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ABSTRACT

In  this  study,  the  ability  of  the  Weather  Research  and  Forecasting  (WRF)  model  to  generate  accurate  near-surface
wind  speed  forecasts  at  kilometer-  to  subkilometer-scale  resolution  along  race  tracks  (RTs)  in  Chongli  during  the
wintertime  is  evaluated.  The  performance  of  two  postprocessing  methods,  including  the  decaying-averaging  (DA)  and
analogy-based (AN) methods, is tested to calibrate the near-surface wind speed forecasts. It is found that great uncertainties
exist in the model’s raw forecasts of the near-surface wind speed in Chongli. Improvement of the forecast accuracy due to
refinement  of  the  horizontal  resolution  from kilometer  to  subkilometer  scale  is  limited  and  not  systematic.  The  RT sites
tend to have large bias and centered root mean square error (CRMSE) values and also exhibit notable underestimation of
high-wind speeds, notable overestimation or underestimation of the near-surface wind speed at high altitudes, and notable
underestimation  during  daytime.  These  problems  are  not  resolved  by  increasing  the  horizontal  resolution  and  are  even
exacerbated, which leads to great challenges in the accurate forecasting of the near-surface wind speed in the competition
areas in Chongli. The application of postprocessing methods can greatly improve the forecast accuracy of near-surface wind
speed. Both methods used in this study have comparable abilities in reducing the (positive or negative) bias, while the AN
method is also capable of decreasing the random error reflected by CRMSE. In particular,  the large biases for high-wind
speeds, wind speeds at high-altitude stations, and wind speeds during the daytime at RT stations can be evidently reduced.
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Article Highlights:

•  Improvement of near-surface wind forecasts due to refinement of horizontal resolution is limited and not systematic in
Chongli.

•  Near-surface wind speed forecasts in the competition areas in Chongli suffer from great uncertainties.
•  The  application  of  postprocessing  methods  is  an  effective  way  to  improve  the  forecast  accuracy  of  near-surface  wind

speed.
 

 
  

1.    Introduction

The 24th  Winter  Olympic  and Paralympic  Games will
be held in China in the year 2022.  The Chongli  District  of
Zhangjiakou will host all outdoor snow sports events, includ-
ing  cross-country  skiing,  ski  jumping,  and  six  other  snow
sports.  The competition results  of these sports and the per-

formance and safety of athletes can be considerably affected
by near-surface winds. For this reason, accurate forecasts of
the near-surface wind speed in the competition areas are of
prime importance for the success of these games.

Enhanced observation networks and numerical weather
prediction (NWP) models are two main approaches to gener-
ate the weather forecasts for the Olympic Games. With the
support of the World Meteorological Organization (WMO),
the  Vancouver  2010,  Sochi  2014,  and  Pyeongchang  2018
Winter Olympic and Paralympic Games were committed to
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the improvement of high-resolution numerical forecasts and
construction of enhanced observation networks (e.g., Joe et
al.,  2010; Isaac et al.,  2014; Vasil’ev and Dmitrieva, 2015;
Han et al., 2016, 2018; Kiktev et al., 2017; Lee et al., 2018).
An  enhanced  observation  network  promotes  the  improve-
ment of weather nowcasting. Those short-term forecasts are
based on NWP models. However, the performance of NWP
models for the prediction of near-surface variables in com-
plex terrains remains unsatisfactory.

Due  to  the  influence  of  initial  conditions,  atmospheric
physical process parameterizations, and numerical approxima-
tions, significant errors exist in forecasts of near-surface con-
ditions  (Hanna  and  Yang,  2001; Zhang  and  Zheng,  2004).
This  issue  becomes  more  complicated  in  complex  terrains
due to the inability of models to finely differentiate the struc-
ture of the topography and to successfully reproduce turbu-
lence effects, diurnal cycles, cold air pools in basins and val-
leys,  nocturnal  low-level  jets,  and  boundary  layer  stability
phenomena  (Shafran  et  al.,  2000; Whiteman  et  al.,  2001;
Zhong and Fast, 2003; Cheng and Steenburgh, 2005; Liu et
al.,  2019).  These  factors  impose  a  major  influence  on  the
accuracy of  surface  wind speed forecasts.  The  model  fore-
cast  errors  of  the  surface  wind  speed  have  originally  been
attributed to the approximations of atmospheric physical pro-
cesses  in  planetary  boundary  layer  (PBL)  and  land  surface
model (LSM) parameterization schemes. By testing the per-
formance of different PBL schemes in simulating near-sur-
face variables, Zhang and Zheng (2004) found that all bound-
ary layer schemes underestimated the wind speed during the
daytime and overestimated it during the nighttime. Jiménez
and  Dudhia  (2012) argued  that  the  Weather  Research  and
Forecasting  (WRF)  model  overestimation  of  the  surface
wind  speed  was  caused  by  the  unresolved  topography,
which produced an additional drag to that generated by veget-
ation. They introduced a parameterization scheme that con-
sidered  these  unresolved  topographic  effects  in  the
momentum  flux.  However, Frediani  et  al.  (2016) reported
that  this  parameterization  scheme  penalizes  moderate  and
high winds. Duan et al. (2018) further investigated the WRF
model performance in predicting surface variables in Northw-
est China, where the underlying surface is very complex. It
was found that the 10-m wind speed forecast errors in June
are  strongly correlated with  the terrain,  but  this  correlation
is not as apparent in December (winter).

To better  discriminate  complex terrains  and associated
vegetation, land use types, and subgrid physical processes, a
practical  solution  to  improve  numerical  forecasts  is  to
increase  the  horizontal  model  resolution.  Currently,  many
NWP  systems  are  operated  at  the  kilometer  scale  and  are
being developed to the subkilometer scale (e.g., Baldauf et
al.,  2011; Seity et  al.,  2011; Clark et  al.,  2012; Min,  2014;
Huang et al., 2017). However, whether increasing the hori-
zontal  resolution  can  improve  the  surface  variable  predic-
tion  accuracy  remains  uncertain.  Verification  of  the  real-
time forecasts  from the fifth-generation Pennsylvania  State
University–National Center for Atmospheric Research meso-
scale  model  (MM5)  by Mass  et  al.  (2002) suggested  that
these forecasts were notably improved when decreasing the

grid spacing from 36 to 12 km, but little improvement was
achieved with further reduction from 12 to 4 km. The verifica-
tion of WRF model forecasts of surface variables by Zhang
et al. (2013) also revealed that surface forecasts at a fine resol-
ution (1.33 km) do not always outperform those at a coarse
resolution. Leroyer et al. (2014) extended the NWP system
in  Meteorological  Service  of  Canada  (MSC)  to  a  subkilo-
meter  grid  spacing  (0.25  km)  but  did  not  observe  much
improvement,  although better sea-breeze flows were repro-
duced. However, the wind speed forecasts of Vionnet et al.
(2015) exhibited  notable  improvements  with  decreasing
grid  spacing  for  high-altitude  stations  exposed  to  or
sheltered from wind.

