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ABSTRACT

Freshwater  is  recharged  mainly  by  rainfall  and  stored  inland  for  a  period  of  time,  which  is  directly  affected  by  its
storage  capability.  The  storage  capability  of  river  basins  has  different  spatiotemporal  features  that  are  important  for  the
predictability of freshwater resources. However, the estimation of freshwater storage capability (FSC) remains a challenge
due to the lack of observations and quantification indices.  Here,  we use a metric that characterizes hydrological “inertia”
after rainfalls to analyze FSC over the 194 largest global major river basins based on satellite observations from the Gravity
Recovery and Climate Experiment (GRACE) and simulations from the Community Land Model version 5 (CLM5). During
2003–16, the global land was observed to retain 28% of precipitation after one month based on GRACE observations, and
the simulation depicts that the retained proportions decrease from 42% after one day to 26% after one month, with smaller
FSC  partly  attributed  to  wetter  conditions  and  higher  vegetation  densities.  The  root  zone  contributes  about  40%  to  the
global  land  FSC  on  daily  to  monthly  time  scales.  As  the  time  scale  increases,  the  contribution  from  the  surface  soil
decreases from 26% to 14%, while the contribution from the deep soil increases from 4% to 10%. Snow contributes over
20% of land FSC, especially over high latitudes. With six decades of CLM5 long-term simulations, it is revealed that the
change  of  FSC  in  most  basins  is  related  to  internal  climate  variability.  The  FSC  of  river  basins  which  displays  the
proportion of precipitation retained on land is worthy of further attention regarding the predictability of water resources.
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Article Highlights:

•  The global land surface can retain 28% of precipitation after one month on average.
•  The root zone contributes to about 40% of the global land FSC from daily to monthly time scales.
•  The change of freshwater storage capability in most basins is related to the major modes of decadal climate variability.

 

 
 

 

1.    Introduction

Freshwater  is  widely  viewed  as  a  fundamental  natural
resource, yet it is threatened by human activities (Meybeck,
2003). Over the last 50 years, water consumption has tripled
due  to  global  warming,  population  increase,  and  urbaniza-
tion  (Carbon  Disclosure  Project,  2010).  Currently,  nearly
80% of the global population and 65% of continents suffer
from water scarcity (Vörösmarty et al.,  2010). Water stress

has  become  an  inevitable  obstacle  to  sustainable  develop-
ment,  and freshwater security has been listed as one of the
grand challenges  in  the  coming decades  by  the  World  Cli-
mate Research Programme (Trenberth and Asrar, 2014). Ter-
restrial  water  storage  (TWS)  is  the  most  ubiquitous  source
for  high-quality  freshwater  which  not  only  supports  food
and livestock production but also influences various aspects
of  the  natural  environment,  such  as  affecting  sea  level
(Pokhrel et al., 2012) and the rotation of the Earth (Kuehne
and Wilson, 1991).

The TWS can be divided into surface water, soil water,
snow,  and  groundwater.  Recently,  due  to  the  vital  impacts
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of  water  on  sustaining  human  society  and  ecosystems,  its
changes  over  land  (e.g.,  streamflow  and  TWS)  have  been
extensively  investigated.  For  instance,  the  Yellow  River
streamflow displays a persistent decline, and climate factors
can explain about 65% of the trend (Piao et al.,  2010). For
TWS, similar declining trends have been observed in south-
ern  and  eastern  Europe  (Stahl  et  al.,  2010),  northwestern
North America, and the Gulf of Mexico (Kalra et al., 2008).
In contrast, a slight increase in streamflow is found over the
Yangtze  River  (Piao  et  al.,  2010)  and  the  Amazon  River
(Scanlon et al., 2018). In the future, the river discharge is pro-
jected  to  increase  over  high  northern  latitudes,  India,  and
Africa,  and  is  expected  to  decrease  in  the  Mediterranean
region,  Australia,  and  parts  of  North  and  South  America
under a  high greenhouse gas emission scenario (Schewe et
al.,  2014).  However,  the ability of the global land to retain
freshwater, which directly influences the freshwater fluxes,
receives less  attention due to the lack of  appropriate meth-
ods and global-scale observations.

