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ABSTRACT

Developed  regions  of  the  world  represent  a  major  atmospheric  methane  (CH4)  source,  but  these  regional  emissions
remain poorly constrained. The Yangtze River Delta (YRD) region of China is densely populated (about 16% of China's
total  population)  and  consists  of  large  anthropogenic  and  natural  CH4 sources.  Here,  atmospheric  CH4 concentrations
measured at a 70-m tall tower in the YRD are combined with a scale factor Bayesian inverse (SFBI) modeling approach to
constrain seasonal variations in CH4 emissions. Results indicate that in 2018 agricultural soils (AGS, rice production) were
the main driver of seasonal variability in atmospheric CH4 concentration. There was an underestimation of emissions from
AGS in the a priori inventories (EDGAR—Emissions Database for Global Atmospheric Research v432 or v50), especially
during the growing seasons. Posteriori CH4 emissions from AGS accounted for 39% (4.58 Tg, EDGAR v432) to 47% (5.21
Tg, EDGAR v50) of the total CH4 emissions. The posteriori natural emissions (including wetlands and water bodies) were
1.21  Tg  and  1.06  Tg,  accounting  for  10.1% (EDGAR v432)  and  9.5% (EDGAR v50)  of  total  emissions  in  the  YRD in
2018.  Results  show that  the  dominant  factor  for  seasonal  variations  in  atmospheric  concentration in  the  YRD was AGS,
followed  by  natural  sources.  In  summer,  AGS  contributed  42%  (EDGAR  v432)  to  64%  (EDGAR  v50)  of  the  CH4

concentration enhancement while natural  sources only contributed about 10% (EDGAR v50) to 15% (EDGAR v432).  In
addition, the newer version of the EDGAR product (EDGAR v50) provided more reasonable seasonal distribution of CH4

emissions from rice cultivation than the old version (EDGAR v432).
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Article Highlights:

•  Anthropogenic and natural CH4 emissions were constrained at monthly time scales.
•  CH4 emissions from rice cultivation dominated observed seasonal variations.
•  CH4 emissions from natural sources accounted for ~10% of YRD budget.

 

 
 

 

1.    Introduction

Methane  (CH4)  is  the  second  most  important  green-
house gas and has a  global  warming potential  that  is  28 to
34  times  that  of  carbon  dioxide  (CO2)  on  a  one-hundred
year time horizon (Myhre et al., 2013). It represents an import-

ant  mitigation  pathway  for  the  short-term  reduction  of  the
anthropogenic atmospheric greenhouse effect (Myhre et al.,
2013). China is a large CH4 emitter. According to the Emis-
sions Database for Global Atmospheric Research (EDGAR
v432),  China's  anthropogenic  CH4 emissions  exceeded  all
other nations over the period of 1970–2012 (Janssens-Maen-
hout  et  al.,  2017).  China's  implementation  of  relevant
policies  on  CH4 emission  reduction  during  the  Twelfth
Five-Year Plan Period, however, has not yet resulted in signi-
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ficant mitigation (Miller et al., 2019).
The contribution of different sources and the spatial distri-

bution of CH4 emissions remain highly uncertain (Kirschke
et  al.,  2013).  In  the  United  States,  the  national  CH4 emis-
sions were underestimated by approximately 50% and 70%
by the US Environmental Protection Agency (EPA) and the
EDGAR inventories, respectively (Miller et al.,  2013). The
CH4 emissions  using  a  California-specific  inventory  were
underestimated by 37% compared to top-down atmospheric
inversions  estimated  for  central  California  (Zhao  et  al.,
2009).  Top-down inverse  approaches  have also shown that
emission inventories are biased low for China (Shen et  al.,
2014; Huang  et  al.,  2019).  However,  one  study  found  that
the  total  CH4 emissions  estimated  using  an  atmospheric
Bayesian inversion were 29% smaller compared to EDGAR
estimates in China and attributed the bias to an overestima-
tion of CH4 emissions from rice agriculture during the sum-
mer (Thompson et al., 2015). So far, there have been few stud-
ies  regarding  the  seasonal  variation  of  CH4 emission
sources in China, which severely limits the accuracy of total
annual  emission  estimates.  For  example,  previous  studies
estimated the CH4 emissions only in cold periods (Hu et al.,
2019) when the emissions from rice paddies are expected to
be minimal.