These studies further indicate the large uncertainty in sur-
face wind speed forecasts. Although we expect the model sur-
face wind speed forecast to improve with increasing model
resolution and enhanced topography representation, the accur-
acy  depends  on  many  factors.  Compared  to  increasing  the
horizontal  resolution,  a  more  effective  way  to  reduce  the
model forecast error and to acquire more accurate forecasts
may be the application of bias-correction methods to postpro-
cess raw numerical forecasts.

The  model  errors  that  influence  the  forecast  accuracy
include  random  and  systematic  errors.  Many  studies  have
demonstrated  that  these  errors,  particularly  the  systematic
errors, can be predicted with statistical methods, which can
then be used to calibrate the numerical forecasts. Regarding
the near-surface wind speed, the available methods that can
be applied for calibration include the running mean method
(e.g., Hacker and Rife, 2007), model output statistics (MOS,
e.g., Gneiting et al., 2005), Kalman-filtering approach (e.g.,
Delle  Monache  et  al.,  2008),  Bayesian  model  averaging
(e.g., Raftery et al., 2005), gene-expression algorithms (e.g.,
Bakhshaii  and  Stull,  2009),  decay-averaging  adjustment
method (e.g., Cui et al., 2012), analogy-based (AN) method
(e.g., Delle Monache et al., 2011), etc. Several of these meth-
ods have been tested in wind speed forecasting during previ-
ous  Winter  Olympic  Games. Frogner  et  al.  (2016) com-
pared and evaluated three ensemble prediction systems with
different  grid  spacings  to  accurately  predict  wintertime
weather conditions in complex terrains. The relative import-
ance of the resolution and calibration was assessed. Han et
al.  (2018) evaluated six  postprocessing methods and found
that the Bayesian model averaging method was superior in cal-
ibrating near-surface wind speed ensemble forecasts. Zhang
et al. (2020) applied the decay-averaging (DA) method to cor-
rect  near-surface  condition  forecasts  from  the  GRAPES_3
km  model,  which  was  employed  during  the  Pyeongchang
2018 Winter Olympic Games.

In different regions, the model performance is different,
and the effectiveness of different bias-correction methods is
also  different.  Although  certain  model  assessment  results
have been obtained under complex terrain conditions in the
past  and  comparisons  of  different  bias-correction  methods
have  been  conducted  to  calibrate  model  forecasts,  there  is
no  assessment  or  bias-correction  research  for  the  Chongli
area. As the Winter Olympic Games approach, it is imperat-
ive  to  determine  whether  numerical  modeling  and  associ-
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ated bias-correction methods can provide suitable near-sur-
face  wind  speed  forecasts  in  the  competition  venues  in
Chongli. For this purpose, this paper evaluates the near-sur-
face (10 m) wind speed forecast from the WRF model in the
competition  venues  in  Chongli  during  the  wintertime
through  a  comparison  to  enhanced  surface  observations
along  the  race  tracks  (RTs).  The  ability  of  two  postpro-
cessing  methods  to  calibrate  near-surface  wind speed fore-
casts is simultaneously examined. Here, the two evaluated cal-
ibration methods include a first-order adaptive Kalman-filter-
ing  method,  namely,  the  DA  method  and  the  AN  method.
The AN method is based on the principle that similar fore-
casts tend to have similar errors. With the use of several stat-
istical  parameters,  all  the  wind  speed  forecasts  from  the
model or from the postprocessing methods are evaluated in
the following aspects: 1) the effect of horizontal model resolu-
tion refinement from the kilometer to subkilometer scale on
improving the near-surface wind speed forecasts in the com-
petition venues in Chongli; 2) the performance of the postpro-
cessing methods in generating better near-surface wind fore-
casts  in  Chongli;  3)  the  influence  of  the  complex  terrain,
diurnal cycle, and wind intensity on the performance of the
model and postprocessing methods.

The paper is arranged as follows: section 2 presents the
details  of  the  evaluation,  including  the  near-surface  wind
speed forecast experiments with the WRF model, the observa-
tion  dataset  for  verification,  the  postprocessing  methods,
and the evaluation parameters. Section 3 analyzes the verifica-
tion results, focusing on the above three aspects, and a sum-
mary is provided in section 4. 

2.    Data and methods
 

2.1.    Numerical model and experimental configuration

The  WRF  v4.1.3  model  was  applied  to  forecast  the
near-surface wind speed in Chongli.  Three one-way nested

domains were employed with horizontal resolutions of 4.05,
1.35  and  0.45  km.  These  forecasts  were  conducted  for  the
period from 1 January to 16 February 2019, which is the win-
tertime  in  Chongli  (Fig.  1).  The  horizontal  grid  of  each
domain has dimensions of 361×361. The orography for the
4.05- and 1.35-km grids was obtained from the U.S. Geolo-
gical Survey (USGS) 30-arc-s (approximately 0.9 km) oro-
graphy  dataset.  The  0.45-grid  topography  is  from  Shuttle
Radar Topography Mission (SRTM) data which has 3-arc-s
resolution. There are 51 vertical levels in each domain.

The  physical  parameterization  schemes  employed  in
this study include the Thompson aerosol-aware microphys-
ics  scheme  (a  bulk  microphysical  parameterization  for
winter  precipitation  forecasts  considering  aerosol  impacts,
Thompson et  al.,  2008; Thompson and Eidhammer,  2014),
the  new  version  of  the  Rapid  Radiative  Transfer  Model
(RRTMG) radiation scheme (a radiation model by Iacono et
al.,  2008 considering  long-lived  greenhouse  gases),  the
Noah land surface model (LSM; the most widely used land
surface model with new modifications to better represent pro-
cesses over ice sheets and snow covered area, Alapaty et al.,
2008), and the YSU planetary boundary layer (PBL) paramet-
erization scheme (non-local-K scheme with explicit entrain-
ment layer, parabolic K profile in unstable mixed layer, ter-
rain  variance-related  correction,  and  top-down  mixing
driven by radiative cooling, Hong et al., 2006).

The initial and lateral boundary conditions of the 4.05-
km  experiment  are  derived  from  the  analysis  and  forecast
data provided by the National Centers for Environmental Pre-
diction  (NCEP)  Global  Forecasting  System  (NCEP/GFS).
As an experiment, the current work used the GFS data with
0.5°  horizontal  resolution  and  3-h  temporal  resolution,
which permits us to obtain long-term history data.  The use
of  the  GFS  data  with  0.25°  horizontal  resolution  for  the
wind forecast is in test.

