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ABSTRACT

This paper describes three algorithms for retrieving precipitation over oceans from brightness temperatures (TBs) of
the Micro-Wave Humidity  Sounder-2 (MHWS-2) onboard Fengyun-3C (FY-3C).  For  algorithm development,  scattering-
induced TB depressions (ΔTBs) of MWHS-2 at  channels between 89 and 190 GHz were collocated to rain rates derived
from  measurements  of  the  Global  Precipitation  Measurement’s  Dual-frequency  Precipitation  Radar  (DPR)  for  the  year
2017. ΔTBs were calculated by subtracting simulated cloud-free TBs from bias-corrected observed TBs for each channel.
These ΔTBs were then related to rain rates from DPR using (1) multilinear regression (MLR); the other two algorithms, (2)
range searches (RS) and (3) nearest neighbor searches (NNS), are based on k-dimensional trees. While all three algorithms
produce instantaneous rain rates, the RS algorithm also provides the probability of precipitation and can be understood in a
Bayesian  framework.  Different  combinations  of  MWHS-2  channels  were  evaluated  using  MLR  and  results  suggest  that
adding 118 GHz improves retrieval performance. The optimal combination of channels excludes high-peaking channels but
includes 118 GHz channels peaking in the mid and high troposphere. MWHS-2 observations from another year were used
for validation purposes. The annual mean 2.5° × 2.5° gridded rain rates from the three algorithms are consistent with those
from the Global Precipitation Climatology Project (GPCP) and DPR. Their correlation coefficients with GPCP are 0.96 and
their biases are less than 5%. The correlation coefficients with DPR are slightly lower and the maximum bias is ~8%, partly
due to the lower sampling density of DPR compared to that of MWHS-2.
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Article Highlights:

•  Including 118 GHz channels in addition to other channels (89 and 183 GHz) improves the rain rate retrieval performance.
•  Rainfall retrieval from channels between 89 and 190 GHz relies on the indirect scattering signature of ice particles.
•  All  three  algorithms  were  developed  based  on  scan  positions  and  the  resulting  rainfall  estimates  are  stable  across  the

same scanline.
•  The  rainfall  retrievals  are  highly  consistent  with  other  such  products,  particularly  the  comparison  with  GPCP,  which

achieves a correlation coefficient of 0.96.
 

 
 

 

1.    Introduction

Advancing global precipitation observations are import-
ant  for  both  scientific  and  operational  purposes.  Space-
borne sounding systems provide uniform global coverage rel-
ative to ground-based precipitation monitoring systems. The
widely  used  sounding  systems  include  the  DMSP  Special
Sensor  Microwave  Imager/Sounder  (SSMIS)  series,
National Oceanic and Atmospheric Administration (NOAA)

and MetOp Advanced Microwave Sounding  Unit  (AMSU)
and  Microwave  Humidity  Sounder  (MHS)  series,  and  the
Suomi  National  PolarOrbiting  Partnership  (S-NPP)  and
NOAA-20  Advanced  Technology  Microwave  Sounder
(ATMS)  series.  Sounding  observations  made  simultan-
eously  in  transparent  and  opaque  water-vapor  and  oxygen
absorption  bands  have  been  utilized  extensively  to  exploit
the  capability  of  satellite-borne  passive  microwave  sensors
for  precipitation  detection  (Staelin  and  Chen,  2000; Grody
et al., 2001; Chen and Staelin, 2003; Weng et al., 2003; Fer-
raro et al., 2005; Vila et al., 2007; Surussavadee and Staelin,
2010; Laviola and Levizzani, 2011; Boukabara et al., 2013;
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Sanò  et  al.,  2015).  The  use  of  opaque  bands  also  reduces
errors caused by surface emissivity uncertainties.

Comparing  these  various  precipitation  retrieval
algorithms,  in  general,  there  are  three  common  major  fea-
tures  that  a  conventional  precipitation  retrieval  algorithm
should  follow.  First,  the  algorithm  retrieves  precipitation
intensity  using  the  contrast  of  brightness  temperature  (TB)
from  hydrometeors  and  the  radiatively  cool  ocean.
Secondly,  the  algorithm  is  associated  with  statistical
approaches.  For  example,  a  study  by Ferraro  and  Marks
(1995) proposed both linear and nonlinear regression meth-
ods to retrieve instantaneous rain rates from SSMI observa-
tions. Sanò  et  al.  (2015) proposed  an  algorithm  based  on
neural  networks  for  precipitation  rate  estimation  from
AMSU/MHS observations. Lastly, the algorithm requires his-
torical  precipitation  datasets  from  measurements  of  space-
borne  radars,  ground  radar  networks  or  cloud-resolving
model  output.  Widely  used  spaceborne  radars  include  the
Tropical  Rainfall  Measuring Mission’s  (TRMM) Precipita-
tion  Radar  (PR)  (Surussavadee  and  Staelin,  2010; Kum-
merow et al., 2015), the Global Precipitation Measurement’s
(GPM) Dual-Frequency Radar  (DPR)  and  CloudSat  profil-
ing radar (Kidd et al., 2016).

