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ABSTRACT

In  the  study  of  diagnosing  climate  simulations  and  understanding  the  dynamics  of  precipitation  extremes,  it  is  an
essential  step  to  adopt  a  simple  model  to  relate  water  vapor  condensation  and  precipitation,  which  occur  at  cloud-
microphysical  and  convective  scales,  to  large-scale  variables.  Several  simple  models  have  been  proposed;  however,
improvement  is  still  needed  in  both  their  accuracy  and/or  the  physical  basis.  Here,  we  propose  a  two-plume  convective
model  that  takes  into  account  the  subgrid  inhomogeneity  of  precipitation  extremes.  The  convective  model  has  three
components,  i.e.,  cloud  condensation,  rain  evaporation,  and  environmental  descent,  and  is  built  upon  the  zero-buoyancy
approximation  and  guidance  from  the  high-resolution  reanalysis.  Evaluated  against  the  CMIP5  climate  simulations,  the
convective  model  shows  large  improvements  in  reproducing  precipitation  extremes  compared  to  previously  proposed
models.  Thus,  the  two-plume  convective  model  better  captures  the  main  physical  processes  and  serves  as  a  useful
diagnostic tool for precipitation extremes.
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Article Highlights:

•  We propose a two-plume convective model for precipitation extremes that considers subgrid inhomogeneity.
•  The simple model includes three components: cloud condensation, rain evaporation, and environmental descent.
•  The  simple  model  accurately  reproduces  precipitation  extremes  in  climate  simulations,  with  improved  performance

compared with previously proposed models.
 

 
 

 1.    Introduction

Understanding  the  dynamics  of  precipitation  extremes
(heavy  precipitation  events)  and  their  responses  to  climate
change  is  of  great  importance.  Water  vapor  condensation
and precipitation, by their nature, occur at cloud-microphysi-
cal and convective scales; however, the commonly used mete-
orological variables in global climate models (GCMs) are usu-
ally large-scale variables representing the grid-mean proper-
ties of tens-to-hundreds of kilometers scales (referred to as
the GCM-grid scale in this study). Thus, an essential step in
diagnosing the precipitation extremes in GCMs is to adopt a
simple  model  relating  precipitation  with  the  GCM-grid-
mean variables, typically including a thermodynamic variable
representing  atmospheric  moisture  and  a  dynamic  variable
representing large-scale vertical motion. These simple models
(e.g., Emori  and  Brown,  2005; O’Gorman  and  Schneider,
2009a, b; Sugiyama  et  al.,  2010; Chen  et  al.,  2019)  have

been proven valuable in studies of precipitation extremes in
several  aspects,  such  as  examining  the  coupling  between
large-scale  and  convective-scale  dynamics  in  precipitation
extremes (Nie et al., 2016; Nie and Fan, 2019), decomposing
the  thermodynamic  and  dynamic  controls  of  precipitation
extremes  (O’Gorman  and  Schneider,  2009a; Seager  et  al.,
2012; Pfahl et al., 2017; Li and O’Gorman, 2020; Nie et al.,
2020),  and  identifying  uncertainties  and  model  spreads
among  GCM  simulations  (O’Gorman  and  Schneider,
2009b; Sugiyama et al., 2010).

A  good  simple  model  for  precipitation  extremes  shall
meet  two  requirements.  First,  the  physical  picture  upon
which  the  model  is  built  depicts  the  relevant  processes.  In
that case, the model also provides valuable insights into our
understanding of the system. Second, the model results in a
reasonably  accurate  approximation  of  precipitation
extremes,  so  it  is  practically  useful.  In  addition  to  the  two
requirements, a model with a simple formula and commonly
used  large-scale  variables  is  favored.  The  previously  pro-
posed simple models of precipitation extremes may be classi-
fied into two categories based on their physical arguments.
Models in the first category (e.g., Emori and Brown, 2005;
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Westra et al., 2013; Nie et al., 2018; Chen et al., 2019) are
based on the column moisture budget. Alternatively, O’Gor-
man  and  Schneider  (2009a, b) proposed  a  model  (the  sec-
ond-category model) based on saturated ascending air during
heavy rainfall, and this model has enjoyed more popularity
over  recent  years.  The  first-category  models  neglect  the
source and sink terms of moisture, and the key assumption
of  the  second-category  model  that  the  whole  air  column is
homogeneous and saturated may be oversimplified. Both mod-
els have sizeable errors in reproducing extreme precipitation
climatology in many regions (e.g., Pfahl et al., 2017).