The  4.05-km  experiment  was  initialized  at  0000  UTC
and run for 48 h with 3-hourly lateral boundary conditions.

 

 

Fig. 1. Model domains for the numerical experiments: (a) the 4.05-, 1.35- and 0.45-km domains, (b) distribution of
the available observation stations (solid points) superimposed on the 0.45-km-grid orography of Chongli. The solid
points  in  (a)  include  1  national  station  (green),  17  regional  stations  (red),  3  test  stations  (black)  and  23  race  track
stations (blue). Apart from the single national station, the other stations are all automatic stations.
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Six-hour  delays  were  applied  to  the  initialization  of  the
1.35-km  (0600  UTC)  and  0.45-km  (1200  UTC)  domains.
The initial and boundary conditions of the 1.35-km run are
from the prediction fields of the 4.05-km run, which are down-
scaled to 1.35-km grid by ndown.exe in WRF. Then, when
the  1.35-km  run  is  completed,  its  prediction  fields  further
provide the initial and boundary conditions for the 0.45-km
run.  Lateral  boundary  conditions  of  1.35-km  and  0.45-km
runs are hourly updated. All the domains have the same end-
ing time. Therefore, for each domain, the output period pro-
gressively decreases with increasing resolution, namely, 48 h
for the 4.05-km domain, 42 h for the 1.35-km domain, and
36 h for the 0.45-km domain. The 4.05-, 1.35- and 0.45-km
forecasts were started once each day over the entire experi-
mental period from 1 January to 16 February 2019. The 10-m
wind speed forecasts are output each hour and remapped to
the observation stations from the nearest grid point for the fol-
lowing evaluation and calibration procedures. The distribu-
tion  of  the  observation  stations  is  presented  in  the  next
subsection. 

2.2.    Observation dataset in Chongli

As  one  district  of  Zhangjiakou  to  the  northwest  of
Hebei Province, Chongli is located along the border areas of
the  Yanshan  Mountain  and  the  Yinshan  Range,  character-
ized  by  several  northeast-southwest-oriented  mountain
ranges  and  many  valleys  (Fig.  1b).  The  complex  terrain
provides favorable natural conditions for winter snow sports
but also causes great difficulties in weather forecasting.

The distribution of the observation stations for the 10-m
wind  speed  evaluation  and  calibration  steps  are  shown  in
Fig. 1b. They include 1 national station (green), 17 regional
stations  (red),  3  test  stations  (black),  and 23 stations  along
RTs  (blue).  These  observation  sites  are  separated  into  two
groups,  namely,  the  RT  stations  near  the  competition  ven-
ues  and  other  stations  excluding  the  race-track  (NRT)  sta-
tions. The RT stations include all the stations along the RTs
(the blue dots in Fig. 1b) and two regional stations (the red
dots  coinciding  with  the  blue  dots)  near  the  race  venues.
The NRT stations include 1 national station, 15 regional sta-
tions, and 3 test stations (the other dots except for the RT sta-
tions  in Fig.  1b).  The performance of  the  WRF model  and
associated  postprocessing  methods  is  assessed  between  the
RT and NRT stations. As shown in Fig. 1b, the RT stations
are  mainly  distributed  across  the  high-altitude  area  in
Chongli,  while  the  NRT  stations  mostly  occur  in  valleys.
The different  distributions  of  the  RT and NRT stations  are
defined to enable a comparison of them, considering the per-
formance of the numerical model in the valleys and high-alti-
tude sites (Zhang et al., 2013; Vionnet et al., 2015; Duan et
al., 2018). 

2.3.    Postprocessing methods for calibration
 

2.3.1.    The DA method

As  a  relatively  easy  and  flexible  postprocessing
method, the DA method has been applied to reduce the bias

of  the  global  ensemble  forecast  by  NCEP  operation.  The
algorithm is mostly the same as that described in Cui et al.
(2012), except that it was applied to the station sites, and the
bias was estimated with the aid of available observations at
each station site instead of with the analysis grid data. The
same method was adopted by Zhang et al. (2020) to correct
the 2-m temperature, 2-m relative humidity and 10-m wind
speed  forecasts  from  the  GRAPES  model  during  the
Pyeongchang Winter Olympic Games. The two steps of this
adaptive algorithm for a given station can be described as fol-
lows: 

Bt = (1−ω) Btb−1+ω
(
Ftb −Otb

)
, (1)

 

DAt = Ft −Bt , (2)

tb

tb = t−1
tb t−2

Ft

Ot

Bt

Ftb −Otb tb Btb−1 tb
ω

Bt Ft

where t is the current forecast time and  is the prior fore-
cast  time  of t considering  the  latest  available  observation
(for  the  forecast  less  than  24  h, ;  however,  for  the
forecast  greater  than  24  h,  may  be  or  even  earlier
depending  on  the  availability  of  the  latest  observation). 
and  are the numerical forecast and corresponding observa-
tion, respectively, at time t.  is the decaying average bias,
which  is  updated  by  combining  the  latest  available  bias

 at  and  at the prior forecast time of  with
weight coefficient . The initial value of Bt is 0. By apply-
ing the decaying average bias  to the current forecast ,
the  new  bias-corrected  forecast  DAt at  each  lead  time  and
each station can be obtained, as expressed in Eq. (2). 

2.3.2.    The AN method

The DA method utilizes all the available past errors to
estimate  the  current  bias  with  the  latest  errors  assigned
higher weights. In comparison, the AN method applies a sort-
ing process to the past predictions and selects certain mem-
bers  with  similar  features  to  those  of  the  current  forecast
[called  analogs  by Delle  Monache  et  al.  (2011)].  It  is
assumed that for a given location, analogous forecasts have
similar forecast errors. Therefore, the current forecast error
can be inferred from the errors of past analogous forecasts.
Delle Monache et al. (2011) defined a metric to measure the
similarity of past forecasts to current forecast as follows: 

∥∥∥Ft,At0

∥∥∥ = Nv∑
i=1

wi

σi

√√√ ∆t∑
j=−∆t

(
Fi,t+ j−Ai,t0+ j

)2
, (3)

Ft At0
t0 Nv

Fi,t+ j

2∆t Ai,t0+ j

σi

wi

where  is the forecast to be corrected at given time t,  is
the available past forecast at time  before given time t, 
is  the  number  of  analogous  physical  variables  to  measure
the  analogy  (e.g.,  10-m  wind  speed,  2-m  temperature,  etc.
for 10-m wind speed corrections),  is the current fore-
cast of a given variable in a time window ,  is the
corresponding past forecast in the same time window,  is
the standard deviation of all the available past forecasts of a
given variable, and  is the weight of each variable which
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is determined by the correlation of the variable to the near-sur-
face wind speed. The smaller of the above matric value, the
better analogy of the history forecast to the current forecast.