McColl  et  al.  (2017) introduced  a  new  metric  called,
stored  precipitation  fraction,  to  quantify  the  ability  of  sur-
face soil to retain a positive freshwater anomaly after hours
to  days  during  2016,  based  on  soil  moisture  observations
from  NASA’s  Soil  Moisture  Active  Passive  (SMAP)  mis-
sion. It can be viewed as a measure of surface soil memory.
They found that  surface soils  (depth of  0–5 cm) accounted
for  less  than  0.001%  of  the  global  freshwater  storage,  but
retained  14% of  precipitation  after  three  days  and that  this
fraction  decreases  rapidly  as  time  increases.  Hence,  for
longer prediction,  deeper soil  moisture and other terrestrial
water  components  should  be  considered  as  indicators  of
TWS.  Land-atmosphere  coupled  modeling  experiments
have  shown  land  surface  conditions,  including  snow  mass
and deeper soil, are crucial sources of predictability on sea-
sonal  timescales  (Koster  et  al.,  2011).  The  TWS involving
various  kinds  of  water  can  be  applied  to  improve  seasonal
fire forecasts (Chen et al.,  2013), and the memory of TWS
can  provide  additional  information  for  long-term  hydrolo-
gical  prediction  (Yuan  and  Zhu,  2018; Zhu  et  al.,  2019).
Therefore, the storage capability of the land and its compon-
ents,  such as deeper soil  layers,  snow, river,  lake, and can-
opy  need  further  investigation,  especially  on  longer  time
scales. Here, we modify the method proposed by McColl et
al.  (2017) to  quantify  the  freshwater  storage  capability
(FSC) for land and various TWS components and provide fur-
ther  analysis  regarding  the  land  surface  storage  capability
and its  hydrological  dynamics  at  different  time scales  over
global major river basins.

The FSC is  jointly controlled by complex factors such
as  land  cover,  precipitation,  and  potential  evapotranspira-
tion  (PET).  Investigating the  spatiotemporal  distribution of
FSC provides implications for the global water balance in a
changing climate.  Based on the Gravity  Recovery and Cli-
mate Experiment (GRACE) satellites  (Tapley et  al.,  2004),
large-scale terrestrial water storage change (TWSC) can be
measured  efficiently  (Scanlon  et  al.,  2012).  In  addition,

TWSC can also be reasonably simulated by advanced land
surface models (LSMs) (Lawrence et al., 2019). The space-
borne  observations  and  state-of-the-art  LSMs  provide  an
opportunity to revisit the FSC of global land.

Considering  that  GRACE satellites  only  provide  TWS
anomaly  (TWSA)  observations  on  monthly  time  scale,  we
use GRACE TWSA and global precipitation observations to
quantify  the  monthly  FSC  of  the  land  (including  storage
within surface water bodies, soil, snow, and aquifers). Then,
a  state-of-the-art  community  land  model  (CLM5)
(Lawrence et al., 2019) was applied to provide finer simula-
tion  for  further  analysis  regarding  the  FSC  features  for
TWS,  snow,  and  different  soil  layers  across  multiple  time
scales. Lastly, the study investigates the decadal variability
of  FSC by  connecting  it  with  major  modes  of  internal  cli-
mate variability. 

2.    Data and methods

In an effort to reduce uncertainty, we apply three global
precipitation datasets. These include products sourced from
the  Global  Precipitation  Climatology  Centre  (GPCC)  (Udo
et  al.,  2011),  the  Climatic  Research  Unit-National  Centers
for Environmental  Prediction (CRU-NCEP) (Viovy, 2018),
and  the  Precipitation  Reconstruction  over  Land  (PREC)
(Chen  et  al.,  2002).  In  addition,  we  use  the  PET  dataset
provided  by  the  Global  Land  Evaporation  Amsterdam
Model (GLEAM), which maximizes the recovery of evapora-
tion  information  contained  in  current  satellite  observations
(Miralles  et  al.,  2011; Martens  et  al.,  2017),  and  the  leaf
area index (LAI) dataset which is based on Global Land Sur-
face  Satellite  (GLASS)  (Xiao  et  al.,  2016)  from  2001  to
2014.