In  this  study,  we  propose  a  two-plume  convective
model  for  precipitation  extremes  with  improved  physical
bases and accuracy. This model takes the sub-GCM-grid inho-
mogeneity of convection into account. It uses two plumes to
model  the  precipitation  extremes:  one  for  convective
updrafts  and  one  for  the  unsaturated  environment.  The
paper is organized as follows: In section 2, we introduce the
data  and  two  previously  proposed  models  and  show  that
these two models have sizeable errors in reproducing precipi-
tation extremes in climate simulations. In section 3, we evalu-
ate the sub-GCM-grid inhomogeneity using high-resolution
observational data (reanalysis), introduce the two-plume con-
vective model, and demonstrate its improvement in the estima-
tion  of  extreme  precipitation.  Conclusions  and  discussion
are presented in section 4.

 2.    Data and models

 2.1.    Data

ω T q
r p

The GCMs differ substantially from each other in many
aspects;  to  avoid  dependences  of  results  on  individual
GCMs,  we  evaluate  the  simple  models  of  precipitation
extremes using 20 GCM outputs in the CMIP5 achieve (Cou-
pled  Model  Intercomparison  Project  Phase  5,  Table  S1  in
the Electronic Supplementary Material,  ESM). The outputs
are  daily  data  of  the  historical  simulations  between  1981
and 2000. The outputs of the 20 GCMs are interpolated to a
2.5° × 2.5° geographical grid so that they have the same hori-
zontal  resolution.  The  variables  include  pressure  velocity
( ),  temperature  ( ),  specific  humidity  ( )  and  relative
humidity ( ) on vertical pressure ( ) levels, and surface pre-
cipitation. In GCMs, precipitation (and convection) is usually
parameterized by several modules (e.g., convective precipita-
tion produced by the convective parameterization of cumulus
clouds, and grid-scale precipitation produced by the parame-
terization of stratus or layered clouds). This separation is an
ad hoc treatment due to the insufficient resolution of GCMs.
In this study, convection refers to clouds of all types.

The  precipitation  extreme  examined  in  this  study  is
defined  as  the  annual  maximum  daily  precipitation  (i.e.,
RX1day in the literature, Alexander et al., 2006, Pfahl et al.,
2017; Nie et al., 2020). This definition is roughly equivalent
to the 99.7th percentile of precipitation, close to the 99.9th
percentile  in  some  other  previous  studies  (e.g., O’Gorman
and Schneider,  2009a, b).  As the threshold of  precipitation

extreme  changes,  the  performances  of  the  simple  models
vary, however, our conclusions are still valid (later see section
3.3).  To  obtain  a  better  physical  understanding  of  the  full
probability  distribution  of  precipitation  is  important  (e.g.,
Chen et  al.,  2019);  however,  it  is  beyond the  scope of  this
study.

For the historical simulations, on each geographic grid
we may find 20 extreme events (during the 20 years simula-
tions) and their composites. We also extract the atmospheric
variables  conditioned  on  the  extreme  precipitation  days,
which are the inputs of the simple models. The precipitation
extremes provided by the simple models are then compared
with  precipitation  extremes  from  the  direct  outputs  of
GCMs. Their differences are treated as the errors of the simple
models. The global mean relative error is the global sum of
the  absolute  values  of  differences  on  each  grid  divided  by
the global  sum of  precipitation extremes.  Unless  otherwise
specified, the results of the GCM outputs only show their mul-
timodel means.