Na

Na

With  the  above  metric,  all  the  available  past  predic-
tions are ranked from small matric value to higher, and the
best  analogous members are selected for bias correction
of  the  current  numerical  forecast. Delle  Monache  et  al.
(2011) directly  applied  the  corresponding  observations  of
the best  analogous members to generate a new AN fore-
cast as follows: 

ANt =

Na∑
i=1

γiOAi , (4)

ANt

{OAi}i=1,2,....Na Na

Na = 5 γi

where  is the AN forecast at time t for a given location,
 are  the  corresponding observations  to  the 

members (  in this study), and  is the weight of each
selected analogous member, which is defined as follows: 

γi =

∥∥∥Ft,Ai,ti

∥∥∥
Na∑
j=1

∥∥∥Ft,A j,t j

∥∥∥ . (5)

ANt

The above equation implies that the observations of the
more  analogous  members  (lower  analogy  metric)  have
higher weights in .

ω

ω = 8.2%

ci

In this study, the DA and AN algorithms are applied to
calibrate the model 10-m wind speed forecasts in Chongli at
each  of  the  observation  sites.  Calibrations  were  conducted
for  the  4.05-km/1.35-km/0.45-km  domain  of  the  1–48-h/
1–42-h/1–36-h  (1-h  intervals)  forecasts  from  1  January  to
16 February 2019 at all station sites. During the application,
many sensitivity tests are carried out to optimize the correc-
tion. Regarding the DA method, a test of the weight  is con-
ducted, and  is adopted, which yields the best root
mean square error (RMSE, introduced in the following subsec-
tion). For the AN method, an important task is to determine
the  physical  parameters  in  the  analogy  matric  [Eq.  (3)],
which can largely influence the efficiency of the method. In
Delle  Monache  et  al.  (2011),  five  near-surface  variables,
including 10-m wind speed, 10-m wind direction, 2-m temper-
ature,  and  surface  pressure  and  humidity,  are  selected.
However,  many  studies  have  shown  that  the  near-surface
wind speed is  not just  related to surface variables,  but also
elevated atmospheric  conditions.  For  example,  strong hori-
zontal momentum at 700 hPa or 500 hPa may be transpor-
ted  downward  into  the  near-surface  layer  inducing  an
increase  of  near-surface  wind speed.  Therefore,  apart  from
the  surface  variables,  eight  other  variables  outside  of  the
near-surface layer, such as wind speed at 700 hPa and 500 hPa,
temperature at 700 hPa and 500 hPa, etc., are added as analog-
ous physical variables. Also, their contributions to the mat-
ric  are  determined  by  their  correlation  coefficient  to  the
observed 10-m wind speed, that is 

wi =
ci

Nv∑
i=1

ci

. (6)

ciNote  that  has  been  normalized  using  its  maximum
and minimum values. 

2.4.    Evaluation methods

BIAS,  CRMSE,  RMSE,  Pearson correction coefficient
(COR), and normalized standard deviation (NSD) are adop-
ted to examine the performance of the WRF model and the
three postprocessing methods in forecasting the 10-m wind
speed.  Their  physical  meanings  have  been  introduced  in
detail  in Taylor  (2001), Delle  Monache  et  al.  (2011),  and
other  papers  on  model  evaluation  (e.g., Vionnet  et  al.,
2015). Their definitions in this study are as follows: 

BIAS =F −O , (7)
 

CRMSE =

√√√
1

Np

Np∑
1

[(
Fi−F

)
−
(
Oi−O

)]2
, (8)

 

RMSE2 =
1

Np

Np∑
1

(Fi−Oi)2 = CRMSE2+BIAS2 , (9)

 

COR =
1

sf so

1
Np

Np∑
1

[(
Fi−F

) (
Oi−O

)]
, (10)

 

NSD =
sf

so
, (11)

Fi

Oi

Np

Fi Oi F O
Np

sf so

where  is the 10-m wind speed from the raw model fore-
cast  or  from  the  three  postprocessing  methods  for  each  of
the 4.05-, 1.35- and 0.45-km domains under any given condi-
tion (station, forecast time, and time),  is the correspond-
ing 10-m wind observation,  are all available pairs of pre-
diction  and  observation ,  and  are  the  means  of
the predictions and observations, respectively, over the  val-
ues, and  and  are the standard deviations of the predic-
tions and observations, respectively.

BIAS  measures  the  systematic  errors  of  the  forecast.
CRMSE represents  the  random error  other  than the bias  in
RMSE.  COR  and  NAD  are  used  to  plot  Taylor  diagrams,
which  reflect  the  correlation  pattern  of  the  predictions  and
observations. 

3.    Results
 

3.1.    Global evaluation

Here, the term global implies that the evaluation is con-
ducted across all available stations and times (including the
forecast  times; Np =  stations  ×  forecast  times  ×  times)  for
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each  of  the  domains  and  each  of  the  forecast  methods.
Through this  global  evaluation,  the  overall  performance  of
the raw, DA, and AN 10-m wind speed forecasts in the differ-
ent model domains can be evaluated. 

3.1.1.    The refinement of the horizontal resolution from the
kilometer to subkilometer scale

Figure 2 shows three Taylor diagrams plotted with the
COR and NSD values for all stations, RT stations (only RT
stations  are  included  in  the  evaluation),  and  NRT  stations
(only NRT stations are included in the evaluation). To ana-
lyze  the  performance  of  the  model  with  increasing  hori-
zontal  resolution  from the  kilometer  to  subkilometer  scale,
the dots marked with number 1 in Fig. 2 are first explained.

In Fig. 2a, the change in COR with increasing model res-
olution  refinement  is  slight.  The  COR  values  of  all  three
domains are approximately 0.4, and the 0.45-km grid COR
value is even slightly smaller than that of the 4.05-km grid,
with  that  of  the  1.35-km grid  being  an  intermediate  value.
In contrast, the change in NSD is evident, with the 1.35-km
grid  exhibiting  the  best  NSD  approaching  1.  The  slightly
smaller  COR  value  of  the  0.45-km  grid  probably  occurs
because  this  grid  contains  more  details  of  the  flow  across
the  mountains  and  thus  exhibits  more  disturbances  in  the
near-surface  wind speed (Raderschall  et  al.,  2008; Vionnet
et  al.,  2015).  The  circumstances  at  the  RT  and  NRT  sta-
tions  are  similar  except  that  the  COR value  at  the  RT sta-
tions is smaller than 0.3 while the COR value at the NRT sta-
tions  is  larger  than  0.5  (Figs.  2b–c).  The  relatively  small
COR  value  indicates  an  unsatisfactory  performance  of  the
WRF model in forecasting the 10-m wind speed at the RT sta-
tions.