The two principal physical mechanisms that permit the
measurement of rain with microwave radiometers are emis-
sion and scattering. Precipitation retrievals derived from chan-
nels under 89 GHz are emission-based, where liquid precipita-
tion causes TB to increase over a radiometrically cold back-
ground.  Because  channels  above  89  GHz can  hardly  “see”
through  the  atmosphere  to  the  surface  when  precipitation
occurs,  the  precipitation  algorithms  are  scattering-based,
where  precipitation,  especially  that  above  freezing  level,
causes brightness temperature to decrease over a radiometric-
ally  warm  or  cold  background  (Wilheit,  1986; Spencer  et
al.,  1989).  While  other  temperature  and  humidity  absorp-
tion bands between 89 and 190 GHz have been well-investig-
ated  based  on  satellite  observations,  the  118  GHz  oxygen
absorption  line  has  not  been  in  full  use  because  none  of
these  spaceborne  instruments  employs  the  118  GHz  chan-
nels. To augment existing retrieval algorithms, this study pro-
poses to use TB depression caused by scattering associated
with  precipitation-sized  ice  particles  to  retrieve  indirectly
related  surface  rainfall  information.  The  channels  used  in
this study are between 89 and 190 GHz, of which some are
near the 118 GHz oxygen absorption line.

The  China  Meteorological  Administration’s  (CMA)
Fengyun-3C  (FY-3C)  MicroWave  Humidity  Sounder-2
(MWHS-2) is characterized by 15 microwave channels ran-
ging in frequency from 89 to 190 GHz. In addition to carry-
ing more traditional channels around 89, 150 and 183 GHz,
the  MWHS-2  carries  eight  temperature  sounding  channels
near 118 Gz (Dong et al., 2009; Zhang et al., 2012). It is the
first space-borne instrument carrying the 118 GHz channels,
and expected to provide new information for not only temper-
ature  sounding  but  also  for  precipitation  retrievals  (Bauer
and Mugnai, 2003; He and Chen, 2019).

This  study  builds  upon  the  work  from Chen  and  Ben-
nartz (2020) that investigated the sensitivities of TBs at chan-
nels between 89 and 190 GHz to ice scattering caused by pre-
cipitation-sized  ice  particles  using  MWHS-2  observations.
Based  on  the  findings  from  this  work,  we  will  continue
using the MWHS-2 observations and focus on the channels
that  were  discovered  to  show sensitivities  to  ice  scattering
in  varying  degrees  for  rainfall  retrieval  algorithm develop-
ment.  This  study  will  provide  new  perspectives  for  other
instruments  that  have  frequency  coverage  at  118  and  183
GHz, such as NASA’s Time-Resolved Observations of Precip-
itation structure and storm Intensity with a Constellation of
Smallsats  (TROPICS)  and  EUMETSAT’s  Microwave
Imager  (MWI)  (Holmlund  et  al.,  2017; Blackwell  et  al.,
2018; Mattioli et al., 2019).

The  remainder  of  this  paper  is  structured  as  follows.
The instruments and dataset used, as well as the method of
preprocessing  the  data,  are  described  in  section  2.  In  sec-
tion  3  we  present  the  bias  correction  process  for  the
MWHS-2 observations, and the responses of TB and scatter-
ing-induced  TB  depression  to  rainfall.  Next,  we  describe
three precipitation retrieval algorithms and evaluate the rain
rates  produced  by  each  algorithm  by  comparing  them
against other well-established rainfall products in section 4.
Finally, the conclusions are presented in section 5. 

2.    Instruments, data and methods

The description of the datasets and methods of prepro-
cessing the data parallels that of Chen and Bennartz (2020).
The MWHS-2 instrument provides the observed TBs at  15
channels  between  89  and  190  GHz,  and  the  channels  and
their frequencies as well as polarizations are given in Table 1.
The  MWHS-2 observation  information  was  extracted  from
the MWHS-2 Level-1 files  provided by the CMA/National
Satellite Meteorological Center (CMA/NSMC) (http://satel-
lite.nsmc.org.cn/portalsite/default.aspx).

The  GPM  core  spacecraft  hosts  two  instruments:  the
DPR  and  the  GPM  Microwave  Imager  (GMI)  (Hou  et  al.,
2014). The GPM operates in a circular orbit at an altitude of
407  km  and  inclination  of  65°.  This  orbit  was  chosen
because it can ensure sufficient overlap with sun-synchron-
ous satellites, such as FY-3C, for cross-calibration and cover-
ing  a  large  portion  of  Earth’s  surface  with  minimal  repeti-
tion  of  ground  track.  It  also  allows  for  the  gathering  of
samples  at  latitudes  where  most  precipitation  occurs  in
terms  of  absolute  amount  at  various  times  of  the  day.  The
DPR instrument combines a Ku- and Ka-band precipitation
radar  capable  of  making  accurate  rainfall  measurements
from the ground to 19 km in altitude. The surface rain rates
retrieved from the DPR were collocated with the MWHS-2
observations to produce matchups for investigating the impli-
cit  relationships  in  between  at  various  channels  including
the  newly  added  118  GHz  channels.  The  DPR  rainfall
retrieval  was  obtained  from  the  GPM  2BCMB  product
provided  by  the  NASA  Precipitation  Processing  System
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archived  at  the  NASA GES DISC (https://doi.org/10.5067/
GPM/DPRGMI/CMB/2B/06).