It has been argued that bottom-up CH4 emission estim-
ates  have  greater  uncertainty  compared  to  top-down
approaches at the regional scale (Dlugokencky et al., 2009,
Pison  et  al.,  2018).  In  contrast  to  bottom-up  approaches,
which are driven by process-based models and/or inventor-
ies, top-down approaches are driven by concentration observa-
tions  and  coupled  to  atmospheric  transport  models.  These
top-down constraints are essential to reducing process uncer-
tainty in bottom-up flux estimates (Bloom et al., 2016; Saun-
ois et al., 2016; Houweling et al., 2017; Kunik et al., 2019).

The  Stochastic  Time-Inverted  Lagrangian  Transport
model  coupled  to  the  Weather  Research  and  Forecasting
model (WRF-STILT) has been used to estimate CO2,  CH4,
N2O, SO2, and CO emissions (McKain et al., 2012; Kim et
al.,  2013; Chen  et  al.,  2016; Xi  et  al.,  2016; Hu  et  al.,
2018a).  In  addition  to  their  application  in  urban  regions,
these inverse modeling techniques have also been applied to
estimate trace gas emissions associated with natural ecosys-
tems and agricultural regions (Mallia et al., 2015; Xu et al.,
2016; Griffis  et  al.,  2017).  These  applications  support  that
the WRF-STILT model framework is an effective tool for con-
straining emissions at relatively high temporal and spatial res-
olution. However, the application of these methods in China
remains  relatively  rare.  Recent  studies  have  applied  the
WRF-STILT model to estimate CO2 and CH4 budgets in the
Yangtze River Delta (YRD) region (Hu et al., 2018b, 2019),
but these efforts focused only on CH4 emissions during the
cold  season  when  there  is  little  interference  from  natural
sources.  Natural  wetlands are the largest  source of  CH4 on
the global scale (Kirschke et al., 2013). Further, CH4 emis-
sions from water bodies (rivers and lakes) are comparable to
emissions from natural wetlands in China (Xu et al.,  2014;

Xiao et al., 2019). However, CH4 emissions from rice cultiva-
tion, natural wetlands, and water bodies remain highly uncer-
tain because they differ  in hydrometeorological  conditions,
carbon substrate availability, and history of human disturb-
ance (Xu et al., 2014; Wei and Wang, 2016).

Urban lands and lands in their vicinity have been identi-
fied as CH4 emission hotspots (Wunch et  al.,  2009).  These
hotspots  are  driven  by  anthropogenic  activities  related  to
coal mining, wastewater treatment, rice cultivation, and land-
fills,  which  account  for  50%–65%  of  total  anthropogenic
CH4 emissions (Aydin et  al.,  2011).  Urbanization is  occur-
ring at a rapid pace in China. Quantifying CH4 emissions in
urbanized  regions  and  understanding  drivers  of  the  emis-
sions  can  help  inform  local  mitigation  efforts  and  sustain-
able  urbanization  planning.  Further,  very  little  is  known
about natural CH4 emissions and their relative contribution
to China’s total CH4 budget.

Here,  we provide a  top-down constraint  on CH4 emis-
sions  in  the  YRD  region,  Eastern  China,  using  the  WRF-
STILT model framework. The model was enabled by near-
continuous CH4 concentration observations from a 70-m tall
tower  in  an  agricultural-urban  domain  in  Anhui  Province.
The  main  objectives  were  to:  1)  Constrain  the  major  CH4

sources  within  the  YRD  region  at  seasonal  time  scales;  2)
Identify the main sources that control the seasonality of CH4

emissions; 3) Assess the relative importance of natural CH4

emissions  from  wetlands  and  water  bodies  in  the  YRD
region; 4) Evaluate if there are important biases in the a pri-
ori  CH4 emissions  associated  with  the  EDGAR  bottom-up
inventories;  and  5)  Determine  optimal  emission  scaling
factors to estimate the total anthropogenic and natural emis-
sions of CH4 for the YRD region. 