The mean of GRACE mascon products provided by the
Jet Propulsion Laboratory (JPL) (Swenson and Wahr, 2006;
Landerer and Swenson, 2012; Swenson, 2012; Wiese et al.,
2016), Center for Space Research (CSR) (Save et al., 2016),
and  German  Research  Centre  For  Geosciences  (GFZ)
(Dahle et al., 2012) is viewed as the global TWSA observa-
tion, which spans 14 years from 2003 to 2016. Furthermore,
the  SMAP  soil  moisture  from  2015  to  2016  (Entekhabi  et
al., 2010) is used to validate the model simulation. Besides
that, the CLM5 is applied to provide credible, long-term simu-
lations of  the TWS and its  components,  further  noting that
good model performance has been shown in previous stud-
ies  (Niu  et  al.,  2007; Xia  et  al.,  2017).  In  this  model,  the
TWS involves soil  moisture,  canopy water,  snow, and sur-
face  water  for  rivers,  lakes,  and  wetlands.  It  resolves  the
water and energy balance from the ground surface down to
8.6  m  by  dividing  it  into  20  hydrologically  active  layers
(Lawrence et al.,  2019). Compared with the previous mod-
els (i.e., CLM4 and CLM4.5), the CLM5 increased the ver-
tical  resolution  of  the  soil  layer,  especially  within  the  top
3  m,  and  removed  unconfined  aquifers  (Lawrence  et  al.,
2019). Meanwhile, the model is updated to account for spa-
tial variations in soil thickness from a spatially explicit bed-
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rock  dataset  (Brunke  et  al.,  2016; Pelletier  et  al.,  2016).
When soil is below the bedrock, the soil moisture is close to
or  equal  to  zero.  In  this  study,  we used the biogeophysical
part  of  CLM5,  noting  that  the  carbon-nitrogen  processes
were switched off. Two continuous centurial cycles (i.e., the
first cycle ending acts as the initial condition of the second
cycle) of CLM5 simulation, with a spatial resolution of one-
degree,  are  carried  out  during  1901–2016  and  were  driven
by  the  CRUNCEP  observed  meteorological  forcing  data-
sets (Piao et al., 2012). The last 66-year simulations during
1951–2016  in  the  second  cycle  are  analyzed  and  the  first
166-year  simulations  are  regarded  as  land  surface  model
spin-up, noting that the aquifer model needs a long time to
reach the equilibrium (Yang et al., 1995).

To quantify  the  ability  of  the  land  to  store  freshwater,
we use a newly proposed metric called stored precipitation
fraction  (McColl  et  al.,  2017).  The  FSC(t)  represents  the
increasing water in land normalized by precipitation as fol-
lows, 

FSC(t) =

T/t∑
i=1

∆Vi+

T/t∑
i=1

Pi

, (1)

where 

∆Vi+ =

{
∆Vi, if ∆TWSi > 0
0, otherwise

, (2)

Pi ∆Vi

∆Vi+

∆TWSi

∆TWSi

where  is the sum of precipitation in the ith time step, 
stands for  the  change of  water  for  different  components  of
TWS (or the change of TWS) in the ith time step,  repres-
ents  the  increase  of  water  for  TWS  components  (or  the
increase of TWS) at given time step,  is the change
of TWS in the ith time step, t is the analysis time step (from
one  day  to  one  month  in  this  study),  and T represents  the
total time span (e.g., 2003–16). Considering that the change
of  soil  moisture  affects  infiltration  and  capillarity,  we
choose  as the only threshold to study the contribu-
tions  of  different  TWS  components  to  the  total  FSC.
Because  the  GRACE  data  only  provides  monthly  TWSA,
the central difference method is applied to calculate the aver-
age change in TWS from one month to the other (Zhang et
al., 2018), 

∆Vi =
(Vi+1−Vi)+ (Vi−Vi−1)

2

′
, (3)

Viwhere  is  the  volume  of  the ith  TWS  observation.  For
CLM5 simulation, we use the TWS value on the last day of
the  prescribed  time  step  minus  the  one  on  the  first  day  of
the  time  step  to  get  the  TWSC.  Note  that McColl  et  al.
(2017) used  this  precipitation  fraction  to  analyze  the  sur-
face soil moisture response to precipitation at three-day time
scale, while here we use it to quantify the FSC for TWS and
soil at different depths from daily to monthly time scales.