MWHS-2  observations  and  DPR profiles  were  projec-
ted into each 0.25° latitude × 0.25° longitude grid with their
maximum  time  difference  being  15  minutes.  This  process
was applied to oceans only due to the more complicated simu-
lation of the surface emissivity over land.  To eliminate the
impact of the high zenith angles and the low spatial resolu-
tion of MWHS-2 at the outer edge of each scan, the ten outer-
most scan positions (five on each side) were excluded from
the  collocated  dataset.  Eventually,  a  total  of  over  1.5  mil-
lion samples were achieved for the year of 2017.

To validate the developed rainfall  retrieval  algorithms,
two  different  precipitation  products  were  used  as  bench-
marks. The first consists of rain rates in the aforementioned
GPM 2BCMB product. The other source of rain rate data is
the  Global  Precipitation  Climatology  Project  (GPCP)
formed  by  the  World  Climate  Research  Program  in  1986
(WCRP  1986)  to  exploit  the  capabilities  of  satellite-borne
instruments  along  with  gauges  for  producing  monthly  and
finer  temporal  resolution  global  precipitation  in  the  long
term (Adler et  al.,  2003).  It  has three products on different
scales:  2.5°  ×  2.5°,  1°  ×  1°,  and  pentad  (5  days).  In  this
study, the GPCP monthly global precipitation data on 2.5° ×
2.5°  scales  for  the  year  2016  were  used.  The  GPCP  data
were provided by NOAA/OAR/ESRL PSL, Boulder, Color-
ado, USA, from their website at https://psl.noaa.gov/. 

3.    Bias correction and brightness temperature
analysis

 

3.1.    Bias correction and radiative transfer simulation

It  is  important  to  ensure  that  the  MWHS-2  TBs  are
bias-free before we use them for further analysis. Chen and

Bennartz  (2020) proposed  a  bias-correction  method  based
on the idea that the mode of the histogram of the TB differ-
ences corresponds to the observations affected by precipita-
tion  at  a  minimum  level,  and  therefore  this  mode  can  be
regarded as an estimate of the bias. We applied this method
by first calculating the differences between observed and sim-
ulated  TBs  for  each  MWHS-2  channel.  We  then
calculated the mode of the histograms of TB differences per
channel and per scan position. The resulting bias-correction
values  were  subtracted  from  observations  to  produce  bias-
free observed TBs.

The  TIROS  Operational  Vertical  Sounder  Radiative
Transfer  (RTTOV,  Version  12.2)  Model  (Saunders  et  al.,
2007; Saunders et al., 2018; Hocking et al., 2019) was used
to  simulate  clear-sky  background  TBs  for  all  the  15  chan-
nels of MWHS-2. The ERA-Interim data from the European
Centre  for  Medium-Range  Weather  Forecasts  (ECMWF)
provided the 6-hourly surface and vertically resolved mois-
ture and temperature field products (Dee et al., 2011). This
dataset  was  obtained  from  the  National  Center  for  Atmo-
spheric  Research  (downloaded  from https://rda.ucar.edu/
datasets/ds627.0/). The MWHS-2 observations were colloc-
ated with the ERA-Interim reanalysis profiles and their max-
imum time difference is 3 h. The resulting ERA-Interim pro-
files,  together  with  sea  surface  temperature  and  surface
wind speed, were then used as inputs to the RTTOV cloud-
free radiative transfer simulations. 

3.2.    Brightness temperature response to rainfall

We  define  the  scattering-induced  brightness  temperat-
ure depression (ΔTB) as the difference between bias-correc-
ted microwave observations, TBobs, and simulated clear-sky
background brightness temperatures, TBsim: 

∆TB = TBobs−TBsim . (1)

Chen  and  Bennartz  (2020) investigated  the  relation
between ΔTB of the individual MWHS-2 channels to the pres-
ence  of  hydrometeors  and  concluded  that  the  oxygen  and
water vapor sounding channels exhibit a strong dependency
on how close each channel is to the center of its correspond-
ing absorption line. It was also found that the actual scatter-
ing intensity of ice particles monotonically increases with fre-
quency. Based on these findings, we first examine the rela-
tion  between  the  hydrometeor  water  path  and  the  surface
rain  rate. Figure  1 shows  a  strong  linear  relationship
between the two, which indicates that the surface rain rate is
highly associated with the quantity of hydrometeors in a ver-
tical column. This reinforces the implicit yet virtual relation-
ship  between  the  surface  rain  rates  and  scattering-induced
ΔTB,  which  forms  the  basis  of  the  subsequent  rainfall
retrieval algorithm development.

Next, we explore the pattern of rain rates derived from
the DPR in terms of variations in ΔTB and TBobs. Figure 2
presents the two-dimensional rainfall distribution relative to
the  TBobs and  ΔTB  for  all  15  MWHS-2  channels.  The
highest-peaking channels 2–4 only exhibit slight deviations

Table 1.   MWHS-2 channel frequencies and polarization at nadir
used in RTTOV.

Channel
number

Frequency
(GHz)

Polarization at nadir used in
RTTOV

1 89 H
2 118.75 ± 0.08 V
3 118.75 ± 0.2 V
4 118.75 ± 0.3 V
5 118.75 ± 0.8 V
6 118.75 ± 1.1 V
7 118.75 ± 2.5 V
8 118.75 ± 3.0 V
9 118.75 ± 5.0 V
10 150 H
11 183.31 ± 1.0 V
12 183.31 ± 1.8 V
13 183.31 ± 3.0 V
14 183.31 ± 4.5 V
15 183.31 ± 7.0 V
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of  ΔTB  from  zero.  Because  of  their  insensitivity  to  ice
particle  scattering,  channels  2–4  will  be  excluded  in  sub-
sequent analysis. Channel 5 presents the weakest sensitivity
among  the  rest  channels  (channels  1,  5–15)  and  therefore
this  channel  is  non-essential  for  deriving  the  rainfall

retrieval algorithms. In this study, we will include channel 5
in only one of the three algorithms that will be described in
section 4.

