air temperature between −4.0°C and 5.6°C.

Specific humidity at an altitude of 2 m AGL (Fig. 2b) is
relatively  similar  to  the  patterns  in  air  temperature.  Their

Table  2.   Multi-category  contingency  table  scheme  used  in  this
study.

Observed
values (O)

Predicted values (P)

P1 P2 P3 Total

O1 n(O1, P1) n(O1, P2) n(O1, P3) N(O1)
O2 n(O2, P1) n(O2, P2) n(O2, P3) N(O2)
O3 n(O3, P1) n(O3, P2) n(O3, P3) N(O3)
Σ N(P1) N(P2) N(P3) N

 

 

Fig.  3.  Distribution  of  air  temperature  for  liquid,  mixed,  and  solid  PT  at  selected  altitudes  above  ground
level. The details of the boxplot are the same as in Fig. 2.
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median  values  are  8.2  g  kg−1 (liquid),  3.8  g  kg−1 (mixed),
and 2.1 g kg−1 (solid).

In the case of the 0°C isotherm, the distribution of prob-
ability has a significantly different shape for all  considered
PTs (Fig. 2c). The 0°C isotherm height for liquid precipita-
tion ranges from 0 to 3000 m AGL (the highest level of the
adopted dataset), for mixed precipitation it is from 0 to 540 m
AGL, and for solid precipitation it is from 0 to about 800 m
AGL. The calculated median values for the analyzed PT are
2362 m AGL for liquid, and 165 m AGL for mixed precipita-
tion. Only in 33% of all solid precipitation cases is the 0°C
isotherm  located  above  ground  level  (i.e.,  only  in  those
cases where the melting layer was detected). In the aforemen-
tioned  33%  of  analyzed  solid  precipitation  cases,  the
median  height  is  126.3  m  AGL,  and  the  maximum  value
can reach even up to  791.3  m AGL.  In  other  cases  (67%),
only  negative  air  temperature  values  occur  throughout  the
entire  vertical  profile  (i.e.,  up  to  3000  m  AGL)  from  the
ground surface.

Thermodynamic  processes  changing  PT  in  a  vertical
aspect  are  often  connected  to  the  temperature  lapse  rate
(Kain et al., 2000; Singh and Goyal, 2016), which was also
taken  into  consideration  between  2  m  AGL  and  3000  m
AGL (Fig. 2d). The distribution is similar to the normal distri-
bution and with better overlap compared to temperature, spe-
cific humidity and height of the 0°C isotherm. For all PTs,
the lapse rate varies from −1.0°C km−1 to 9.6°C km−1. This
means that cases with solid PT also occurred with temperat-
ure  inversions.  In  total,  31  such  situations  were  observed
out of 2278 considered in the study. Lapse rate medians for
the  liquid,  mixed and solid  PTs are  5.7°C km−1,  5°C km−1

and 3.2°C km−1, respectively.
Melting  effects  can  cause  pressure  perturbations  and

can  thus  impact  the  wind  field  (Kain  et  al.,  2000).  There-
fore, the probability distribution for wind speed at different
altitudes  is  also  investigated  (Fig.  2e).  However,  no  sharp
irregularities  were  found  as  in  the  case  of  the  previously
described  parameters.  All  surface  PTs  are  possible  in  all
wind  speed  ranges  (from  0.1  to  33.2  m  s−1)  at  a  height  of
3000 m. Despite quite similar  wind speed ranges in liquid,
mixed, and solid PTs, their medians (11.5, 14.0 and 7.8 m s−1,
respectively) are different.

Among  the  list  of  variables  potentially  contributing  to
the  ability  of  PT  identification,  radar  reflectivity  is  one  of

the most commonly chosen products, especially for recogniz-
ing hail events (Czernecki et al., 2019). However, the robust-
ness  of  this  variable  is  not  that  strong if  the  classified PTs
are grouped. The median values for liquid, mixed, and solid
PTs are 37, 24 and 20 dBZ, respectively (Fig. 2f).

A clear  response  of  the  PT is  visible  for  air  temperat-
ure between 2 and 3000 m AGL (Fig. 3). Regardless of the
height, the air temperature for liquid PT is the highest, and
ranges on average from 13°C at 2 m AGL to −4°C at 3000 m
AGL. Lower air temperature values occur for mixed PT (on
average from 1°C at 2 m AGL to −14°C at 3000 m AGL),
and the lowest  for  solid PT (on average from −5°C at  2 m
AGL  to  −14°C  at  3000  m  AGL).  As  the  height  above
ground  level  increases,  the  differences  between  categories
decrease.