In the water balance equation [d(TWSA)/dt = P – ET –
R, where P is precipitation, ET is evapotranspiration, and R
is runoff] the impact of runoff, including lateral flow, on the
increase  of  TWS  cannot  be  ignored  especially  for  longer
time scales and deeper soil at a given point. However, the pre-
cipitation  is  the  only  input  for  a  river  basin  that  normally
retains water and allows no outflow to other basins (Fig. 1),
and the positive change of TWS stands for the volume of pre-
cipitation that is retained in a basin. Hence, this study ana-
lyzes  the  FSC of  land and soil  columns at  different  depths
over  global  major  river  basins  (Yuan  et  al.,  2015)  rather
than  grids.  The  selected  194  river  basins,  based  on  the
Global  Energy  and  Water  EXchanges  (GEWEX)  project,
cover most of the land surface representing a broad range of
climate  and  land  cover  conditions.  In  this  regard,  the  FSC
describes the proportion of precipitation falling on land that
can  be  retained  in  the  basin  after  a  given  time,  which  is
closely linked with water security.

The impacts of the uncertainty of the observations (e.g.,
TWS and precipitation) are nontrivial. To estimate the influ-
ences  of  uncertainty  in  precipitation  datasets,  we  calculate
the  standard  deviations  of  three  groups  of  FSC  based  on
mean values of TWSA from different centers and the three
precipitation datasets,  respectively.  Conversely,  to  estimate
the  influence  of  GRACE  uncertainty,  the  standard  devi-
ations of three groups of FSC based on the mean precipita-
tion and TWSA from different centers are calculated.

Lastly,  to  investigate  the  decadal  variability  of  total
land water-based FSC, 57 groups of 10-years of CLM5 simu-
lation  (i.e.,  1951–60,  1952–61,  1953–62,  …)  are  used  to
estimate  FSC,  respectively.  We also  calculate  the  anomaly
correlation coefficient (ACC) between the decadal FSC and

 

Fig.  1.  A  schematic  diagram  of  water  exchange  between
different soil columns. TWS includes all the forms of storage,
such as river, lake, canopy water, snow, ice, soil moisture, and
groundwater.
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the  climate  indices  (i.e.,  PDO,  IPO,  and  AMO).  The
monthly  climate  indices  are  obtained  at https://www.esrl.
noaa.gov/psd/data/climateindices/list,  and  they  are  aggreg-
ated into 10-year running mean values. In this study, the signi-
ficances of ACC are determined by the student’s T-test. 

3.    Results

Figure  2 shows  the  FSC  based  on  the  average  of
GRACE  TWS  from  different  centers  (i.e.,  CSR,  JPL,  and
GFZ) and the average of precipitation datasets (i.e., GPCC,
CRU-NCEP,  and  PREC).  The  weighted  average  of  FSC
across the global basins is 0.28, which means that 28% of pre-
cipitation  can  be  retained  by  the  land  after  one  month.
However,  the  distribution  of  FSC  is  spatially  uneven  over
the globe. Generally, the lower FSC is mainly located in mon-
soonal  regions,  including  southern  and  northeastern  China,
eastern  North  America,  and  parts  of  South  America  and
Africa while FSC is large in arid basins, such as the Middle-
East, parts of Africa, and the west coast of America. The lar-
ger value is  indicative of a greater  ability to retain a posit-
ive anomaly for a river basin, noting that a reliable estimate
of FSC relies on the accuracy of observation. Regional differ-
ences do exist among different precipitation and TWSA data-
sets. Therefore, we show the standard deviation of FSC that
is due to the uncertainty of TWS and precipitation (Fig. 3a–
b). We can see that larger standard deviations are mainly loc-
ated  over  the  arid  or  semi-arid  regions,  such  as  high-latit-
udes of the Northern Hemisphere, the middle of Asia, parts
of the Sahara, and the Arabian Peninsula (Fig. 3a), where a
small observation error would exert a great influence on the
estimates  of  FSC.  Similarly,  the  influence  of  precipitation
uncertainty  is  nontrivial  over  arid  regions  (Fig.  3b).
However,  the  impact  of  precipitation  uncertainty  is  relat-
ively small, except in the Amazon, Congo, Middle East and
high  latitudes  (Fig.  3c),  where  the  in-situ  observations  are
insufficient.