We  use  the  high-resolution  ERA-Interim  reanalysis
(Dee et al., 2011) as the observational basis to examine the
sub-GCM-grid  inhomogeneity  of  precipitation  extremes.
The ERA reanalysis  provides daily data between 1979 and
2016,  with  a  horizontal  resolution  of  0.25°  ×  0.25°.  The
ERA  precipitation  is  from  the  short-range  forecast,  which
shows reasonable agreement with those of the satellite- and
rain  gauge-based  GPCP  (Global  Precipitation  Climatology
Project version 1.2; Huffman et al., 2001) precipitation (Dai
and  Nie,  2020).  To  match  the  resolution  of  the  GCM  out-
puts, we constructed a set of coarsened-resolution reanalyses
(2.5°  ×  2.5°)  based  on  the  high-resolution  (0.25°  ×  0.25°)
reanalyses. Precipitation extremes are selected using the coars-
ened-resolution reanalyses, while the high-resolution reanaly-
ses provide information on the sub-GCM-grid inhomogene-
ity.

 2.2.    Two previously proposed models

P

For  precipitation  extremes  within  an  area  of  a  typical
GCM  grid,  previous  models  may  be  roughly  divided  into
two categories. Models in the first category (named model 1,
e.g., Emori and Brown, 2005) are based on the column mois-
ture budget. Since in heavy precipitation events the moisture
sink due to precipitation is mainly balanced by vertical mois-
ture  advection,  model  1  approximates  precipitation
extremes ( ) as 

P1 ≈ −
{
ω̄
∂q̄
∂p

}
, (1)

P1

where  the  overline  denotes  GCM-grid-mean  variables,  and
{} denotes the vertical integral from the surface level to the
tropopause  (here  defined  as  the  layer  where  the  pressure
level below 50 hPa has a lapse rate of 2 K km−1). The subscript
in  denotes the model number (the same applies to model
2 and model 3). The variables in the simple models are condi-
tioned on the extreme precipitation day. In model 1, the bud-
get terms of moisture storage, horizontal moisture advection,
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surface evaporation, and moisture flux at the tropopause are
neglected.

The  second-category  model  (model  2, O’Gorman  and
Schneider, 2009a, b) suggests that during heavy rainfall, the
air  column is  close  to  saturation.  Thus,  precipitation  is  the
excess of water vapor of saturated rising air following moist
adiabatic processes, which has the formula of 

P2 ≈ −
{
ω̄

dq̄∗

dp
|θ∗e
}
, (2)

dq̄∗/dp|θ∗e

θ∗e

where  is the vertical material derivative of the satu-
ration  specific  humidity  at  a  constant  saturation  equivalent
potential temperature ( ). Recent studies (e.g., Pfahl et al.,
2017; Nie et al., 2020) prefer using Eq. (2) to Eq. (1) due to
its better performance. However, its key assumption that the
whole air column is horizontally homogeneous and saturated
may be oversimplified.

P0

P0

ω̄

∂q̄/∂p (dq̄∗/dp)|θ∗e
∂q̄/∂p

(dq̄∗/dp)|θ∗e ω̄

Now,  we  evaluate  the  performances  of  model  1  and
model  2  by  comparing  the  precipitation  given  by  Eq.  (1)
and Eq. (2) and precipitation from the direct  GCM outputs
(denoted as , Fig. 1a). Both models reasonably reproduce
the general geographic patterns of ; however, there are size-
able  errors  both  globally  and  regionally  [Figs.  1b–c for
errors and Fig. S1 in the electronic supplementary material
(ESM) for relative errors]. Eq. (1) underestimates precipita-
tion extremes in most regions; especially in middle and high
latitudes,  the  relative  error  is  close  to  50%.  Eq.  (2)  also
leads to a general underestimation, although not as badly as
Eq.  (1).  In  addition,  Eq.  (2)  shows  large  overestimations
over  dry  zones  such  as  the  Sahara  and  western  Australia.
Since the dynamic components ( ) in the two equations are
the same, the differences between them come from the ther-
modynamic components. The global-mean profiles of the ther-
modynamic components of the two models are compared in
Fig. S2. The amplitudes of  and  are simi-
lar.  decreases  monotonically  with  height  since  water
vapor is mostly confined near the surface. On the other hand,

 peaks in the middle troposphere. Since  peaks
in  the  middle  to  upper  troposphere  during  precipitation
events, precipitation estimated by Eq. (2) is greater than that
estimated by Eq. (1). The global-mean relative errors of the
two models are 27.2% and 10.6% (Table 1), respectively.