2.    Methodology
 

2.1.    Site and observations

Atmospheric CH4 concentration was measured on a 70-
m tall tower in Quanjiao County, Chuzhou, Anhui Province
(31.97°N,  118.26°E,  10  m  above  sea  level; Fig.  1).  Crop-
lands are the dominant land use type, accounting for 49% of
the total area of the YRD. This land use type includes both
dryland crops and rice paddies. According to China Statist-
ical Yearbook (National Bureau of Statistics, 2018), rice pad-
dies occupied 15% of the YRD area in 2018. Other land use
types  include  water  bodies  (6.9%),  marshlands  (0.22%),
forests  (32%),  impervious  surfaces  (11%),  grasslands
(0.94%), shrublands (0.23%), and bare land (0.04%).

The  tower  measurements  have  been  ongoing  since
December 2017.  From December 2017 to December 2018,
CH4 concentration was measured using a cavity ring-down
spectrometer  (model  G1301  Picarro  Inc.,  Sunnyvale,  CA,
USA)  at  a  sampling  rate  of  1  Hz.  In  addition  to  CH4,  this
instrument  also  measured  CO2 and  water  vapor  concentra-
tions  simultaneously.  The  short-term  measurement  preci-
sion was 0.15 ppm for CO2 and 1 ppb for CH4 based on 5-
second  averaging  internals.  The  CH4 and  CO2 measure-
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ments  were  calibrated  twice  (24  November  2017  and  10
July 2018). Details about the calibration procedures can be
found in the supplemental information.

Supporting measurements included an eddy covariance
system consisting of a three-dimensional sonic anemometer
(model  CSAT3,  Campbell  Scientific  Inc.,  Logan,  UT,
USA), an open-path CO2/H2O analyzer (model EC150, Camp-
bell Scientific Inc., Logan, UT, USA), and an air temperat-
ure and humidity probe (model HMP155A; Vaisala, Inc., Hel-
sinki, Finland) mounted at the height of 70 m. Additionally,
a four-way net radiometer (model CNR4, Kipp & Zonen B.
V., Delft, the Netherlands) was mounted at the height of 10 m
and  provided  measurement  of  upwelling  and  downwelling
of short-wave and long-wave radiation. 

2.2.    WRF-STILT model

We used the Weather Research and Forecasting (WRF)
model  (version  3.8.1)  to  provide  the  meteorological  fields
(Skamarock et  al.,  2005; Skamarock and Klemp, 2008) for
three  nested  domains  at  a  spatial  resolution  of  27,  9,  and
3 km (Fig. 2). The innermost domain covers the YRD area.
The  parameters  adopted  in  WRF  have  been  described  by
Chen et al. (2016) and Hu et al. (2018a). The initial meteoro-
logical  fields  and  boundary  conditions  were  provided  by
NCEP  FNL  (Final)  Operational  Global  Analysis  data
(http://rda.ucar.edu/datasets/ds083.2)  with  a  spatial  resolu-
tion of 1° × 1° and a temporal resolution of 6 h.

The  Stochastic  Time-Inverted  Lagrangian  Transport
(STILT)  model,  based  on  the  HYSPLIT  model,  is  a  Lag-
rangian particle dispersion model. A detailed description of
the  model  can  be  found  in Lin  et  al.  (2003).  Briefly,  the
model releases a specified number of particles at the observa-
tional location (receptor) and the atmospheric transport, simu-
lated  using  the  WRF  model,  is  used  to  trace  the  released
particles  backward  in  time.  In  this  way  the  WRF-STILT
model can quantify the contribution from upstream sources
or sinks of trace gases to the receptor.

The source/sink contribution, represented by footprint ele-
ment footprinti,j (units: ppm m2 s μmol−1), is generated from
these particle trajectories and their associated locations relat-
ive to each grid point. Here, footprinti,j refers to the sensitiv-
ity of the CH4 concentration at the receptor with respect to
changes in the surface flux at  time i and grid j.  The use of
three domains within WRF provides increased spatial resolu-
tion  in  the  innermost  domain  to  reduce  uncertainty  of  the
particle trajectory simulation. According to the size of the sim-
ulation area (i.e., the outer edge of the domain), the particles

 

 

Fig.  1.  Location  map  and  instrumentation.  The  far-left  panel  shows  the  location  of  the  tower  site  (red  triangle)  and  five
WMO/GAW stations, including Ulaan Uul Mongolia (UUM), Waliguang (WLG), Pha Din (PDI), Yonagunijima (YON), and
Ryori (RYO). The middle panel is the land cover for YRD at a 30-m spatial resolution (Gong et al., 2019). The two pictures
on the far right are the tower and the analyzer.