To  explore  factors  that  influence  the  FSC,  we  analyze
the distributions of the observed FSC which are conditional
on the magnitude of the aridity index and LAI (Fig. 4). Previ-
ous works (McColl et al.,  2017) found that the surface soil
FSC  is  smaller  in  wet  regions  due  to  the  significant
increases  in  drainage  which  occurs  when  soil  moisture
increases.  Here,  we arrive at  a similar conclusion that total
land  water-based  FSC  significantly  increases  with  the
increase of aridity (r = 0.92, p < 0.05) (Fig. 4a). Meanwhile,
the impact of LAI on total land water-based FSC is signific-
ant  and should  be  considered as  well.  It  is  found that  FSC
decreases  with  increasing  LAI,  which  means  that  a  greater
LAI  reduces  the  ability  for  land  to  retain  water  due  to  lar-
ger  evapotranspiration.  The  correlation  between  them  is
−0.36 (p < 0.05) (Fig.4b).

Due to the availability of GRACE, the simulation with
CLM5 is a good choice to analyze FSC for land and its differ-
ent  components,  such as  soil  at  different  depths  and snow,
at  finer  temporal  resolution.  Following Yuan  and  Zhu
(2018), we utilize the CRU-NCEP dataset, in which precipita-
tion  is  consistent  with  CRU  at  monthly  time  scale,  as  the
atmospheric forcing for running the CLM5 simulation.  We
compared the seasonal TWSC from the GRACE and CLM5
simulations  spanning  the  period  from  2003  to  2016.  The
CLM5  simulation  presents  reasonable  distributions  of  sea-
sonal TWSC over the major global river basins (Fig. 5), and
the ACCs between them are 0.66 (MAM), 0.92 (JJA), 0.77
(SON),  and  0.85  (DJF)  (p <  0.05),  respectively.  Addition-
ally,  compared  to  the  SMAP  observation  from  2015  to
2016,  the  CLM5  can  simulate  the  climatological  distribu-
tion of surface soil moisture (5 cm) reasonably well except
over high-latitude and rainforest regions where both simula-
tions and observations may have large uncertainties (Fig. 6).
The ACC over 194 basins between the SMAP observations
and CLM5 simulation is 0.69 (p < 0.01). Therefore, CLM5-
simulated TWS and soil moisture are used for the FSC ana-
lysis in this study. Compared with the observation (Fig. 2),

 

 

Fig. 2. Global distribution of total land water-based freshwater storage capability (FSC). FSC
is  estimated by an average of  GRACE observed terrestrial  water  storage (TWS) from three
centers  (i.e.,  CSR,  JPL,  and  GFZ)  and  the  ensemble  means  of  precipitation  observation
datasets from GPCC, PREC, and CRUNCEP during 2003–16.
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CLM5 reasonably captures the climatology of the FSC distri-
bution of the land surface (Fig. 7a) in most river basins. The
basin  weighted  average  simulated  FSC  (0.26)  is  smaller

than  the  observation  (0.28),  and the  ACC between them is
0.45  (p <  0.05).  Moreover,  the  simulated  total  land  water-
based FSC shows obvious seasonal variations, especially at
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Fig.  3.  The  uncertainty  of  FSC  due  to  TWS  observation  (standard  deviation )  (a),
precipitation observation (standard deviation ) (b), and the ratio between the uncertainties
( / )  (c).  (a)  The  uncertainty  (standard  deviation )  of  FSC due  to  different  TWS
observations is based on mean values of different precipitation datasets (PREC, GPCC, and
CRU-NCEP)  and  GRACE  TWSA  from  different  centers  (CSR,  JPL,  and  GFZ)  during
2003–16.  (b)  The  uncertainty  (standard  deviation )  of  FSC due  to  different  precipitation
observations  is  based  on  mean  values  of  TWS  from  the  three  centers  and  different
precipitation  datasets  (PREC,  GPCC,  and  CRU-NCEP)  during  2003–16.  (c)  The  standard
deviation of FSC due to precipitation observations ( ) is divided by the standard deviation
of FSC due to TWS observations ( ).
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high-latitudes  (not  shown).  It  is  large  in  fall  (SON)  and
winter  (DJF)  (weighted  means  are  0.24  and  0.5,  respect-
ively) and small in spring (MAM) and summer (JJA) (0.10
and  0.07).  The  phenomena  are  closely  related  to  freezing
and melting processes because winter precipitation at north-
ern  latitudes  will  mostly  remain  on  land  as  snow  and  ice
until spring. However, it is noteworthy that the CLM5 simula-
tion in this study does not include the impact of human activ-
ity, such as pumping, irrigation, and land cover change that
are implicitly presented in the GRACE observation. So the
differences  between  them,  which  are  mainly  located  in
North  China  and  Central  America,  might  be  attributed  to
anthropogenic influences.