BIAS and CRMSE for each of the domains and each of
the forecasting methods are further calculated across all sta-
tions, RT stations, and NRT stations. Here, we still focus on
the raw WRF forecasts first. As shown in Figs. 3a–b, at all sta-
tions, both BIAS and CRMSE decrease with increasing hori-
zontal  resolution  down  to  the  subkilometer  scale.  BIAS
decreases from 0.696 m s–1 in the 4.05-km grid to 0.53 m s–1

in the 1.35-km grid and further to 0.068 m s–1 in the 0.45-km
grid. The BIAS improvement reaches up to 90.2% from the
4.05-km grid to the 0.45-km grid.

An improvement of the 10-m wind speed forecast with
increasing  horizontal  resolution  is  also  observed  at  the  RT
and NRT stations, with a slightly higher improvement at the
RT  stations. Figure  3a reveals  that  in  contrast  to  what  is
observed  for  the  COR  values,  BIAS  at  the  RT  stations  is
lower than that  at  the NRT stations at  the same resolution.
At the RT stations, BIAS is reduced by 92% when the resolu-
tion is refined down to the subkilometer scale, and this reduc-
tion  is  82%  at  the  NRT  stations.  However,  confidence  in
this  result  is  somewhat  uncertain  due  to  the  possible  can-
celing of  the positive and negative BIAS, which can result
in a lower BIAS value. In contrast to BIAS, CRMSE at the
RT stations is larger than that at the NRT stations (Fig. 3b).
However,  the  CRMSE  improvement  with  increasing  hori-
zontal  resolution  refinement  at  the  RT  stations  (7.8%)  is

 

Fig. 2. Taylor diagrams based on COR and NSD of the
raw WRF forecasts and the forecasts obtained with the
DA,  AN,  and  ANE  methods  of  the  10-m  wind  speed
for  the  different  domains  at  (a)  all  stations;  (b)  RT
stations; (c) NRT stations. The black dot indicates the
4.05-km  domain,  the  blue  dot  indicates  the  1.35-km
domain,  the  red  dot  indicates  the  0.45-km  domain,  1
indicates  the  WRF  raw  forecast,  2  indicates  the  DA
forecast,  3  indicates  the  AN  forecast,  and  4  indicates
the ANE forecast.
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still  greater  than that  at  the NRT stations (5.2%).  This res-
ult  is  similar  to  that  reported  in Vionnet  et  al.  (2015),  in
which  a  greater  improvement  of  the  near-surface  wind
speed  forecasts  at  high-altitude  stations  is  obtained  with
increasing horizontal resolution.

A preliminary result from the above global evaluations
is that decreasing the model grid spacing does improve the
near-surface wind speed forecasts, especially at the RT sta-
tions,  although  the  model  performance  at  the  RT  stations
may  not  be  better  than  that  at  the  NRT  stations  (based  on
COR and CRMSE). 

3.1.2.    The performance of the postprocessing methods

Figures 2 and 3 are revisited here to examine the perform-
ance  of  the  various  postprocessing  methods  in  the  calibra-
tion of  the  10-m wind speed forecasts  via  a  comparison to
the  performance  attained  by  refining  the  horizontal  resolu-
tion of the WRF model. According to Fig. 2a, both postpro-
cessing  methods  generate  larger  COR values  than  those  of
the  raw  WRF  forecasts.  Compared  to  the  model  raw  fore-
casts, the DA method increases COR to approximately 0.6,
and  the  AN  method  can  improve  this  value  to  approxim-

ately 0.7, indicating a better performance of the AN method
in forecasting the wind speed change pattern. This result is
also  applicable  to  the  RT  and  NRT  stations,  as  shown  in
Figs. 2b–c. However, a noteworthy point of the evaluations
is that COR at the RT stations can be improved to approxim-
ately 0.7 after calibration with the AN method. This value is
even  larger  than  the  COR  value  at  the  NRT  stations,
although the COR value of the raw forecasts at the RT sta-
tions is much smaller than that at the NRT stations. This indic-
ates  that  calibration  by  the  postprocessing  methods  is  an
effective  way  to  generate  more  accurate  near-surface  wind
speed forecasts in the competition areas in Chongli. This is
also observed for BIAS and CRMSE, as shown in Fig. 3.

Figure  3 shows  that  compared  to  the  raw  WRF  fore-
casts,  the  postprocessing  methods  are  able  to  reduce  BIAS
and  CRMSE  in  each  of  the  domains,  except  for  the  0.45-
km-grid  BIAS  values.  Regarding  the  BIAS  values  in  the
0.45-km  domain,  the  raw  WRF  forecasts  attain  a  lower
BIAS value than that of the AN method. However, as indic-
ated  above,  the  BIAS  results  require  further  examination
due  to  the  possible  canceling  of  any  positive  and  negative
BIAS values.  The relative performance of  the DA and AN

 

 

Fig. 3. Histogram of (a) BIAS and (b) CRMSE of the raw WRF forecasts and the forecasts with the DA, and AN methods of
the 10-m wind speed for the different domains.

MAY 2021 LI ET AL. 851

 

  



methods in reducing the bias of  the model raw forecasts  is
not  systematic  (Fig.  3a).  For  example,  at  the  RT  stations,
the  AN  method  attains  better  performance.  At  all  stations,
the  DA  method  performs  better  than  the  AN  method.
However,  in  terms  of  reducing  CRMSE  (Fig.  3b),  it  is
observed that the AN method performs better. This is consist-
ent with the results of Delle Monache et al. (2011) whereby
the  AN method  reduces  the  random model  errors  and  thus
improves  the  predictive  skills  on  near-surface  wind  speed
forecasts. 

3.1.3.    Evaluations  according  to  the  wind  speed  intensity
at the RT stations

The  evaluations  in  this  subsection  are  similar  to  the
above evaluations except that the wind speed intensity is con-
sidered.  The  wind  speed  is  separated  into  three  bins  (0–5,
5–10, and >10 m s–1), and BIAS, CRMSE, and COR values
are calculated for each of the bins across the available RT sta-
tion observations and times (Fig. 4).