 

Fig.  2.  WRF  configuration  of  three  nested  domains.  The
spatial resolutions for d01, d02, and d03 are 27 km, 9 km, and
3 km, respectively.
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are allowed to be transported back in time for up to 168 hours
(7 days). Therefore, most of the particles can be traced back
to a relatively clean background atmosphere. In the process
of  atmospheric  transport,  the  particles  are  affected  by  the
underlying sources and sinks associated with each grid cell,
thus  producing  an  enhancement  [(ΔCH4)enhancement]  on  the
observed  concentration  at  the  receptor.  Theoretically,  the
observed concentration is the sum of the enhancement attrib-
uted to these sources and the background concentration (Lin
et  al.,  2003; Mallia  et  al.,  2015; Hu  et  al.,  2019),  as
expressed by the following equation: 

(CH4)model =(CH4)background+ (∆CH4)enhancement

=(CH4)background+
168∑
i=1

n∑
j=1

(footprinti, j× fluxi, j) .

 

2.3.    A  priori  CH4 emission  map  and  background
concentration

We used the EDGAR v432 (https://edgar.jrc.ec.europa.
eu/) and the EDGAR v50 (https://edgar.jrc.ec.europa.eu/over-
view.php?v=50_GHG)  emission  inventory  products  to
provide a priori CH4 anthropogenic emissions. The spatial res-
olution for these products is  0.1° × 0.1°.  In EDGAR v432,
CH4 emissions are calculated for 22 anthropogenic sources
and  the  emission  timeseries  is  from  1970  to  2012.  In
EDGAR v50, fuel exploitation is subdivided into coal, gas,
and oil type, and as a result, the CH4 emission source types
increased  to  24.  The  EDGAR  v50  emission  timeseries  is
from 1970 to 2015.  In addition to dividing emissions from
fuel  exploitation  into  three  subcategories  (gas,  coal,  and
oil),  the  EDGAR v50 product  has  new spatial  proxies.  For
instance,  it  now uses  the Global  Human Settlements  Layer
product  to distribute population-related emissions (Pesaresi
et  al.,  2019).  The  emission  estimate  of  v432  for  China  is
4000 Gg CH4 or 8% higher than that of v50 for the period
from 2006 to 2012. This difference is mainly due to the estim-
ation  of  enteric  fermentation  and  fugitive  emissions  from
solid fuels. The monthly sector-specific emission grid maps
for  CO2,  CH4,  and  N2O  are  only  available  for  2010  in
EDGAR v432 and for 2015 in EDGAR v50. We performed
a  fitting  analysis  on  each  emission  source  separately  to
obtain  their  respective  growth  rates.  We  then  used  these
growth  rates  to  scale  the  monthly  emission  grid  maps  in
2010  and  in  2015  to  obtain  the  spatial  distribution  of  CH4

emissions at the monthly time scale for 2018, the year dur-
ing  which  the  tower  observations  were  made.  Finally,  we
estimated  the  growth  rate  of  EDGAR's  total  emission  for
China from 2010 to 2018 (EDGAR v432, 2% yr−1) or from
2015 to 2018 (EDGAR v50, 1% yr−1).

In cold seasons, CH4 emissions from natural sources in
the region, such as wetlands and lakes, are negligible (Shen
et al., 2014; Hu et al., 2019; Huang et al., 2019). However,
during  warm  seasons,  CH4 emissions  from  wetlands  and
other  water  bodies  are  large  and cannot  be  ignored (IPCC,
2001; Ding and Cai, 2007). An emission map for these nat-

ural sources is necessary. Here, we combined China's high-
resolution  (30  m)  land  cover  dataset  as  shown  in Fig.  1
(Gong  et  al.,  2019; http://data.ess.tsinghua.edu.cn/)  with
CH4 emission factors for wetlands and water bodies [Wang
et al., 2009; Xiao et al., 2017; Bian, 2018; Zhao et al., 2019;
Table  S1 in  the  electronic  supplementary material  (ESM)].
These emission factors were scaled with the area weight coef-
ficients of each water body and wetland to obtain flux val-
ues for four seasons (winter: 15.86, spring: 53.36, summer:
128.01, autumn: 71.64 nmol m−2 s−1; Table S1 in the ESM).
The spatial resolution of the wetland emissions (30 m) was
aggregated to match the EDGAR resolution so that  natural
and anthropogenic emissions could be used synchronously.