Land  surface  water  is  stored  as  various  components
including snow, surface water, canopy water, and soil mois-
ture  at  different  depths.  Therefore,  the  total  land  water-
based FSC is controlled by a series of complicated land hydro-
logical dynamic processes (e.g., internal drainage, capillary
effect). Due to the lack of large-scale and long-term observa-
tions  of  these  components,  LSMs  are  widely  used  to
provide  spatiotemporal  continuous  estimations  in  practical

applications.  Although  more  water  is  stored  in  deep  soil
(below  3  m),  the  snow  and  soil  at  the  top  3  m  play  non-
trivial  roles in the land FSC. Here,  we investigate the tem-
poral  and  spatial  characteristics  of  FSC  for  various  depths
of  soil  and  snow  based  on  the  CLM5  simulation.  To  ana-
lyze the FSC for surface and deep layer soil, we divide the
soil column into three layers including depths of 0–0.1 m (sur-
face soil), 0.1–1 m (middle soil), and 1–3 m (deep soil). It is
worth noting that the bedrock depth is less than 3 m, or even
1 m in some areas, and the soil moisture most often is equal
to 0 when the soil is below the bedrock, while the averaged
depth  in  most  basins  is  over  3  m.  Therefore,  in  this  study,
the soil moisture in the 1–3 m (0.1–1 m) column over basins
represents the total soil water from 1 m (0.1 m) to 3 m (1 m)
or bedrock. In the simulation, the global basins weighted aver-
aged FSC for them are 0.04, 0.11, and 0.03 at monthly time
scale,  respectively (Figs.  7b−7d).  Although a  large propor-
tion  of  TWS  is  stored  in  deep  soil  layers  over  most  river
basins,  the  middle  soil  column  (0.1–1  m)  contributes  to
about 40% of the land FSC, especially in arid or semi-arid
regions (Fig. 7c). In addition, the impact of snow should be
emphasized  in  high  latitudes  where  more  precipitation  is
stored  as  snow  instead  of  soil  moisture  in  the  middle  soil
layer,  which  is  closely  related  to  the  large  land  FSC  over
these  regions  (Fig.  7e).  Therefore,  besides  the  surface  soil
water  that  can  be  measured  by  microwave  remote  sensing
(McColl et al., 2017), the middle soil layer and snow should
also be considered in the FSC analysis, especially at longer
time scales.

For the global basins, using the CLM5 simulation, we cal-
culate the weighted mean FSC for land,  the three layers of
soil  columns,  and  snow from day  1  to  day  30  (Fig.  8a–b),
respectively.  In  general,  total  land  water-based  FSC  has
decreased  by  about  38%  in  30  days  (Fig.  8a).  The  results
based  on  the  CLM5  simulation  show  that  the  surface  soil
FSC rapidly decreases during the first week (Fig. 8a) due to
the  combined  effects  of  evaporation  and  internal  drainage.
The middle soil FSC also decreases from 0.16 to 0.11, but a
slight  increase  in  deep soil  FSC is  noted  from 1 day to  30
days,  due  to  the  slow  water  movement.  In  addition,  the
decreasing trend of snow FSC is small as well, which contrib-
utes more than 20% to the land FSC after three days (Fig. 8b).
Despite  the  large  decrease  of  middle  soil  FSC  across  time
scales,  this  layer  contributes  about  40% to  the  global  total
land water-based FSC at various time scales (Fig. 8b). We fur-
ther  note  that  the  contribution  by  the  surface  soil  is  non-
trivial  at  short  intervals,  but  the  storage  of  freshwater  by
snow plays a more important role than the surface soil after
five days (Fig. 8b).