An obvious relationship can be found for the vertical pro-
file  of  wind  speed  (Fig.  4).  Above  500  m  AGL,  as  the
height increases, a slight increase in wind speed is observed
for  the  liquid  and  mixed  precipitation,  and  a  decrease  in
wind  speed  for  the  solid  precipitation.  The  differences  in
median  values  for  mixed  and  solid  PTs  are  similar  (espe-
cially in liquid and solid cases) for all precipitation categor-
ies of up to 500 m AGL. Above 500 m AGL, the analyzed
medians  of  wind  speeds  for  all  precipitation  categories  are
more diverse.

The  analysis  of  the  specific  humidity  for  individual
levels  indicates  definitely  higher  humidity  for  liquid  PT
(Fig. 5). For this category, humidity drops from an average
of 7 g kg−1 at 2 m AGL to about 3 g kg−1 at an altitude of
3000 m AGL. For mixed and solid PTs, a decrease in humid-
ity is also observed with height, ranging from 2–4 g kg−1 at
2 m AGL to about 1.5 g kg−1 at an altitude of 3000 m AGL.

The importance of the melting effect for the determina-
tion  of  PT  was  investigated  by  calculating  the  warm  layer
depth  with  air  temperature  >  0°C  in  the  range  of  0–1  km
AGL  (Fig.  6).  It  was  found  that  solid  PT  occurs  in  more
than 80% of cases when the vertical profile of air temperat-
ure is above 0°C. The solid PT (i.e., ice pellets or ice crys-
tals) may also occur when any melting layer appears above
ground, which means that occurrence of such a layer is not
a sufficient condition for converting solid to liquid or mixed
precipitation.  For  the  melting  layer  over  500  m,  the  fre-
quency of solid precipitation is only 2%, while for the shal-
lower layers the frequency of solid PT increases (12% of all

Table 3.   Formulas and ranges of selected verification measures used in this study according to Jolliffe and Stephenson (2012).

Measure (abbreviation) Formula/definition Range

Hit Rate (H), Probability of Detection (POD) H = a / (a + c) 0, 1
Proportion Correct (PC) PC = (a + d) / n where n = a + b + c + d 0, 1

False Alarm Ratio (FAR) FAR = b / (a + b) [0, 1]
False Alarm Rate (F), Probability of False Detection (POFD) F = b / (b + d) [0, 1]

Critical Success Index (CSI), Threat Score (TS) CSI = a / (a + b + c) [0, 1]
Equitable Threat Score (ETS) ETS = (a − ar) / (a + b + c − ar) [−1/3, 1]

Notes: a means the number of correct hits, b is the number of false alarms, c is the number of misses, d is the number of correct rejections, and ar denotes
random hits (a + c)(a + b) / n. 0 for no skill and 1 for perfect model.
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cases if the melting layer is 60 m thick).
Atmospheric conditions accompanying mixed precipita-

tion in the 0–1000 m AGL layer are different from those for
solid PT. A quarter of the mixed precipitation occurs when
the melting layer is about 250 m thick, and 50% of the cases
were found when this layer reaches a thickness of about 100
m.  About  20%  of  all  cases  with  mixed  PT  can  occur  at  a
near-surface  temperature  below 0°C.  Although  the  relation
is clearly visible, mixed PT can occur even when the melt-
ing  layer’s  thickness  is  more  than  750  m  (c.a.  3%  fre-

quency)  and  less  than  a  few meters.  At  the  smallest  thick-
ness of the melting layer, the frequency of the analyzed PT
is at its highest, reaching over 75%.

In turn, the conditions associated with liquid PT indic-
ate very rare occurrences of layers with a temperature < 0°C.
The vast majority of this type of precipitation (over 80% of
cases)  occurs  when  the  thickness  of  the  melting  layer
reaches at least 1000 m. In 95% of cases of this type of precip-
itation,  the  melting  layer  is  500  m  thick,  and  in  98%  of
cases it reaches 250 m.

 

 

Fig. 4. Distribution of wind speed for surface precipitation types at selected altitudes above ground level. The
details of the boxplot are the same as in Fig. 2.