Apart from a priori CH4 emissions, the background con-
centration  at  the  receptor  is  required  for  equation  men-
tioned above. The prevailing wind in the YRD is northwest
in  the  winter.  Based  on  previous  studies  (Dlugokencky  et
al.,  2009; Chen et al.,  2018; Hu et al.,  2019), we chose the
average CH4 concentration observed at two WMO/GAW sta-
tions, Ulaan Uul Mongolia (UUM) and Waliguang (WLG),
to represent the background CH4 values in the winter (Fig. 1).
Linear  interpolation  was  performed  to  scale  the  daily
(WLG) and the weekly (UUM) values to an hourly resolu-
tion.  The  prevailing  wind  is  southeast  in  the  summertime.
The  mean  hourly  CH4 concentration  at  Yonagunijima
(YON) and Ryori (RYO) was used as the background concen-
tration  in  the  summer.  The  average  of  the  concentration  at
the  five  WMO  sites  [WLG,  UUM,  YON,  Pha  Din  (PDI),
and RYO] was used as the background concentration in the
spring and autumn. 

2.4.    Posteriori CH4 emissions

A  scale  factor  Bayesian  inversion  (SFBI)  was  used  to
obtain scaling factors for CH4 enhancement induced by differ-
ent  sources.  See  the  supplementary  material  for  details  of
the SFBI method. For each month, we first used the a priori
emission data to estimate the concentration enhancement asso-
ciated  with  each  source  type.  We  then  identified  the  four
source categories with the highest enhancement values to per-
form optimization. Each of these four source categories was
assigned  a  scaling  factor,  and  all  other  categories  were
lumped  together  and  were  adjusted  with  a  single  scaling
factor.  For  example,  for  the  month  of  December  2017,  the
top four sources in EDGAR v432 were fuel exploitation, agri-
cultural  soils,  wastewater  handling,  and  oil  refineries  and
transformation  industry,  and  the  remaining  sources  were
grouped as “Other”. We combined the obtained scale factor
with  the  corresponding  a  priori  emission  to  obtain  a  pos-
terior emission. 

3.    Results and discussion
 

3.1.    WRF simulations and footprints

We compared the WRF simulations of air temperature,
humidity, wind speed, and wind direction with the 70-m tall
tower  observations.  We  compared  the  simulated  radiation
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fluxes with the observations that were available at a height
of 10 m. These fluxes should be nearly constant between the
10-m  and  70-m  height.  The  driving  meteorological  fields
provided by WRF were in close agreement to the field obser-
vations. The simulated and observed air temperature were in
good agreement [correlation coefficient (r) 0.97, root mean
squared error (RMSE) 2.7°C]. The downwelling short-wave
radiation and wind speed were generally overestimated and
the downwelling long-wave radiation (L↓) and relative humid-
ity  (RH) were at  times underestimated.  Since there was no
boundary layer height observation at the site, the data of the
wind  profile  radar  at  Nanjing  Meteorological  Station  was
used  to  verify  the  simulation  of  the  planetary  boundary
layer height (PBLH) in WRF. Using the radar wind profile
data  in  December  2017,  based  on  the  standard  method
(Hildebrand  and  Sekhon,  1974),  the  mean  error  (WRF
minus observation) of the PBLH was −94 m and the stand-
ard  deviation  of  the  error  was  442  m  after  eliminating  the
data  during  precipitation  and  at  night.  Similar  biases  in
PBLH  have  also  been  reported  in  other  studies  using  the
WRF model (Bagley et al., 2017; Hu et al., 2019). In addi-
tion  to  PBLH,  the  surface  sensible  heat  flux  (H)  and  fric-
tion velocity (u*) also influence the mixing of trace gases in
the  atmosphere.  WRF captured  the  diel  variations  of  these
two variables reasonably well (Figs. S1 and S2 in the ESM).

The source  region  for  the  tower  receptor  could  extend
over 1000 km. However, the tower observations were more
sensitive  to  sources  closer  to  the  tower  whose  footprint
strength was higher. A previous study for the YRD region sug-
gests a threshold of 10−4 ppm m2 s μmol−1 for the footprint
strength  and  shows  that  the  source  region  exceeding  this
threshold  contributes  about  75%  of  the  observed  CH4

enhancement  (Chen  et  al.,  2018).  Similarly,  the  10−4 ppm
m2 s  μmol−1 threshold was applied here to define the most
sensitive zones. According to the cumulative contribution dis-
tribution (Fig. S3 in the ESM), grids with footprint strength
greater than this threshold accounted for 68.5% (March) to
94.6%  (January)  of  the  total  concentration  enhancement
observed at the tower.