For all the 12 channels, heavier rainfall occurs at colder
TBobs and  larger  negative  ΔTBs,  while  warm  TBobs and
near-zero  ΔTB  are  mostly  accompanied  by  near-zero  rain
rates.  The  latter  highlights  that  a  perfect  radiative  transfer
model  with  a  perfect  clear-sky  input  would  produce  near-
zero values in ΔTB for all  cloud-free conditions regardless
of  how  warm  the  TBobs is.  Also  noticeable  is  that,  in  sev-
eral channels, including channels 7–10 and 14–15, the rain-
fall distribution shows a bifurcation between those data fol-
lowing  the  horizontal  zero  line  and  those  for  which  ΔTB
decreases  approximately  linearly  with  decreasing  TBobs.
Among the two groups of data, given the same TBobs the lat-
ter  occurs  with  larger  negative  ΔTB  and  heavier  rainfall,
and  the  former  is  mostly  with  much  smaller  negative  (or
near  zero)  ΔTB  and  very  light  (or  near-zero)  rainfall.  In
other words, scattering reduces the amount of radiation and
results in large negative ΔTB, which provides more substan-
tial  information  than  the  TBobs regarding  the  measurement

 

Fig.  1.  Linear  relationship  between  hydrometeor  water  path
(HWP) and surface rain rate (RR).

 

 

Fig.  2.  Two-dimensional  rain  rate  distributions  of  TBobs and  ΔTB  for  all  15  channels  of  MWHS-2  and  for  all
collocated data. Note the different scales of both the x- and y-axis.
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of rainfall.
The large positive ΔTB in each of channels 1 and 7–10

represents  an  emission  signal  caused  by  liquid  clouds  and
rain  to  different  extents,  with  the  largest  of  over  100  K  in
channel 1. For cases of little or no ice as scatterers in the atmo-
sphere, this will allow us to still  be able to retrieve rainfall
using these channels based on their emission signals. 

4.    Precipitation retrieval algorithms
 

4.1.    Multilinear regression
 

4.1.1.    Algorithm description

Based on the above analysis, we develop four different
multilinear  regression  (MLR)  models  for  each  of  the  44
scan positions using different sets of channels of MWHS-2.
ΔTBs  of  different  combinations  of  channels  and  rain  rates
are considered as independent and response variables, respect-
ively, to model their relationships. Because dry snow can scat-
ter  significantly  like  the  precipitation  ice  particles,  the  sig-
nal can be misinterpreted as rainfall. To avoid this issue, the
retrieval methods in this study are limited to the tropics and
midlatitudes  between  35°N  and  35°S.  The  channel  sets  of
the  four  models  are:  (1)  channels  1,  6–15;  (2)  channels  1,
10–15; (3) channels 1 and 10; (4) channel 1 only. Therefore,
for  each  set  of  channels,  we  have  built  44  different  MLR
sub-models  for  88  symmetrical  scan  beams  of  MWHS-2
(five scan beams on each side are removed for the purpose
of quality control). The regression performances in terms of
the  correlation  coefficient  (R),  mean  absolute  error  (MAE)
and root-mean-square error (RMSE) for each of the models
are presented in Table 2.  Model 1 performs better  than the
other models in terms of R and RMSE. The MAEs of Mod-
els  1,  3  and 4  are  the  same and slightly  lower  than that  of
Model 2. The better performance of Model 1 indicates that
the  addition  of  the  lower  peaking  channels  near  118  GHz,
channels 6–9, is necessary to improve rainfall retrieval. 

4.1.2.    Algorithm evaluation

We  further  apply  the  regression  coefficients  derived
from  Model  1  in  the  above  analysis  to  another  full  year
(2016) of MWHS-2 observations over oceans between 35°N
and  35°S.  The  resulting  rain  rates  are  compared  with  the
DPR-derived  rain  rates  as  well  as  with  the  GPCP  gridded

rain  rates.  All  comparisons  are  performed  on  an  annual-
averaged 2.5° × 2.5° grid that is also used by the GPCP. We
note that comparisons between DPR- and MWHS-2-derived
annual  means  are  not  entirely  independent  as  DPR  values
are also chosen for training the MWHS-2 regression retriev-
als, although a different year was used for the collocated data-
set that underlies the training.

Figure 3 shows scatterplots of annual mean surface rain
rates  for  all  four  MWHS-2  retrievals  against  the  DPR  and
GPCP,  respectively.  The  following  conclusions  can  be
drawn from these scatterplots:

(1)  The  scatterplots  provided  in Fig.  3 show generally
strong correlations (R > 0.82 in all cases) between the DPR-
derived  annual  mean  rain  rates  and  all  four  retrieval  ver-
sions  of  MWHS-2.  A  degradation  can  be  observed,
however, both in terms of RMSE and in terms of the linear
relation between the two quantities (see red lines in Fig. 3).
Going  from  V01  to  V04,  the  regression  uses  fewer  chan-
nels  (Table  2),  and  the  relation  between  MWHS-2-derived
retrievals  and  DPR-derived  retrievals  deviates  more
strongly from the 1:1 line. It thus appears that all four bands
(89, 118, 150, and 183 GHz) provide independent informa-
tion that contributes to improved rain rate retrievals.