The above evaluation shows that model 1 and model 2
both  have  sizeable  errors.  Model  2  has  better  performance
than model 1 has; however, it still has large errors in many
regions. Over a GCM-grid-size column, saturated convective
updrafts only occupy a fraction of area; saturation throughout
the whole column is very rare even during heavy precipita-
tion. Figure. S3 shows composites of relative humidity during
precipitation extremes at several representative latitudes. Rela-
tive  humidity  during  precipitation  extremes  can  only  reach
up to approximately 70%–90% in the troposphere. Actually,
many GCMs set an upper limit on the grid’s relative humidity
by including a large-scale condensation parameterization. In
the  following,  we  propose  a  two-plume  convective  model

for precipitation extremes that takes the sub-GCM-grid inho-
mogeneity  into  account  and  shows  its  improved  perfor-
mance.

Table  1.   The  global-mean  relative  errors  of  the  simple  models.
The time period for the RCP8.5 simulations is  between 2081 and
2100. Note the global mean value of precipitation extreme is 22.8
mm d−1 for the CMIP5 historical simulations and 27.9 mm d−1 for
the RCP8.5 simulations.

Historical simulations RCP8.5 simulations

Model 1 27.2% 24.3%
Model 2 10.6% 11.5%
Model 3 5.5% 5.4%

 

P0

Fig.  1. (a)  Multimodel-mean  climatology  of  precipitation
extremes  from  the  direct  GCM  outputs  ( )  in  the  CMIP5
historical  simulations.  (b)  and (c)  show the errors  of  model  1
and  model  2  in  reproducing  precipitation  extremes,
respectively.
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 3.    Results

 3.1.    The  sub-GCM-grid  inhomogeneity  of  precipitation
extremes

The  horizontal  scale  of  convection  is  usually  much
smaller than that of typical GCM grids. During heavy precipi-
tation events,  condensation and precipitation are associated
with only convective updrafts within the GCM grids. Model
2 essentially approximates the precipitation extremes with a
homogenously  saturated  convective  plume,  neglecting  the
effects of the sub-GCM-grid inhomogeneity.

ω > 0.1 Pa s−1

a

We evaluate the sub-GCM-grid inhomogeneity of precipi-
tation  extremes  by  comparing  the  ERA  reanalyses  of  high
and coarsened resolutions.  At each geographic location,  38
precipitation  extremes  (one  event  each  year  between  1979
and 2016) are selected from the coarsened-resolution reanaly-
sis.  Then,  we examine the statistics  of  high-resolution data
within the coarsened grids. Convective updrafts are defined
as  high-resolution  grids  with  at  500  hPa,
and the rest are defined as environmental air. The following
analyses  are  not  sensitive  to  the  definition.  For  example,
slightly changing the threshold or using a different criterion,
such as liquid water content  greater  than a threshold,  leads
to  similar  conclusions.  Next,  we  calculate  the  convective
updraft  coverage  ( ,  fractional  area  of  convective  updrafts
within a coarsened-resolution grid) and the mean properties
of convective updrafts (denoted by subscript c) and environ-
mental  air  (denoted  by  subscript  e)  of  precipitation
extremes.