In Fig.  4a,  at  all  model  resolutions,  a  positive  bias  is
observed  at  wind  speeds  below  5  m  s–1,  with  the  0.45-km
grid  exhibiting  the  lowest  bias.  The  bias  is  observed  to
decrease  with  increasing  wind  speed,  resulting  in  a  negat-
ive  bias  at  high  wind  speeds.  The  negative  bias  at  wind
speeds of 5–10 m s–1 occurs at all resolutions, with a finer res-
olution  resulting  in  a  larger  underestimation.  At  wind
speeds  higher  than  10  m  s-1,  all  model  resolutions  exhibit
the highest negative bias, at approximately –5.5 m s–1, indicat-
ing  the  inability  of  the  WRF  model  to  forecast  the  high
wind  speeds  along  the  tracks  of  the  competition  areas  in
Chongli. The relationship between the bias and wind speed
is  similar  to  that  reported  by Jiménez  and  Dudhia  (2012)
and Frediani et al. (2016) for the Yonsei University (YSU)
PBL  parameterization  scheme,  which  has  been  applied  in
this study. In their study, it was argued that the high negat-
ive bias related to high wind speeds occurs due to the higher
drag,  which  is  described  by  the  drag  expression  in  the
Monin-Obukhov similarity theory.

The  random  error  component  measured  by  CRMSE
also exhibits an increase with increasing wind speed (Fig. 4b)
for  the  WRF  raw  forecast.  At  wind  speeds  below  5  m  s–1

and at  a moderate wind speeds of 5–10 m s–1,  the increase
in horizontal  resolution from the kilometer to subkilometer
scale  results  in  a  decrease  in  CRMSE.  However,  at  high
wind speeds, i.e.,  higher than 10 m s-1,  this decrease is not
evident. The observed COR trend at each wind speed range
is similar to that depicted in Fig. 2, which shows that COR
does not change much with increasing horizontal resolution.
Moreover,  at  each  wind  speed  range,  COR  further
decreases, with the moderate wind speed range attaining the
smallest COR value.

These analyses indicate that increasing the horizontal res-
olution  may  generate  better  forecasts  at  low  wind  speeds,
but at high wind speeds, retrogression may occur.

Figure  4 reveals  that  the  postprocessing  method  plays
an  important  role  in  reducing  both  (positive  or  negative)
BIAS and CRMSE and improving COR, especially at high

wind  speeds.  To  reduce  the  high  negative  bias  at  wind
speeds  exceeding  5  m s–1,  the  DA method  performs  better
than the AN method. At wind speeds higher than 10 m s–1,
the DA method can reduce the negative bias by approxim-
ately 65%. The AN method yields better performance in redu-
cing  the  random errors  at  both  high  and  low  wind  speeds.
However,  it  seems  that  the  postprocessing  method  is  not
able to improve COR at wind speeds higher than 10 m s–1,
with  the  COR values  of  the  AN method even smaller  than
those of the raw forecasts. 

3.2.    Spatial analysis

Np

In this subsection, we analyze how BIAS, CRMSE, and
COR behave according to terrain variability. These paramet-
ers  are  computed with  all  available  pairs  of  the  predic-
tions and observations of the 10-m wind speed at each sta-
tion (Np = forecast time × times). The relation between the ter-
rain  and  10-m  wind  speed  forecast  BIAS,  CRMSE,  and
COR at each of the different resolutions at the RT and NRT
stations  is  shown  in Fig.  5.  In Fig.  5,  the  stations  are
arranged  according  to  their  actual  terrain  from  lowest  to
highest elevation, with the 4.05-, 1.35-, and 0.45-km model
terrain  elevations  of  the  corresponding  observation  sites
also  shown  to  examine  the  terrain  bias  in  each  of  the
domains.

By  comparing Figs.  5a, c,  and e to Figs.  5b, d,  and f,
the elevation of the RT stations ranges from 1625 to 2100 m,
and  most  of  the  NRT  stations  are  lower  than  the  RT  sta-
tions, corresponding to Fig. 2a. Generally, the 0.45-km-grid
model  terrain  (the  green  solid  line)  matches  the  actual  ter-
rain (the black solid line) the best, followed by the 1.35-km
grid  (the  red  solid  line)  and  4.05-km  grid  (the  green  solid
line).  However,  the  terrain  biases  at  the  RT  and  NRT  sta-
tions are quite different. At the RT stations, the model exhib-
its  great  limitations  in  resolving  the  terrain  fluctuations  in
the competition areas in Chongli. Compared to the smoothly
changing  actual  terrain  from  the  lower  RT  stations  to  the
higher RT stations (the black solid line in Figs. 5a, c, and e),
the  model  terrain  elevation  fluctuations  in  each  of  the
domains  are  notable  (the  colored  solid  lines  in Figs.  5a, c,
and e). However, at the NRT stations, the trend of the actual
terrain  elevation  is  successfully  resolved  by  the  0.45-km
grid and mostly represented by the 4.05- and 1.35-km grids,
although a higher bias occurs in the coarser grids.

Although many factors can induce a bias in the near-sur-
face wind speed forecasts, the mismatch between the actual
and model terrains is always an important factor. As indic-
ated  by Jiménez  and  Dudhia  (2012),  an  unresolved  topo-
graphy  produces  an  additional  drag,  which  is  a  possible
reason  for  the  frequent  overestimation  of  the  near-surface
wind speed by the WRF model. Vionnet et al. (2015) indic-
ated that the details of complex terrains may notably influ-
ence near-surface wind speed forecasts, such as wind decelera-
tion in sheltered areas or wind increase due to the presence
of crests and mountains (Raderschall et al., 2008).

In Figs.  5a–b,  the  BIAS  change  trend  with  the  terrain
elevation is not very evident, but the model tends to have a
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Fig. 4. (a) BIAS, (b) CRMSE and (c) COR of the raw WRF forecasts and the forecasts obtained with the DA
and AN methods at the different wind speed intensities for the various model domains.
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lower bias at low altitudes (the NRT stations) than at high alti-
tudes  (the  RT  stations).  At  most  NRT  stations,  the  model
exhibits  an  overestimation  of  the  near-surface  wind  speed.
Underestimation occurs at some of the NRT stations with a
terrain elevation higher than 1600 m. At the RT stations, over-
estimation also occurs at low altitudes, but a very large under-

estimation is observed at the RT stations above 1700 m. The
CRMSE  positive  trend  with  increasing  terrain  elevation  is
more evident, as shown in Figs. 5c–d, and larger CRMSE val-
ues are observed at the RT stations. Compared to BIAS and
CRMSE, the fluctuations in COR with increasing station elev-
ation are much larger, ranging from 0.2 to 0.6 at the RT sta-

 

 

Fig. 5. Change in (a, b) BIAS, (c, d) CRMSE and (e, f) COR at the RT and NRT stations (x-axis), which are
arranged  from  the  lowest  to  highest  elevation  according  to  the  actual  terrain  elevation.  The  blue  color
indicates the 4.05-km grid, the red color indicates the 1.35-km grid and the green color indicates the 0.45-km
grid.  The  solid  lines  are  the  station  elevations  with  the  actual  terrain  elevation  in  black.  The  dashed  lines
indicate BIAS, CRMSE and COR.