With the time step increasing, the decrease of FSC can
be observed globally, especially in monsoonal regions such
as  western  America,  southern  China,  India,  and  parts  of
Africa (Fig. 9a–9o). Compared with the work of McColl et
al. (2017), the distribution of the surface soil FSC at 3 days
(Fig. 9b) is similar, with higher FSC mainly located in arid
and semiarid regions, such as parts of the Middle East, cent-

 

Fig.  4.  (a–b)  The  relationship  between  FSC  and  aridity
index/LAI  over  194  major  river  basins.  In  (a)  and  (b),  the
anomaly correlation coefficients are 0.92 and −0.36 (p < 0.05),
respectively.
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ral  Asia,  and northwestern China, where the water cycle at
the  interface  of  the  atmosphere  and  the  land  surface  over-
turns at a slower rate. For the global basins in this study, the
weighted  averaged  FSC  for  surface  soil  at  three  days  is
0.09,  which  is  smaller  than  the  value  of  0.14  found  by
McColl  et  al.  (2017),  noting  that  our  surface  column  is
thicker than the SMAP observation (5 cm). The middle soil
column contributes most to the total land water-based FSC,
especially  in  semi-arid  regions  such  as  central  Asia,  west-
ern America, and the Middle East (Figs. 9c, h, m), and the
change of  deep soil  FSC is  not  obvious.  Despite  the major
impacts  of  the  middle  soil  layer  (Fig.  8b),  the  impact  of
snow is comparable to the middle soil in some basins, espe-

cially in high latitudes (Fig. 9e), even at short time scales.
To  investigate  the  decadal  variability  of  global  FSC,

Figs.  10a–c display  the  spatial  distributions  of  the  ACC
between  climate  indexes  (i.e.,  PDO,  AMO,  and  IPO)  and
the  10-year  moving  average  of  FSC  for  land  from  1951–
2016,  based  on  a  CLM5  simulation.  The  total  land  water-
based  FSC  of  Eastern  Australia  and  parts  of  the  mid-and
high-latitudes  of  Asia  presents  a  positive  correlation  with
the  PDO,  while  the  ACCs  for  most  basins  in  Africa  and
North  America  are  negative  (Fig.  10a).  The  AMO  plays  a
major  role  in  the  Amazon  and  Sahara  where  the  FSC  is
large  when the  AMO is  positive,  while  its  impact  on  Aus-
tralia is the opposite (Fig. 10b). In addition, the spatial pat-

 

 

Fig. 5. Validation of CLM5-simulated (left) seasonal mean terrestrial water storage change (TWSC) against GRACE satellite
retrievals (right) averaged over 194 river basins during 2003–16.
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Fig.  6.  The  climatological  distribution  of  surface  soil  moisture  (5  cm)  based  on  (a)
SMAP observation and (b) CLM5 simulation from June, 2015 to December, 2016.

 

 

Fig. 7. The FSC of land (a), soil columns at different depths (b–d), and snow (e). The TWS, soil moisture at
different depths and snow are simulated by CLM5 over river basins during 2003–16.
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Fig. 8. (a) The weighted averaged FSC for land, snow, and different soil columns at various depths across
time scales for global river basins. (b) The contributions of snow and soil moisture at different depths to the
total land water-based FSC. All statistics are based on the data during 2003–16.

 

 

Fig. 9. Distribution of FSC for land, different soil columns, and snow over global river basins for 3-day (a–e), 10-day (f–j),
and 20-day (k–o) time scales based on CLM5 simulations during 2003–16.
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tern of the ACC between IPO and FSC is similar to that of
the  PDO,  except  in  the  Amazon  and  Mississippi  River
basins (Fig. 10c). 

4.    Conclusions

This study applies a state-of-the-art method to measure
FSC over global major river basins and investigates the associ-
ated  hydrological  dynamics  through  observations  and  land
model simulations. Based on the retrievals of GRACE satel-
lites  and  multisource  precipitation  observations,  the  estim-
ated land FSC on a monthly time scale is over 0.35 for 25%
of the river basins, especially in parts of the Middle East, cent-
ral Asia, and high-latitude regions. In terms of weighted aver-

age, over one-fourth of the rainfall can be retained in basins
after  one  month.  Although  the  simulated  total  land  water-
based  FSC  is  smaller  than  observations,  the  correlation
between them is significant. In addition, the climate condi-
tion and land cover exert great influences on the FSC, with
significant positive (negative) correlation between FSC and
the aridity index (LAI).