(2)  When  comparing  MWHS-2  to  GPCP,  one  can  see
that the scatter between the two different datasets is signific-
antly  smaller  than  the  scatter  between  DPR  and  MWHS-2
partly  because  the  data  density  for  DPR  is  lower  (only  25
independent beams per scan, as opposed to 88 for MWHS-
2). This increased noise in DPR gridded estimates will also
be observed in the following analysis.

(3)  The  correlation  between  the  GPCP  and  MWHS-2
exceeds 0.93 for  all  four  versions  of  the  retrievals.  Similar
to  the  comparison  between  DPR  and  MWHS-2,  the  inclu-
sion  of  more  bands  (V01)  illustrates  a  greater  sensitivity
than the MWHS-2 retrievals with fewer bands (e.g., V04).

In  particular,  the  MWHS-2  V01  retrievals  compare
well against the GPCP, with the regression curve (red line)
falling  nearly  on  the  1:1  line  and  a  correlation  of  0.96,
whereas  a  slight  underestimation  occurs  at  light  rainfall
(< 0.3 mm d−1).

A  comparison  of  the  spatial  distribution  of  the  annual
mean surface rain rates between MWHS2, GPCP and DPR
(Fig. 4) yields the following key points:

(1)  The  spatial  distribution  of  both  MWHS-2  and
GPCP  reflects  well  the  major  areas  of  deep  convection  in

Table 2.   Performance metrics summary of RR regression models. Reported are the correlation coefficient (R), the mean absolute error
(MAE) and the root-mean-square error (RMSE) for all four retrieval models. All regressions were performed on the precipitation-induced
brightness temperature depressions ΔTBs. Coefficients for each model were derived individually for each scan position.

Model R MAE (mm h−1) RMSE (mm h−1)
MWHS-2
channels Channel selection

1 0.64 0.23 0.69 1, 6–15 89 GHz and 150 GHz window channels and
118 GHz and 183 GHz sounding channels

2 0.61 0.22 0.71 1, 10–15 Excluding 118 GHz sounding channels
3 0.59 0.23 0.73 1 and 10 Only 89 GHz and 150 GHz
4 0.57 0.23 0.74 10 Only 150 GHz
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the tropics. Differences between DPR and MWHS-2 appear
to show an overestimation by MWHS-2 near Indonesia and
an  underestimation  in  areas  such  as  the  central  Pacific
ITCZ. Interestingly, this behavior differs from that observed
in  the  ice  water  path  derived  from  MWHS-2  observations
(for  brevity,  not  shown  here),  indicating  that  the  relation
between the ice water path and surface rain rates itself dif-
fers  in  these  two  areas.  This  result  could  conceivably  be
caused  by  higher  aerosol  loading  near  Indonesia,  which
would, compared to cleaner air, lead to reduced surface rain
rates  for  given  hydrometeor  water  paths.  Such  a  mechan-
ism over Indonesia was first described by Rosenfeld (1999).
The  DPR-derived  rain  rates  are  noisier  than  the  MWHS-2
derived  rain  rates,  which  supports  the  above  explanation
that  the  lower  DPR  data  density  is  at  least  partly  respons-
ible for the increased scatter.

(2) Comparing GPCP and MWHS-2, the scatter is gener-
ally lower, with a similar overestimation over Indonesia and
a  few  other  coastal  regions.  The  central  Pacific  ITCZ also
shows slight underestimation that is evident in the comparis-
ons with the DPR.

The comparison illustrated here suggests that the high-fre-
quency microwave channels between 89 GHz and 183 GHz
can  successfully  be  used  to  derive  rain  rates.  These  chan-
nels  can  also  be  used  for  precipitation  retrieval  with  the
caveat that the retrieval relies on the indirect scattering signa-
ture of ice particles higher up in the atmosphere that are not
directly linked to surface precipitation. Thus, if the relation
between  the  ice  water  path  and  surface  rain  rates  itself
changes,  the  surface  rain  rate  retrievals  will  be  adversely

affected, as shown above in the case of Indonesia. In addi-
tion, the algorithm used to perform the regression based on
scan positions has the advantage of eliminating the concern
that different footprints of a cross-track radiometer have dif-
ferent local zenith angles.

Based on  the  above  analysis,  channels  1  and 6–15 are
selected for our study going forward (channel 5 will be car-
ried for some cases,  but its  impact is  negligible because of
its high peaking weighting function). 