854 NEAR-SURFACE WIND SPEED FORECAST VOLUME 38

 

  



tions and from 0.1 to 0.68 at the NRT stations.
Generally, increasing the horizontal resolution from the

kilometer  to  subkilometer  scale  results  in  lower  BIAS  and
CRMSE values (Figs. 5a–d), with the exception of the high-
altitude RT and NRT stations. At these stations, a higher (pos-
itive  or  negative)  BIAS  is  observed  at  the  finer  resolution
(in  the  0.45-km  grid).  This  is  different  from  the  results  of
Duan et  al.  (2018),  in  which resolution refinement  reduces
the  wind  speed  forecast  error,  or  of Vionnet  et  al.  (2015),
where the underestimation is reduced at the finer resolution
due to its  ability  to capture a  crest.  The underestimation at
the high altitudes in the coarser domains is likely due to the
negative terrain bias (the solid lines in Fig. 5),  namely, the
model is unable to discriminate the details of the high peaks
of the terrain (Vionnet et al., 2015). However, a better resolu-
tion of terrain details may produce more drag in the PBL para-
meterization scheme and thus result in a larger underestima-

tion in the finer domain (the 0.45-km grid) (Jiménez and Dud-
hia,  2012).  These  uncertainties  make  it  difficult  to  accur-
ately  forecast  the  near-surface  wind  speeds  in  Chongli
under such complex terrain conditions.

The performance of the two postprocessing methods in
calibrating  the  10-m  wind  speed  forecasts  at  the  RT  and
NRT  stations  is  shown  in Figs.  6 and 7,  respectively.  As
shown  in Figs.  6a–c and 7a–c,  both  methods  can  success-
fully reduce the notable bias in the raw WRF forecasts. The
various postprocessing methods result in lower spatial variab-
ilities than that of the raw WRF forecasts. In particular, the
high negative bias at the high-altitude RT stations is also evid-
ently reduced. The highest bias of –4.5 m s–1 at the highest sta-
tion  (2100  m, Figs.  6a–c)  is  successfully  reduced  to
–0.5–0.5 m s–1. This result is similar to the global analysis res-
ults in the above subsection.

On  reducing  the  random errors  measured  by  CRMSE,

 

 

Fig. 6. Change in BIAS, CRMSE, and COR of the raw model forecasts (blue solid lines) and the forecasts obtained with the
DA (red dashed lines) and AN (green dashed lines) methods of the 10-m wind speed at the RT stations (x-axis), which are
arranged from the lowest to highest elevation according to the actual terrain elevation: (a, d, g) 4.05-km grid; (b, e, h) 1.35-
km grid; and (c, f, i) 0.45-km grid. The black solid lines are the actual terrain elevations.
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the  DA  method  is  almost  unable  to  reduce  the  random
errors, as the red lines nearly coincide with the blue lines in
Figs. 6d–f and 7d–f. Nevertheless, the AN method exhibits
a clear potential for CRMSE reduction. In addition, the AN
method also performs better in improving COR (Figs. 6g–i).
However, it seems that the COR improvement at the RT sta-
tions is not as large as that at the NRT stations (Figs. 7g–i). 

3.3.    Diurnal variations in the errors

The  diurnal  cycle  is  a  basic  characteristic  of  the  sur-
face  variables  in  the  PBL  due  to  the  influence  of  surface
heat and momentum fluxes. The accurate simulation of the
diurnal  variations  in  near-surface  variables  is  one  of  the
most  difficult  tasks  in  NWP models.  Although  the  various
PBL parameterization schemes can basically  reproduce the
diurnal  variations  in  the  surface  wind  speed,  the  resulting
errors  are  often  large. Zhang  et  al.  (2004) found  that  PBL
parameterization schemes tend to underestimate the surface
wind  speed  during  the  day  and  overestimate  it  at  night.
However,  with the presence of  nocturnal  jets,  positive bias

errors of 10-m wind speed forecasts were observed in the ana-
lysis of Zhang et al.  (2013). In our evaluations, the diurnal
variations  in  both  the  systematic  (BIAS)  and  random
(CRMSE) errors of the WRF raw 10-m wind speed forecast
are significant.

Figures 8 and 9 show the temporal variations in BIAS,
CRMSE,  and  COR  at  the  different  horizontal  resolutions
and for the various forecast methods at the RT and NRT sta-
tions.  Here,  BIAS,  CRMSE,  and  COR  are  computed  with
all available observations and predictions across all the sta-
tions  and  times  at  a  given  forecast  time  (Np =  stations  ×
times). As shown in Figs. 8a–c and 9a–c, the bias of the raw
model forecasts exhibits a distinct diurnal cycle at both the
RT and NRT stations. In the 4.05-km domain (Figs. 8a and
9a), the bias exhibits a trough after sunrise in the early morn-
ing,  followed  by  a  ridge  in  the  afternoon  before  sunset,  a
small trough during sunset and a wide ridge throughout the
night over one cycle in the first 24 hours of the forecast, and
a similar cycle is observed over the next 24–48 hours of the
forecast.  Corresponding  to  this  diurnal  pattern,  the  WRF

 

 

Fig. 7. Same as Fig. 6 except for the NRT stations (x-axis).
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model tends to strongly underestimate the 10-m wind speed
in the early morning, which is then greatly overestimated in
the  afternoon,  and  the  notable  overestimation  persists
throughout the night until sunrise at the RT stations (Fig. 8a).
At  the  NRT  stations,  systematic  overestimations  are
observed throughout the diurnal cycle (Fig. 9a). In particu-
lar, over one cycle, a minimum bias occurs at the NRT sta-
tions  in  the  early  morning,  but  this  situation  does  not  last
long in the finer domains. In the 1.35- and 0.45-km domains
(Figs. 8b–c and 9b–c), the diurnal pattern is slightly differ-
ent from that in the 4.05-km domain with the absence of the
small-amplitude ridge and trough at sunset. In addition, it is
observed  that  the  whole  cycle  moves  from  a  positive  bias
toward  a  negative  bias  with  increasing  model  resolution.

This results in a persistent decrease in the positive bias dur-
ing the  nighttime and an  increase  in  the  negative  bias  dur-
ing the daytime. In particular, with increasing model resolu-
tion, the model performance improves at night but deterior-
ates during the day. This phenomenon occurs at both the RT
and NRT stations, and the daytime negative bias at the RT sta-
tions is higher than that at the NRT stations (Figs. 8b–c and
9b–c). The finding whereby large underestimation occurs in
the daytime surface wind speed forecasts at the RT stations
in the finer-resolution domains is critical as most races only
occur during the day.