a a a
a

Figure 2 shows the map of convective updraft coverage
during precipitation extremes. It is clear that within a GCM-
scale grid, only a fraction of areas are convective updrafts dur-
ing precipitation extremes, consistent with the relative humid-
ity profile shown in Fig. S2. The probability distribution of
 peaks around  =0.6, while events with  close to 1 or 0

are  rare.  There  are  distinct  geographic  patterns  of .
Regions with  greater  climatology of  precipitation extremes

a
a

have  values  closer  to  1  (Figs.  1a and 2),  while  regions
with weaker precipitation extremes have smaller  values.

a

a

a

The dynamic and thermodynamic properties of convec-
tive  updrafts  and  the  coarsened-resolution  grid  means  are
compared for different  bins in Fig. 3. Convective updrafts
are  moister  than  the  grid  means  (Fig.  3a),  consistent  with
the  fact  that  the  gird  mean  humidity  is  not  saturated  (Fig.
S2).  As  expected,  the  moisture  difference  increases  as 
decreases.  In  contrast,  the  temperature  difference  between
the  convective  updrafts  and  the  grid  means  is  very  small
regardless of  (Fig. 3b). This slight temperature difference
is  also  found  in  cloud  observations  from  aircraft  (e.g.,
Austin  et  al.,  1985)  and  cloud-resolving  simulations  (e.g.,
Singh and O'Gorman, 2013). In many convective parameteri-
zations, this small temperature difference is neglected (also
called  the  zero-buoyancy  approximation, Bretherton  and
Park,  2008; Singh  and  O'Gorman,  2013; Nie  et  al.,  2019).
The  zero-buoyancy  approximation  states  that  any  sizeable
buoyancy difference between cloudy and environmental air
will lead to strong entrainment mixing that consumes the posi-
tive buoyancy of clouds. Figure 3c shows that the convective
updrafts  have  much  greater  vertical  velocity  than  the  grid

 

Fig.  2. Geographic  distribution  of  the  convective  updraft
coverage  during  precipitation  extremes  from  the  ERA
reanalysis.

 

 

(qc/q̄)
a Tc/T ωc/ω̄

Fig.  3. (a)  The  ratio  of  convective  updraft  specific  humidity  to  grid  mean  specific  humidity  as  a
function of . (b) and (c) are similar to (a), but for the ratio of temperature ( ) and vertical motion ( ),
respectively. The gray lines are the results for each of the 38 years, and the blue line is the multi-year mean.
The results are from the high-resolution reanalysis.
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means.  These results  indicate that  using the grid means or,
equivalently, a homogeneous plume to represent precipitation
extremes may lead to systematic biases.

 3.2.    A  two-plume  convective  model  for  precipitation
extremes

s−1 −ωc(dq∗c/dp)|θ∗e

Cc = −
{
aωc(dq∗c/dp)|θ∗e

}

Tc ≈ T̄
(dq∗c/dp)|θ∗e ≈ (dq̄∗/dp)|θ∗e

The  simplest  way  to  take  the  subgrid  inhomogeneity
into account is to use two plumes to represent precipitation
extremes. One plume represents the ensemble of convective
updrafts, and the other plume represents the unsaturated envi-
ronment (Fig. 4). Similar to the argument of O’Gorman and
Schneider (2009a, b), convective updrafts ascend following
moist  adiabatic  processes,  and  the  condensation  rate  (with
units of ) is . Weighted by the area fraction
and integrated throughout the troposphere, the total condensa-
tion  of  the  column  is .Note  that
given the pressure level, the saturation water vapor is a func-
tion of only temperature. Then, we may apply the zero-buoy-
ancy  approximation  ( , Fig.  3b)  and  have

.

{Re}

Next,  we  consider  two  additional  processes  that  may
modulate  rainfall  reaching  the  surface.  The  first  process  is
rain  evaporation  (e.g., Langhans  et  al.,  2015; Lutsko  and
Cronin, 2018). As precipitation falls to the surface, some rain-
fall  is  evaporated in the unsaturated environment,  reducing
the precipitation that finally reaches the surface. We may sym-
bolically  denote  the  column-integrated  rain  evaporation  as

 (with units of mm d−1).