4.2.    Range searches and nearest neighbor searches
 

4.2.1.    Description of algorithms

A K-Dimensional tree (or k-d tree, where k is the dimen-
sionality  of  the  search space)  is  a  hierarchal  structure  built
by partitioning the data recursively along the dimension of
maximum variance.  At  each iteration,  the  variance  of  each
column is  computed and the  data  is  split  into  two parts  on
the column with maximum variance. It is a very useful struc-
ture,  especially  for  searches  involving  a  multi-dimensional
search  key,  e.g.,  range  searches  and  nearest  neighbor
searches (Bentley, 1980). As a simple example, assume that
k =  2  and  one  needs  to  build  a  2D  tree  which  is  also
regarded  as  a  generalization  of  a  binary  search  tree.  The
idea is to build a binary search tree with points in the nodes
using  the x-  and y-coordinates  of  the  points  as  keys  in
strictly  alternating  sequence.  Stating  with  the x-coordinate
at the root, if the point to be inserted has a smaller x-coordinate
than  the  point  at  the  root,  it  goes  left;  otherwise  it  goes
right. At the next level, the insertion is switched to the other

 

 

Fig. 3. Scatterplots of annual mean 2.5° × 2.5° gridded rain from GPCP [y-axis of (a, c, e, g)] and DPR [y-axis of (b,
d, f, h)] compared against the four different retrievals from MWHS-2 over oceans between 35°N and 35°S.
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coordinate  (y-coordinate).  If  the  point  to  be  inserted  has  a
smaller y-coordinate than the point in the node, it goes left,
otherwise  it  goes  right.  The  coordinate  is  then  switched
again and so on and so forth,  until  the insertion of  the last
point.

For  the  purpose  of  rainfall  retrieval,  we  use  12  chan-
nels (channels 1 and 5–15) of MWHS-2 observations and radi-
ative  transfer  simulations  as  well  as  matched  rain  rates
derived  directly  from  the  DPR  to  build  a  12-dimensional
tree. We first divide the ~1.5 million collocated data for the
full  year  of  2017  into  two  sub-datasets:  70%  for  training
and 30% for testing. Each sub-dataset included the ΔTBs of

channels 1 and 5–15 from MWHS-2 observations and radiat-
ive transfer simulations. To address the slant path impact on
the  MWHS-2  observations,  we  further  stratify  the  training
dataset into four subsets uniformly based on the relative air-
mass [1 / cos(θ)] that is calculated from the zenith angle (θ)
of MWHS-2. Considering the training subset i (i = 1, 2, 3 or
4) has ni points, the k-d tree algorithm partitions this ni-by-
12 dataset by recursively splitting the ni points in 12-dimen-
sional  space  into  a  binary  tree  known  as  a  model  object,
which  is  a  convenient  way  of  storing  information  of  the
grown  tree.  Four  individual  k-d  trees  (model  objects)  are
then created and passed to the subsequent process of search-

 

 

Fig.  4.  Comparison  of  monthly  mean  surface  rain  rates  between  MWHS-2
(V01  regression  only),  DPR  and  GPCP.  The  upper  three  plots  show  the
annual  mean  surface  rain  rates.  The  lower  two  plots  show MWHS-2  minus
GPCP and DPR, respecively.
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ing neighbors.
Next,  two  different  search  mechanisms  are  adopted  to

estimate  the  rain  rates  from  MWHS-2  observations  based
on the four k-d trees built earlier:

(1)  Range  searches  (RS):  Given  a  range  (hypersphere
radius)  of r Kelvin  and  a  point  in  the  query  data  (testing
data),  we  search  for  all  points  in  the  model  object  that  are
within a Euclidean distance r Kelvin from that query point
and consider them as neighbors. The indices of these neigh-
boring points are then used to map the corresponding DPR
rain rates in the training data. This will allow us to obtain a
set  of neighboring rain rate estimates for each query point.
The  average  value  over  this  neighboring  set  represents  the
estimated  k-d  rain  rate,  henceforth  called  the  RS  rain  rate.
Excluding  the  zero  rain  rates,  the  rest  of  the  neighboring
rain rates, which are precipitation cases, are averaged to rep-
resent  the  conditional  rain  rate.  An  advantage  of  this
method  is  that  the  percentage  of  non-zero  rain  rates  over
this neighboring set provides an estimation of the probabil-
ity of precipitation.

(2) Nearest neighbor searches (NNS): Given a point in
the  query  data,  we  find  the  point  in  the  k-d  tree  that  is
nearest  to  that  query  point  in  terms  of  the  Euclidean  dis-
tance. The index of the nearest neighbor then enables the map-
ping of the corresponding DPR rain rate in the training data.
This mapping then yields the nearest neighboring rain rate,
which  serves  as  another  way  of  representing  the  estimated
k-d  rain  rate  of  that  query  point,  henceforth  called  the  KD
NN  rain  rate.  Compared  to  RS,  NNS  can  be  done  effi-
ciently  by  using  the  tree’s  properties  to  quickly  eliminate
large portions of the search space, especially in a study such
as the present one that deals with high dimensional data (12
dimensions).

For  both  the  RS  and  NNS  method,  we  use  the  zenith

angles in the testing data to determine which k-d tree out of
the four should be used for searching neighbors. For RS, we
set the radius to be proportional to the MWHS-2 noise equi-
valent  temperature  (NEΔT),  as  the  following  equation
shows: 

r = NE∆T
√

k . (2)

The NEΔT of MWH-2 is initially set to be 1 K and k is
the  dimension  of  the  query  dataset  (here,  12).  For  points
found to  be  without  neighbors  within  the  initial  radius,  we
extend  the  search  to  a  larger  hypersphere  by  continuously
increasing the NEΔT with increments of 1 K until the max-
imum value of 5 K was reached. As such, more than 98% of
the points are found with at least one neighbor. The NNS is
concluded  once  the  first  neighbor  is  found  with  the  search
range within up to 5 K.