In Figs. 8a–c and 9a–c, both methods greatly reduce the
bias of  the raw forecasts,  with the diurnal  variations in the
bias notably decreasing after calibration. At the RT stations,

 

 

Fig.  8.  Diurnal  variations  in  BIAS,  CRMSE,  and  COR at  the  different  horizontal  resolutions  and  for  the  various  forecast
methods at the RT stations. The x-axis is forecast hours. The blue solid line indicates the WRF raw forecast, the red dashed
line indicates the DA method and the green dashed line indicates the AN method. The gray shaded areas indicate nighttime
data, while the white areas indicate daytime data. This figure applies to sunrise and sunset in Chongli in January.
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the AN method outperforms the DA method in reducing the
daytime negative bias to nearly zero (Figs. 8a–c), but its per-
formance during the nighttime is not as good as that during
the  daytime.  In  the  1.35-  and  0.45-km  domains,  the  DA
method  attains  better  performance  in  reducing  the  night-
time positive bias. At the NRT stations, the performance of
the  AN  method  is  not  as  good  as  that  at  the  RT  stations,
where an evident negative bias is observed (Figs. 9a–c). The
DA method performs better than the AN method either dur-
ing the daytime or the nighttime.

Similar to BIAS, CRMSE of the raw WRF forecast also
exhibits  notable  diurnal  variations  with  high  CRMSE  val-
ues occurring in the daytime and low CRMSE values occur-
ring  in  the  nighttime  (Figs.  8d–f and 9d–f).  The  first
CRMSE peak is observed in the daytime approximately 6 h
after  sunrise,  which  then  rapidly  decreases  until  sunset.
Right  after  sunset,  CRMSE  begins  to  increase  again  and

exhibits  a  second  peak  at  midnight  or  it  remains  constant
throughout the night. Despite the similar pattern, CRMSE at
the RT stations is much larger than that at the NRT stations,
further  reflecting  the  poor  predictive  skill  of  the  WRF
model  in  predicting  the  surface  wind  speed  at  the  RT  sta-
tions,  especially  during  the  daytime.  With  increasing  hori-
zontal model resolution, CRMSE during the daytime clearly
decreases,  but  CRMSE  does  not  change  much  during  the
nighttime for the raw WRF forecasts. CRMSE during the day-
time  decreases  from  approximately  3.6  to  2.8  m  s–1 at  the
RT stations (Figs. 8d–f) and decreases from 2.6 to 2.0 m s–1

at the NRT stations (Figs. 9d–f) with the horizontal resolu-
tion  increasing  from  4.05  to  0.45  km.  However,  at  night,
there is little change.

Similar to the previous results, the random errors repres-
ented  by  CRMSE  can  be  effectively  reduced  by  the  AN
method,  with  the  diurnal  variations  in  CRMSE  fluctuating

 

 

Fig. 9. Same as Fig. 8, except for the NRT stations.
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less  than  those  in  the  raw  forecasts.  At  the  RT  stations,
CRMSE  of  the  AN  method  even  exhibits  a  trough  during
the daytime, and the daytime CRMSE decreases to approxim-
ately 1.4 m s–1 (Figs. 8d–f).

The diurnal variations in COR of the raw forecasts are
slightly  different  from  those  in  BIAS  and  CRMSE,  which
reveals the highest correlation at sunset and the lowest correla-
tion at sunrise. COR at the RT stations (Figs. 8g–i) is much
smaller than that at the NRT stations (Figs. 9g–i). However,
it is clear that the postprocessing methods attain a better per-
formance in improving COR at the RT stations (Figs. 8g–i).
Figures  8g–i and 9g–i show  that  the  AN  method  can
improve COR to almost 0.7, while the DA method yields a
lower COR value. 

4.    Conclusions

The  ability  of  the  WRF  model  to  generate  accurate
near-surface  wind  speed  forecasts  for  the  2022  Winter
Olympic and Paralympic Games in Chongli is evaluated in
this  study.  Two postprocessing methods,  including the  DA
and AN methods, are applied to calibrate the raw model fore-
casts  of  the  near-surface  wind  speed  to  improve  the  fore-
cast  accuracy.  As  one  of  the  host  locations  of  the  Winter
Olympic  Games,  accurate  forecasts  of  near-surface  vari-
ables in Chongli  are of great importance for the success of
these games. However, the very complex terrain in Chongli
results in large uncertainties in near-surface wind speed fore-
casts. To acquire a better model performance, these uncertain-
ties need to be understood in advance, in addition to the effect-
iveness  of  various  postprocessing  methods  in  improving
raw model forecasts.

Several questions, as described in the Introduction sec-
tion,  are  addressed,  and  they  are  mostly  answered  through
this  study.  A  global  evaluation  across  all  the  stations  and
times showed that increasing the horizontal resolution could
improve  the  model’s  10-m  wind  speed  forecasts  by  redu-
cing both BIAS and CRMSE, especially at the RT stations.
However,  a  more  detailed  analysis  considering  the  wind
speed intensity, the spatial variability, and the diurnal cycle
revealed  several  problems  at  the  RT  stations,  particularly
those at altitudes higher than 1700 m. In terms of the 10-m
wind speed forecasts at wind speeds higher than 5 m s–1, the
WRF  model  exhibits  a  high  negative  bias,  which  even
increases when the horizontal resolution is refined from the
kilometer  to  subkilometer  scale.  Although the  finer-resolu-
tion domain contains a much better description of the actual
terrain, at certain high-altitude RT locations, a high positive
or  negative  bias  is  observed,  and  the  negative  bias  even
increases with increasing horizontal resolution. The diurnal
cycles  of  the  model  errors  in  forecasting  the  surface  wind
speed are quite evident at these RT stations, with a clear negat-
ive bias during the daytime. Moreover, the negative bias is
also  exaggerated in  the  subkilometer  domain.  The possible
reasons  for  these  problems  are  the  mismatch  between  the
actual and model terrains and misrepresentation of the near-
surface physical processes in the PBL and LSM parameteriza-

tion schemes. These uncertainties pose a great challenge to
the  near-surface  wind  speed  forecasting  in  the  competition
areas in Chongli.

An evaluation of the use of the various postprocessing
methods  to  calibrate  the  near-surface  wind  speed  forecasts
indicates  that  these  methods  improve  the  prediction  accur-
acy of the near-surface wind forecasts and partly resolve the
above  problems.  Both  tested  methods  clearly  reduce  the
bias,  and  the  AN  method  is  better  able  to  reduce  the  ran-
dom errors represented by CRMSE. In addition, the notable
bias at high wind speeds and the forecast accuracy issues at
the high-altitude stations and during the daytime are also not-
ably reduced. These results indicate the necessity of apply-
ing postprocessing methods.
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