The  hourly  footprint  was  averaged  to  obtain  the  sea-
sonal  spatial  distribution (Fig.  3)  where the period Decem-
ber 2017 to February 2018 is defined as winter, followed by
spring  (March  to  May  2018),  summer  (June  to  August
2018), and autumn (September to November 2018). Sources
with  footprint  strength  greater  than  10−4 ppm m2 s  μmol−1

generally fell in the YRD region. The dominant source area
was  different  among  the  four  seasons.  The  dominant
sources were mainly concentrated in the central  and north-
ern  parts  of  Anhui  and  Jiangsu  Province  in  the  winter,  in
northern  Zhejiang  Province  and  in  southern  Jiangsu  and

 

 

Fig. 3. Averaged concentration footprint (ppm m2 s μmol−1) for four seasons. (a) Winter (December 2017–February
2018);  (b)  Spring (March–May 2018);  (c)  summer (June–August  2018);  (d)  autumn (September–November 2018).
The asterisk represents the location of the observation site.
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Anhui Province in the spring, in southern Anhui and Zheji-
ang  Province  in  the  summer,  and  in  Anhui  and  Jiangsu
Province  in  the  autumn.  These  seasonal  differences  arose
mostly from differences in the prevailing wind direction and
the speed of airmass movement. 

3.2.    Simulated  CH4 concentration  prior  to  source
optimization

Figure 4 compares the hourly and seasonal mean concen-
tration simulated by the model versus the observation. Reason-
able agreement between simulated and observed CH4 concen-
tration  was  achieved  for  the  winter  with  low  temperature
(mean  air  temperature  6.3°C, Fig.  4a),  with  a  mean  differ-
ence (simulation minus observation) of  99 ppb and 32 ppb
and a  linear  correlation r of  0.56  (p <  0.01)  and  0.52  (p <
0.01) for EDGAR v432 and EDGAR v50 prior to optimiza-
tion,  respectively.  It  should  be  noted  here  that  due  to  the
abnormality of high CH4 emissions in February and March
in EDGAR v432 (section 3.3), the winter correlation coeffi-
cient was calculated only with data in December and Janu-
ary  and  the  spring  correlation  coefficient  was  calculated
only with data in April  and May. In the summer (mean air
temperature  29.1°C),  the  simulated  values  are  much  lower
than the observed values (mean bias  error  of  −286 ppb for
EDGAR v432 and −213 ppb for EDGAR v50), and the correl-
ation  is  also  weaker  than  in  the  wintertime  (R2 =  0.21  for
EDGAR  v432, p <  0.01; R2 =  0.24  for  EDGAR  v50, p <
0.01; Fig. S4 in the ESM). These patterns suggest that these

two inventory databases do not adequately capture the sea-
sonal dynamics of the CH4 sources in the region.

The  simulated  concentration  was  moderately  sensitive
to  wetland  emissions.  The  seasonal  mean  concentrations
shown in Fig. 4c did not include the concentration enhance-
ment  induced  by  CH4 emission  from wetlands.  If  the  wet-
land emissions were taken into account, the mean bias error
(MBE)  for  the  summer  improved  slightly  to  −238  ppb  for
EDGAR  v432  and  −166  ppb  for  EDGAR  v50  from  −286
ppb and −213 ppb, respectively (Fig. S4). For the summer-
time simulations, the regression slope of observed and simu-
lated CH4 concentration based on EDGAR v50 was greater
than the  slope based on EDGAR v432,  consistent  with  the
fact  that  the  anthropogenic  CH4 emission  in  EDGAR  v50
was  reduced  from  that  in  EDGAR  v432.  That  large  MBE
was evident in the summer, even with the inclusion of wet-
land  sources,  illustrates  the  importance  of  performing  the
SFBI analyses to optimize the seasonality of CH4 emissions. 