The statistics of the RS rain rates compared to the DPR
rain rates for testing data per scan position are shown in Fig. 5.
These statistics include the mean bias, standard deviation of
the bias,  and MAE. Despite different slant paths at  various
scan positions, the rain rate estimates are very stable across
the same scanline. The largest deviation from the DPR rain
rates is about 0.04 mm h−1 and the largest MAE is less than
0.1 mm h−1. 

4.2.2.    Evaluation of algorithms

Like the procedure for validating the MLR method, we
apply the created k-d trees to the MWHS-2 observations for
the year 2016 to retrieve the rain rates based on either RS or
NNS. An example of the rain rate retrievals with the unit of
mm h−1 using the RS method for the day of 15 July 2016 is
shown in Fig. 6a. The corresponding probability of precipita-
tion is also shown, in Fig. 6b, in which the tropical regions
with deep convection generally have a higher chance of pre-

 

 

Fig. 5.  Statistics of retrieved rain rates compared to DPR rain rates,  for testing data
from  MWHS-2  by  searching  neighbors  within  a  fixed  hypersphere  radius  per  scan
position. The statistics include bias (magenta dots), mean absolute error (MAE, mint-
green dots) and standard deviation of the bias (blue line). The brick-red dots are for
relative airmass, which is used to stratify the training data when creating the four k-d
trees and to determine which k-d tree is used in neighbor-searching for testing data.
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cipitation. RS rain rates and probabilities of precipitation, as
well as their bin-averaged values, are projected on a double
logarithmic scale in Fig. 6c. Note that the probability of pre-
cipitation  cannot  be  averaged  and  therefore  we  take  the
mode  of  the  probabilities  within  each  bin  to  represent  the
probability  of  precipitation  of  a  given  bin.  The  probability
of precipitation derived from RS is correlated well with the
rain rate retrieval. This precipitation probability provides us
with an uncertainty estimate associated with each measure-
ment  and  it  allows  us  to  evaluate  whether  or  not  the
observed  scene  is  raining  at  all.  Classical  retrieval
algorithms only provide rain rates.

After  applying  the  created  k-d  trees  to  the  MWHS-2
observation,  we  then  gridded  RS  rain  rates  and  NNS  rain
rates to compare them with those from DPR and GPCP. Here-
after, the analysis is based on the annual mean gridded rain
rates with the unit of mm d−1. Figures 7a and b show the scat-

terplots of annual RS rain rates against GPCP and DPR rain
rates,  respectively.  The  correlation  coefficient  between  RS
rain rates and GPCP rain rates is more than 0.96. It is worth
noting that the scatter between the RS rain rates and GPCP
rain  rates  is  significantly  smaller  than  the  scatter  between
those from RS and DPR. This confirms the results observed
in  the  MLR  models.  This  again  is  mostly  caused  by  the
lower data density of DPR, which has only 25 independent
beams per  scan,  as  opposed to  88 for  MWHS-2.  The grid-
ded rain rates are also stratified logarithmically based on RS
rain rates. These averaged rain rates are also illustrated over
the scatterplots in Fig. 7, in which the red dots and lines rep-
resent averages and standard deviations of rain rates of the
y-axis.  In  other  words,  the  average  and  standard  deviation
are of either GPCP rain rates or DPR rain rates. In both sub-
plots, the yellow dots fall on the 1:1 lines with slight overes-
timation  over  the  light  precipitation  range  (<  0.4  mm d−1),

 

 

Fig. 6. Spatial distribution of (a) rain rate retrieval and (b) proability of precipitation, and (c) scatterplot of (a) versus
(b) on double logarithmic scale (blut dota) with their bin average (x-axis, RS rain rate) or mode (y-axis, probability of
precipitatin, red dots), from MWHS-2 observations on 15 July 2016.

 

 

Fig.  7.  Scatterplots  of  annual  mean  2.5°  ×  2.5°  gridded  rain  rates  from  GPCP  [y-axis,  (a)]  and  DPR  [y-axis,  (b)]
compared  against  rain  rate  retrievals  by  RS  from  MWHS-2  with  units  of  mm  d−1,  on  logarithmic  scale.  (c)
Comparison of rain rate retrievals between RS and NNS. Red dots and red lines are averages and standard deviations
of either GPCP rain rates or DPR rain rates by subsetting RS rain rates logarithmically.
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which  means  that  the  RS  rain  rate  retrievals  are  in  excep-
tional  agreement  with  the  rain  rates  from GPCP and  DPR.
The results of NNS are substantially equivalent to those of
RS shown by Fig. 7c, where the correlation coefficient is 1,
and both the bias and RMSE are extremely low. This demon-
strates  that  these  constructed  k-d  trees  tend to  be  robust  to
noise  and  invariant  to  the  spatial  heterogeneity  of  rainfall.
Moreover,  this allows for the selection of NNS over RS in
scenarios requiring lower computation costs and disregard-
ing the probability of precipitation.