 

 

Fig.  5.  Distribution  of  specific  humidity  for  surface  precipitation  types  at  selected  altitudes  above  ground
level. The details of the boxplot are the same as in Fig. 2.
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3.2.    Variables’ importance

Considering the KDE values (Fig. 2) it can be assumed
that some parameters might be used as robust covariates in
modeling PT. The scaled variable importance of  predictors
used in the RF models are shown together in Fig. 7. Given
the contribution of the variable importance to the RF mod-
els, it can be seen that values may differ for individual mod-
els, although some of them, e.g., T2 or WLD01, are in each
case one of the leading factors. This is due to the complex-
ity  of  the  physical  processes  of  forming  liquid,  solid  or
mixed  PTs,  as  well  as  the  properties  of  the  chosen  ML
algorithm.  To  distinguish  mixed  PT  from  liquid  PT,  T2  is
the  dominant  discriminator,  while  for  liquid  precipitation
T2 is the second most important after the depth of the melt-
ing  layer,  which  justifies  adding  this  variable  to  the  ML
model setup.

It is worth noting that the RF model indicated signific-

ance  of  the  wind  speed  parameters  in  the  vertical  profile
(WS10,  WS100) for  the mixed PT only,  along with a  high
impact of the 0°C isotherm height. In the case of liquid and
solid PTs, the created model was based mostly on humidity
parameters. Low importance was detected for CMAX radar
reflectivity, which was only used by decision trees to determ-
ine mixed PTs.

We also  tested how the  variables’ importance changes
if all factors and all PTs are used simultaneously (Fig. 7d).
As  it  turned  out,  the  most  important  predictor  is  WLD01,
and the other predictors giving a significant signal for model-
ing  PT  are:  T2,  T100,  Q2,  then  T750,  Q500,  Q250,  and
T500.  Other  covariates  with  lower  importance  (i.e.,  T10,
ISO_0_HGT,  Q750,  T1000,  and  Q10)  seem  to  slightly
improve the model parameters.

3.3.    Models’ performance

The  contingency  table  of  observed  and  predicted  PTs
(Table 4) is computed for the benchmark model and most gen-
eric RF models that rely on using all meteorological predict-
ors for classifying all PTs simultaneously. Table 5 presents
the  results  relating  to  performance  measures  derived  from
the contingency table. For all analyzed cases, the RF model
obtained better  verification scores than the developed BCT
model. Moreover, the differences between models were signi-
ficant according to the p-value statistics obtained from the t-
test,  confirming  a  clear  improvement  while  applying  ML
algorithms together with the data fusion approach.

The best  evaluation measures  were  obtained for  liquid
PT, which occurred most frequently. In this case, among all
observed  1091  cases,  the  RF  model  correctly  predicted
1066, giving a high H of 0.980. For the unsuccessful cases
of  liquid  PT,  the  model  incorrectly  indicated  solid  (13
cases) and mixed (14 cases) PT instead of liquid,  which in
total  gave  a  slightly  overestimated  result  (1093  forecasted
cases). Hence, the F (also called Probability of False Detec-
tion, or POFD), which is conditioned on observations rather

 

Fig.  6.  Frequency  of  0–1  km  warm  layer  depth  (WLD01)
according to liquid, mixed and solid types of precipitation.

 

 

Fig.  7.  Variables’ importance  of  predictors  (0–100  scaled)  applied  in  the  RF  models  for  (a)  mixed,  (b)  solid,  (c)
liquid, and (d) all PTs.
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than  forecasts,  was  0.023.  The  number  of  false  alarms
described  by  the  FAR was  similar  (0.025).  Therefore,  it  is
unsurprising that  the CSI and ETS for  liquid PT reached a
high  level  of  0.956  and  0.917,  respectively.  Moreover,  as
the  ETS  indicator  shows,  the  RF  model  detects  liquid  PT
much better than the BCT model (0.655). Furthermore, the
RF model’s better performance is especially noticeable with
the reduced number of false alarms.

For  the  solid  PT  among  all  observed  1077  cases,  the
model  correctly  predicted  1062,  giving  a  similarly  high  H
value  of  0.988.  Among  the  incorrectly  forecasted  cases  of
solid  PT,  the  model  indicated  mostly  liquid  (22  cases)  as
well as mixed (18 cases) PT, giving an overestimated result
of 1102 forecasted solid PTs. For solid PT, the probabilities
of the F and the FAR were the highest among all PTs, reach-
ing  a  level  of  0.034  and  0.036,  respectively.  Similar  to
liquid PT, in the case of solid PT, the CSI and ETS reached
a  high  level  of  0.953  and  0.911,  respectively.  Comparing
the ETS values for RF and BCT, a large difference is notice-
able (91.1% for RF and 65.1% for BCT), indicating a much
better performance of the RF model.