ωe

ωe ωc

ω̄ = aωc+ (1−a)ωe

{Cc} = −
{
ω̄dq̄∗/dp|θ∗e

}
+ {(1−a)ωe(dq̄∗/dp)|θ∗e }

aωc ω̄
ωe

ωe{
(1−a)ωe(dq̄∗/dp)|θ∗e

}

The other process is the effects of environmental vertical
motion ( ). Due to convective detainment and evaporation
of clouds and rainfall, deep convection is usually associated
with strong convective downdrafts (e.g., Knupp and Cotton,
1985; Emanuel,  1991).  Organized  convective  systems  also
induce  strong  organized  downdrafts  (e.g., Xu  and  Randall,
2001; Houze, 2004). Observation and modeling studies indi-
cate that the cores of convective and mesoscale downdrafts
may be as strong as those of convective updrafts. However,
after averaging with the other less active environmental air,
the resulting  is generally much smaller than . Radiative
cooling can also induce environmental subsidence; however,
this effect is small in precipitation extremes. Given that the
grid-mean vertical velocity is ,  we have

.  Simply
replacing  with ,  as  model  2  does,  neglects  the  effect
of . As shown later, the environmental vertical motion is
mostly  descent  (positive ).  Thus,  the  term

 is positive, which causes underestima-
tion if neglected.

Putting the above processes together, we have a formula
for precipitation extremes based on the two-plume convective
model (model 3), 

P3 = {Cc}− {Re} ≈ −
{
ω̄

dq̄∗

dp
|θ∗e
}
+

{
(1−a)ωe

dq̄∗

dp
|θ∗e
}
−{Re} .

(3)
There  are  three  components,  cloud  condensation  (the

dominant component), environmental motion, and rain evapo-
ration, corresponding to the right-hand-side (RHS) terms in
Eq.  (3),  respectively.  The  condensation  term  shares  the
same formula as that of model 2 (Eq. (2)); however, the inter-
pretations of the two models are different. The other two com-
ponents, environmental motion and rain evaporation, are sec-
ondary in terms of the global mean; however, they may be sig-
nificant regionally.

The two-plume convective model provides a new physi-
cal  picture  relating  heavy  precipitation,  convection,  and
large-scale variables (see the schematic in Fig. 4). The previ-
ously proposed model 2 is based on the picture of column-
wise  ascent  of  horizontal  homogenous  saturated  air.  Here,
the  two-plume  model  highlights  inhomogeneity  within  the
air column: condensation and precipitation are only associ-
ated  with  convective  updrafts  occupying  a  part  of  the  col-
umn,  the  environmental  air  is  unsaturated  and  its  vertical
motion  also  contributes  to  the  column  means.  The  two-
plume model does not require column-wise saturation, thus
resolving the conflict  between the saturation assumption in
model 2 and the GCM outputs.

 3.3.    Improvement of the convective model

In this subsection, we parameterize the two sub-GCM-
grid processes in model 3, rain evaporation and environmental
motion, using the grid mean variables and show improvement
of the convective model (model 3) in reproducing precipita-
tion extremes.

First, we examine the errors of model 3 (Eq. (3)) if only
its main component (the first RHS term) is included. Since

 

Fig.  4. Schematic  of  the  two-plume  convective  model  for
precipitation extremes. Note the convective updrafts represent
convection  parameterized  by  both  the  convective
parameterization  module  and  grid-scale  condensation  module
in GCMs.
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−{Re} ({
(1−a)ωe(dq̄∗/dp)|θ∗e

})

this term is the same with Eq. (2), the errors are the same as
those shown in Fig. 1c. In most regions, there are spatially rel-
atively homogeneous negative errors. However, in the sub-
tropical dry regions, such as the Sahara and the subtropical
oceans  west  of  the  Southern  Hemisphere  continents,  there
are significant positive errors. Note that neglecting rain evapo-
ration ( ) in Eq. (3) leads to overestimation, and neglect-
ing the environmental descent term 
leads to underestimation. The geographic patterns in Fig. 1c
suggest  that  the  positive  errors  may  correspond  to  the  rain
evaporation term and negative errors may correspond to the
environmental descent term.