Because of the above analysis, we leave out the results
of  NNS and only  show the  spatial  distributions  of  the  rain
rates from RS compared with those from GPCP and DPR in
Fig. 8. Similar to that of MLR compared against GPCP and

DPR,  the  spatial  distributions  of  RS  rain  rates  also  reflect
the  major  areas  of  deep  convection  in  the  tropics  well.
However, the overestimation near Indonesia is less than that
using  the  MLR  method.  Comparing  the  RS  rain  rates  and
DPR-derived  rain  rates,  the  latter  are  noisier  than  the
former,  which  further  confirms  the  previous  inference  that
the lower DPR data density is at least partly responsible for
the less congruent retrievals.
 

5.    Conclusions

Three  algorithms  for  rainfall  retrieval  estimation  were
developed  in  this  paper  by  combining  observed  TBs  from
MWHS-2  and  simulated  TBs  from  the  radiative  transfer

 

 

Fig. 8. Spatial distirubtion of annual mean 2.5° × 2.5° gridded rain rates from
MWHS-2 by RS compared against the rain rates from DPR and GPCP with
units of mm d−1.
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model  as  well  as  matched  rain  rates  derived  directly  from
the GPM DPR. In order to avoid issues related to the simula-
tion  of  surface  emissivity  over  land,  we  limited  this
algorithm  development  to  open  oceans  only.  Using  four
tests with different combinations of channels, we found that
adding 118 GHz to the other high frequencies (89, 150 and
183 GHz) improves retrieval performance. Results also sug-
gest that channels peaking too high to be sensitive to ice scat-
tering  have  contributed  little  to  the  retrieval  process.  Con-
sequently,  we  selected  channels  1,  5–15  (or  channels  1,
6–15)  as  inputs  to  the  three  rain  rate  retrieval  algorithms.
The first algorithm is based on MLR that models the relation-
ships between corresponding ΔTBs (independent variables,
differences between observed and simulated MWHS-2 TBs)
and  rain  rates  (response  variable).  Both  RS  and  NNS  are
based on the k-d tree data structure that is a 12-dimensional
tree  built  using  70% of  the  matched  ΔTBs of  MWHS-2  at
channels 1, 5–15. To eliminate the impact of slant path vari-
ations  in  the  MWHS-2  observations,  all  three  algorithms
were performed for each individual scan position (MLR) or
each individual group of scan positions (RS and NNS). The
rain rate retrievals estimated from each algorithm are com-
pared  against  the  rain  rates  from GPCP and  DPR,  respect-
ively, on an annual mean 2.5° latitude × 2.5° longitude grid-
ded basis.

All  three  algorithms  generally  show  good  agreement
with  the  GPCP  rain  rates,  with  correlation  coefficients  of
0.96  and  maximum averaged  bias  less  than  5%.  While  the
averaged  bias  of  the  MLR rain  rates  is  slightly  lower  than
that of RS or NNS, a slight underestimation exists in MLR
at light rainfall (< 0.3 mm d−1). The results of RS and NNS
based on k-d trees are in extremely high agreement in terms
of the correlation coefficient, bias and RMSE, which makes
them almost  interchangeable.  Yet,  NNS can  be  carried  out
more  efficiently  than  RS  by  using  the  tree  properties  to
quickly eliminate large portions of the search space. In addi-
tion, RS is the only algorithm of the three that allows for the
derivation of probability of precipitation, which is an import-
ant measure in weather forecasts.

Compared  to  the  consistency  between  rain  rates  from
the MWHS-2 observations and those from GPCP (R = 0.96
for  all  three  algorithms),  the  comparisons  with  DPR  pro-
duce  slightly  lower  correlation  coefficients  of  0.84  (for
MLR)  and  0.85  (for  RRS  and  NSS).  Their  biases  increase
by  up  to  ~3%.  The  reason  for  this  degraded  correlation
between monthly mean gridded FY-3C data and DPR likely
lies in the relatively low data density of DPR, caused by its
narrow swath. This causes the DPR statistics for each 2.5° ×
2.5° box to be noisier simply because each box holds fewer
individual  measurements  compared  to  either  GPCP  or  our
own gridded results from MWHS-2. This increased noise in
DPR  gridded  estimates  is  readily  apparent  in  the  global
maps shown in Fig. 8 (DPR being the second panel from the
top).

These rainfall retrieval algorithms are developed based
on scan positions of MWHS-2 observations, which helps elim-
inate  the  concern  that  different  footprints  of  a  cross-track

radiometer have different local zenith angles. In addition, a
unique feature of RS is that it provides probability of precipit-
ation  apart  from  the  instantaneous  rain  rate  estimates.  The
probability of precipitation provides us with an uncertainty
estimate  associated  with  each  rain  rate  retrieval,  which
allows us  to  evaluate  whether  or  not  the  observed scene is
raining  at  all.  Classical  rainfall  retrieval  algorithms  do  not
provide this property.

The results from the validation process suggest that the
high-frequency  microwave  channels  between  89  GHz  and
190 GHz can successfully be used for measurement of rain-
fall.  The  developed  algorithms  can  be  used  in  conjunction
to improve upon what could be accomplished with only one
method  alone.  Moreover,  this  study  serves  as  proof  of
concept for developing rain rate estimation algorithms using
satellite observations from FY-3C/MWHS-2, which for the
first  time  carries  118  GHz  channels.  This  holds  signific-
ance for  other  future  sensors  carrying these  bands,  such as
NASA’s TROPICS mission and EUMETSAT’s MWI, both
of which will contribute to near-global high temporal and spa-
tial resolution microwave measurements at various high fre-
quencies, including 118 and 183 GHz.
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