Considering the mixed PT for all observed 98 cases, the
model  correctly  predicted  66  cases  giving  the  lowest  H
value  (0.673).  The  incorrectly  forecasted  mixed  PT  deals
with  only  five  unsuccessful  cases,  when  instead  of  mixed,
the  model  predicted  three  liquid  and  two  solid  PTs.  This
means  that  the  model  underestimates  the  forecast  for  the
mixed PT, and hence the F and the FAR were both 0.0. Differ-
ent from the liquid and solid precipitation, in the case of the
mixed PT, the CSI and ETS had their lowest values of 0.673
and  0.664,  respectively.  CSI  and  ETS  are  especially  valu-
able  when  observed  values  are  not  frequent  (mixed  PT);
their  sensitivity  towards  taking  into  account  both  false
alarms and missed events makes them more balanced scores

than,  for  example,  the  H.  However,  because  the  mixed  PT
was unsuccessfully predicted only five times here, both meas-
ures  (H  and  CSI)  indicated  the  same  value.  Similar  to  the
liquid and solid PT, for the mixed type, the ETS values indic-
ate  significantly  greater  robustness  for  the  RF  model  than
for the BCT one (66.4% and 10.7%, respectively).

4.    Discussion and concluding remarks

The  use  of  ML  techniques  provides  the  possibility  of
more accurate forecasts in areas where NWP models tend to
be  less  skillful  (Brimelow et  al.,  2002; Gagne et  al.,  2017;
Dennis and Kumjian, 2017). It is particularly visible in micro-
physical and convective processes, which usually cannot be
computed implicitly and therefore need to be parameterized
(Allen  et  al.,  2015; McGovern  et  al.,  2017; Gagne  et  al.,
2017; Ukkonen et al., 2017). Therefore, it has become increas-
ingly  common  to  use  ML  algorithms  for  identifying  the
most  skillful  variables  in  predicting  specific  types  of
weather phenomena.

In the present study, the data fusion approach using the
RF  technique  was  applied.  The  surface  synoptic  observa-
tions and ERA5 reanalysis, as well as radar data for predict-
ing  three  PTs—namely,  liquid,  solid  and  mixed—were
used.  Using  these  methods  and  data,  an  attempt  was  made
to answer the question: “How can ML techniques applied in
observational  and  NWP  data  help  to  improve  the  recogni-
tion of the surface PT?”

The  created  generic  model  distinguishes  PTs  based
mostly  on  the  depth  of  the  melting  layer  and  the  near-sur-
face air temperature. The depth of the melting layer proved
to be a very good predictor of the PT, which allowed us to
conclude that, in 95% of all cases with liquid PT, the melt-
ing layer was > 500 m deep (in 98% of cases, this layer was
> 250 m deep). Together with changes to the specific humid-
ity in the vertical profile, it brings forth the largest signal in
a proper identification of PT (Fig. 7d), which confirms that
analysis of the vertical distribution of temperature and humid-
ity  is  the  key  ingredient  to  a  successful  modeling  of  PTs
(Gjertsen  and  Ødegaard,  2005; Thériault  et  al.,  2010;
Schuur et al., 2012; Ding et al., 2014; Reeves et al., 2016).

Attention  should  also  be  paid  to  the  relationship
between  the  higher  wind  speed  at  the  height  above  10  m
AGL and the occurrence of mixed precipitation (Fig. 4). For

Table 4.   Contingency table of observed and predicted PT (liquid,
solid, mixed) according to the RF model.

Observed values

Predicted values

Liquid Mixed Solid Total

Liquid 1066 3 22 1091
Mixed 14 66 18 98
Solid 13 2 1062 1077
Σ 1093 71 1102 2266

Table 5.   Performance measures derived from the contingency table of precipitation models for forecasting liquid-,  mixed- and solid-
type precipitation events.

Measure

Random Forest Classification Trees

Liquid Mixed Solid Liquid Mixed Solid

Hit Rate 0.980 0.673 0.988 0.926 0.612 0.903
Proportion correct 0.978 0.986 0.977 0.900 0.840 0.890

False Alarm Ratio (FAR) 0.025 0.000 0.036 0.133 0.844 0.108
False Alarm Rate (F) 0.023 0.000 0.034 0.132 0.150 0.097

Critical Success Index (CSI) 0.956 0.673 0.953 0.810 0.142 0.799
Equitable Threat Score (ETS) 0.917 0.664 0.911 0.655 0.107 0.651
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the mixed PT, the wind speed ranks sixth (10 m AGL) and
twelfth (100 m AGL) among the variables’ importance. For
liquid and solid PTs, the wind speed does not appear among
the first fifteen predictors.