r
r

{Re} r

Rain evaporation is effective in a warm and dry planetary
boundary  layer  (Emanuel  et  al.,  1994; Lutsko  and  Cronin,
2018). Indeed, the regions with positive errors are coincident
with the regions with low lower-troposphere relative humid-
ity during precipitation extremes (comparing the blue colors
and  red  contours  in  Fig.  S1b).  In  these  regions,  we  may
assume  that  the  errors  mostly  come  from  rain  evaporation
and neglect the effects of environmental descent. The scatter
plot of the errors and lower tropospheric (0.85 sigma level)
 over the positive error regions shows a strong negative cor-

relation  (Fig.  5a).  There  seems  to  be  an  upper  limit  of ,
above which the rain evaporation is close to zero. Based on
the  strong  correlation  and  consistent  with  previous  studies
(Lutsko and Cronin, 2018), we parameterize  with  on
the 0.85 sigma level by assuming a linear relationship for sim-
plicity: 

{Re} =
{
α (80− r) P2 , (r < 80%)
0 , (r ⩾ 80%)

. (4)

α = −0.014

Here,  the threshold of 80% is chosen visually,  and the
results  are  not  sensitive  to  small  changes.  The  slope
( )  is  determined by best  fitting  Eq.  (4)  with  the

{Re}scatter  plot  in Fig.  5a.  The  estimated  by  Eq.  (4)  is
shown  in Fig.  6a.  It  matches  the  positive  errors  in Fig.  1c
well, lending support to our parameterization here.

(1−a)ωe ω̄ a
a

(1−a)ωe/ω̄ < 0
a (1−a)ωe/ω̄

a

ω̄ (1−a)ωe/ω̄

ω̄ (1−a)ωe/ω̄ ≈ −β(1−a)
β

a > 0.2

Next,  we  examine  the  environmental  descent  compo-
nent. We look into the results from the high-resolution reanal-
ysis  for  guidance. Figure  5b shows  the  ratio  between

 and  for different  in the reanalysis using the simi-
lar  method in  section 3.1.  Over  most  ranges of ,  we have

,  confirming that  the environmental  vertical
motion  is  descent.  As  moves  from 1  to  0.2, 
becomes more negative. As  further approaches 0, the verti-
cal motion of convective updrafts has a smaller contribution
to ,  and  approaches  1.  Based  on  the  above
results,  we  may  simply  parameterize  the  environmental
descent  as  a  function  of  and a: ,
where  is a positive coefficient. We also limit this parameter-
ization within the range of , since beyond that the con-
vective  updraft  area  is  too small  and the  two-plume model
becomes  less  relevant.  This  approximation  follows  similar
ideas  with  previous  studies  that  environmental  descent  is
roughly  proportional  to  the  convective  updrafts  (e.g.,
Fritsch, 1975; Johnson, 1976; Zhang and McFarlane, 1995;
Xu  and  Randall,  2001).  Applying  this  parameterization  in
Eq. (4), we have  {

(1−a)ωe
dq̄∗

dp
|θ∗e
}
= β(1−a)P2, (a > 0.2) . (5)

a

a
β = 0.27

{
(1−a)ωe(dq̄∗/dp)|θ∗e

}

Here, we use the geographic distribution of  given by
the high-resolution ERA reanalysis for the parameterization
of Eq. (5), assuming that  in the GCMs is similar to that in
the reanalysis. The coefficient  is determined by mini-
mizing the  model  3  errors  over  the  underestimated regions
in Fig.  1c. Figure  6b shows  the  estimated

 by Eq. (5), which largely matches the

 

 