The  GRACE satellites  provide  valuable  measurements
for an integrated estimation of global FSC on monthly time
scale, and the CLM5 land model simulations can be used to
separate  the contributions of  different  TWS components  to
the FSC across multiple time scales. Although the TWS can
be divided into different components, the globally averaged
TWS changes can be mainly partitioned between the change

 

 

Fig.  10.  (a–c)  Anomaly  correlation  coefficients  between  CLM5-simulated  total  land  water-
based FSC and the climate indices (PDO, IPO, and AMO) during 1951–2016.
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of soil moisture and snow (Syed et al., 2008). Similarly, we
find that a large proportion of water is stored in the deeper
soil,  but  the  middle  soil  column  (0.1–1  m)  has  the  largest
impact on the storage capability, especially in some basins,
like  Western  Europe.  Although  the  aquifer  is  another  cru-
cial  component  of  TWS,  we  were  not  able  to  analyze  its
impacts  on  FSC  because  the  CLM5  removed  the  uncon-
fined  aquifer  module.  The  aquifer  is  recharged  mainly  by
the  water  infiltration  through  the  lower  boundary,  but  we
think the impact of aquifer on basin-scale land FSC is relat-
ively small on monthly time scale due to the long residence
times of groundwater. Nevertheless, the impacts of groundwa-
ter on longer time scales at specific regions need to be fur-
ther analyzed through appropriate observations and quantifica-
tion methods. Surface soil contributes more than 25% to the
FSC  at  short  time  scales  especially  in  arid  regions,  but  it
declines quickly over time, noting that snow gradually plays
a  more  important  role,  especially  in  high-latitude  regions.
Therefore,  middle  soil  moisture  and  snow  should  be  con-
sidered  in  the  analysis  of  the  global  FSC,  especially  at
longer time scales.

The  GRACE  data  is  able  to  represent  the  impact  of
human  activities,  but  the  CLM5  simulations  in  this  study
ignored  anthropogenic  influences.  Although  the  impact  of
human  intervention  does  not  contribute  much  to  the  total
water  storage  change  in  large  parts  of  the  world,  it  should
be significant and thus accounted for in areas where human
activities are intensive (Haddeland et al., 2014). The differ-
ence  between  FSC  based  on  observation  and  simulation
could  partly  be  attributed  to  the  influence  of  humans,  and
the issue deserves  more attention in  some specific  regions,
such  as  North  China,  India,  and  North  America.  Besides
that,  inter-basin  water  transfers  also  need  more  attention,
which is common in many countries such as China, Amer-
ica, India, and Australia (Allison and Meselhe, 2010).

Due to the long residence time, the variation in TWS con-
taining  previous  climate  information  can  affect  the  sub-
sequent  weather  and  climate  through  a  series  of  complic-
ated  land-atmosphere  feedback  processes.  Therefore,  the
memory from TWS, which can be measured with FSC, is a
non-negligible source of climate predictability (Reager and
Famiglietti, 2009). Though the memory is always viewed as
a  stationary  feature  of  TWS or  other  components,  we  find
that  the  internal  climate  variability  or  external  climate  for-
cings can alter the land memory time scale. Here, we show
the response of the FSC to decadal climate variability. Our
work represented the variability of FSC to climate indexes,
such as the PDO, AMO, and IPO. Besides the internal  cli-
mate variability, human interventions, such as land use/land
cover change, and the management of water resources (e.g.,
reservoir  regulation,  irrigation,  and  groundwater  exploita-
tion),  are  also  critical  factors  directly  affecting  regional  or
local  FSC,  where  the  analysis  of  LAI  provides  a  good
example. The capability to comprehend such anthropogenic
pathways  would  in  turn  influence  many  aspects  of  hydro-
logy and agriculture such as the water cycle, crop yield, and
so on. Therefore, separating the influence of human activit-

ies  on  the  changes  in  FSC  is  worthy  of  comprehensive
research.
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