The probability density estimation of the radar reflectiv-
ity  (CMAX)  for  the  conditional  probability  of  the  liquid,
mixed  and  solid  precipitation  (Fig.  2)  can  be  assumed  to
have high importance in recognizing the PT.  However,  the
obtained results indicate that this is not the case for grouped
classes of PT. As an important variable, the CMAX value sig-
nal  was  only  indicated  by the  RF model  in  the  case  of  the
mixed PT. However,  as indicated by the KDE distribution,
the high values of CMAX (> 45 dBZ) demonstrate a poten-
tial to distinguish between liquid and other PTs as it is typic-
ally  a  rare  situation  for  either  solid  or  mixed  PT  to  reach
such a high reflectivity value. However, contrary to our find-
ings,  it  should  also  be  pointed  out  that Gjertsen  and
Ødegaard (2005), in their study of rainfall  recognition dur-
ing the winter season in Norway, used radar data as input vari-
ables  and  demonstrated  their  usefulness. Schuur  et  al.
(2012) demonstrated the potential benefits of combining polar-
imetric  radar  data  with  thermodynamic  information  from
the RUC (Rapid Update Cycle) model.  According to Czer-
necki  et  al.  (2019),  applying ML techniques  as  well  as  the
data  fusion  approach  indicated  CMAX  to  be  a  good  pre-
dictor for large hail  recognition. Therefore,  it  must be kept
in mind that CMAX itself is a robust predictor for determin-
ing any precipitation occurrence, which admittedly was not
the scope of our study where only situations with precipita-
tion  are  considered.  Therefore,  even  without  the  CMAX
product, the developed RF model delivered more reliable clas-
sification results to date than other methods.

The  obtained  classification  results  are  most  promising
for liquid and solid PTs, while mixed types are the most chal-
lenging.  This should not  be a surprise,  as  the classification
of these phenomena may even vary among different station
observers  and  thus  may  also  impact  the  quality  of  input
data. Forecasting of mixed precipitation is markedly more dif-
ficult  than  that  of  solid  or  liquid  PT,  as  already  stated  in
earlier studies (Kain et al., 2000). In the present study, the H
value for liquid precipitation was 98.0% (1066 out of 1091
cases), while for solid precipitation it was 98.8% (1062 out
of  1077  cases)  and  for  mixed  it  was  67.3%  (66  out  of  98
cases)  PTs.  The  F  values  were  highest  for  solid  precipita-
tion (0.034), lower for liquid precipitation (0.0023), and low-
est for mixed (0.000). Although a comparison of values may
be challenging (or even impossible in many cases due to dif-
ferent evaluation indices, environmental circumstances, obser-
vational techniques, and the applied precipitation classifica-
tion),  the evaluation metrics  clearly indicate the robustness
of  the  ML  approach,  especially  if  compared  with  other
NWP-based studies.

PT forecasts that took into account a division into differ-
ent water phase types (e.g., rain, sleet, snow) from the HIR-
LAM (High Resolution Limited Area Model; Undén 2002),
based on synoptic observations and weather radar data, was
presented  by Gjertsen  and  Ødegaard  (2005).  In  this  study,

the obtained results of PT detection were 84% for rain and
97% for  snow. Reeves  et  al.  (2016),  based  on  spectral-bin
microphysical  modeling  for  recognizing  rain  and  snow  in
the winter season, obtained POD (Probability of Detection)
values at a level of 91.4% to 98.3%. However, this compar-
ison can only be done in a very generic way because a more
detailed breakdown of PT was applied, not to mention that
this study covered a relatively narrow range of air temperat-
ure that could not be used as a robust predictor. In turn, the
proposed  RF model  gives  much better  results  compared  to
the basic BCT. For each PT, all  the performance measures
indicate a significantly better robustness of the RF model, in
particular for mixed PT, which is the most difficult to fore-
cast.

The  application  of  ML techniques  and  the  data  fusion
approach in predicting different PTs brings to the fore a prom-
ising concept for future application as a post-processing tool
that might easily be combined with operationally used NWP
models.  It  may become especially  useful  during the winter
season  when  a  proper  recognition  of  PT  might  reduce  the
risk  of  hazards  in  transportation,  and  thus  may  prevent
adverse  socioeconomic  impacts  (Gjertsen  and  Ødegaard,
2005; Ikeda et al., 2013).
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