(P2 −P0)/P0 P2 P0

(1−a)ωe/ω̄

Fig. 5. (a) Scatter plot of  and relative humidity in the regions with >  in Fig. 1c. The red line is the
best-fitting line. (b) similar with Fig. 3c, but for .
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negative errors in Fig. 1c.
With the above empirical parameterization of rain evapo-

ration and environmental descent, the two-plume convective
model reproduces the climatology of precipitation extremes
quite  well  (Figs.  6c and  S1c).  It  reduces  the  global  mean
error  by  approximately  half  from model  2  (from 10.6% to
5.5%, Table 1), and largely reduces regional errors. The two-
plume model not only works for the multimodel means, but
also improves individual  GCMs. For each GCM, its  fitting
parameters in Eqs. (4) and (5) are slightly different from the
parameters for the multimodel means (Fig. S4a), due to the
internal differences among the GCMs. The improvement of
model 3 for each GCM output is also substantial (Fig. S4b).
We also tested the sensitivity of our results on the threshold
of  precipitation  extremes.  For  less  intense  precipitation

extremes, model 3 still shows significant improvement over
the other two models (Fig. S5). These comparisons indicate
that the parametrizations of the two additional physical pro-
cesses in the two-plume model are robust.

The convective model also works well for different cli-
mates, such as a warmer climate. We apply similar evalua-
tions for the CMIP5 RCP8.5 simulations between 2081 and
2100. With the same parameters used for the historical simula-
tions,  model  3  has  a  global  mean  relative  error  of  5.4%,
much smaller than that of model 2 (11.5%, Table 1). Again,
model  3 reduces the regional  errors  significantly (Fig.  S6).
We calculated the parameters in Eqs.  (4) and (5) by fitting
them using the outputs of the RCP8.5 simulations. They are
very close to the parameters obtained in the historical simula-
tions, and the performance of model 3 is very close regardless
of which set of parameters is used. This comparison indicates
that the parametrizations of the two additional physical pro-
cesses in the convective model are robust and likely reliable
for different climates.

 4.    Conclusions and discussion

This study proposes a two-plume convective model that
approximates  precipitation  extremes  with  large-scale  (i.e.,
GCM-grid-mean)  variables.  The  convective  model  is  built
upon a physical picture in which the precipitating regional col-
umn consists of convective updrafts and unsaturated environ-
ments (Fig. 4) and includes three components: cloud conden-
sation,  rain  evaporation,  and  environmental  descent.  The
three  components  are  expressed  or  parameterized  using
GCM-grid-mean variables with the zero-buoyancy approxima-
tion  and  guidance  from the  high-resolution  reanalysis.  The
model is evaluated using outputs from 20 CMIP5 GCM simu-
lations  and  compared  with  two  previously  proposed  and
widely used models. The new model largely reduces errors
in  reproducing  precipitation  extremes  in  terms  of  both
global mean and regional errors. The validation of the convec-
tive model also suggests that its physical basis captures the
most  relevant  physical  processes  during  precipitation
extremes.

The  convective  model  still  has  noticeable  regional
errors.  For  example,  there  are  errors  over  mountainous
regions,  where  interactions  between convection  and terrain
are  not  included  in  the  model.  In  addition,  the  convective
model shall be applicable only for regional-scale (i.e., typical
GCM  grid-size  of  several  hundred  km)  precipitation
extremes, in which our assumption of partial occupation of
convective  updrafts  is  appropriate.  For  precipitation
extremes at smaller scales, the correction terms of rain evapo-
ration and environmental descent components may become
less important, and the approximation of grid-scale saturation
in O’Gorman and Schneider (2009a) may become more justi-
fiable.  Notwithstanding  these  limitations,  the  study  sheds
light on the dynamics of precipitation extremes, provides a
reasonably  accurate  estimation  for  precipitation  extremes,
and  has  implications  in  understanding  precipitation

 

{Re}({
(1−a)ωe(dq̄∗/dp)|θ∗e

})Fig.  6. (a)  The  rain  evaporation  term ( )  calculated  by  Eq.
(4).  (b) The environmental descent term 
calculated by Eq. (5). (c) the errors of the model 3.
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extremes and their future projections in climate simulations.
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