3.3.    Optimization of scaling factors

Tables 1 and 2 summarize the scaling factors obtained
with the SFBI method on a monthly basis. In EDGAR v432,
CH4 emissions from AGS (agricultural soils) were severely
overestimated in February and March, as evidenced by a scal-
ing factor that was much less than 1 (0.36 in February and
0.19 in March). The abnormally high CH4 emissions resul-
ted in a large positive bias in the simulated concentration in
this  period  (Fig.  4b).  In  comparison,  EDGAR  v50  gave

 

 

Fig. 4. Time series of (a) temperature and precipitation, (b) simulated and observed CH4 concentration from
December 2017 to December 2018, and (c) seasonal mean simulated and observed CH4 concentration. The
black dotted line marks the transition between 2017 and 2018.
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more  reasonable  emission  estimates  for  this  source  cat-
egory during these months, with no CH4 emissions in Febru-
ary  and  March.  However,  both  inventories  severely  under-
stated  the  AGS  emissions  during  the  growing  season.  The
largest  underestimation  was  274%  for  EDGAR  v432  and
195%  for  EDGAR  v50  in  July.  Compared  with  EDGAR
v432,  EDGAR v50  has  improved  the  seasonal  distribution
of  AGS  CH4 emissions  throughout  the  year,  which
improved the comparison with the observation (Fig. 4c) but
was still substantially biased low in the summer.

CH4 emissions  from  oil  refineries  and  transformation
industry (REF_TRF) were overestimated for the majority of
the year.  The scale factor for this source category was less
than  1  for  8  months  (0.52  to  0.76)  in  the  case  of  EDGAR
v432  and  for  10  months  (0.26  to  0.99)  in  the  case  of
EDGAR v50.

In generating the wetland emission inventory, we used
one emission factor for each season (Table S1 in the ESM).
Wetland  CH4 emission  potential  varied  through  the  sum-

mer months with a maximum potential  observed in July or
August.  This  emission  potential  is  reflected  in  the  SFBI
scale  factors.  The  largest  scale  factor  was  for  July,  at  2.14
for EDGAR v432 and 1.38 for EDGAR v50.

The original enhancements based on EDGAR v432 and
natural  sources  did  not  have  reasonable  seasonal  emission
trends  compared  with  the  observed  concentrations.  The
highest  enhancement  came  from  AGS  in  the  month  of
March  (Fig.  S5  in  the  ESM),  which  was  unreasonable
because  the  temperature  was  low  (13.9°C; Fig.  4a).  After
applying the SFBI method, AGS was still the most import-
ant  contributor  to  the  concentration  enhancement,  but  the
peak  value  now  occurred  in  July  (Fig.  S5),  which  has  the
highest monthly mean temperature of 30.3°C. For EDGAR
v50,  the  peak  enhancement  from  AGS  changed  from  June
to July after using the SFBI method, and the peak enhance-
ment  value  changed  from  166  ppb  to  267  ppb.  Another
change brought  by  the  SFBI  method was  the  seasonal  pat-
tern in the enhancement caused by fuel exploitation (PRO).

Table 1.   Monthly scaling factors for the main CH4 sources in EDGAR v432.

Time AGS PRO RCO REF_TRF SWD_LDF WWT Wetlands ENF Other

Dec 2017 0.86 0.52 0.67 0.54 0.67 0.81 0.67 0.67 0.67
Jan 2018 0.94 0.39 0.76 0.75 0.76 0.85 0.76 0.76 0.76
Feb 2018 0.36 0.52 0.82 0.42 0.42 0.69 0.42 0.42 0.42
Mar 2018 0.19 0.85 0.67 0.67 0.67 0.87 0.67 0.89 0.67
Apr 2018 0.70 0.98 0.75 0.75 0.75 0.91 0.96 0.75 0.75
May 2018 1.90 1.57 1.13 1.13 1.13 1.10 1.28 1.13 1.13
Jun 2018 2.00 1.51 1.63 1.63 1.63 1.31 1.33 1.63 1.63
Jul 2018 2.74 1.67 1.67 1.67 1.32 1.75 2.14 1.67 1.67

Aug 2018 2.23 1.49 1.49 1.02 1.49 1.38 2.04 1.49 1.49
Sept 2018 1.61 1.19 1.49 1.00 1.49 1.15 1.49 1.49 1.49
Oct 2018 0.96 0.78 0.81 0.63 0.81 0.84 0.81 0.81 0.81
Nov 2018 0.94 0.69 0.75 0.76 0.75 0.86 0.75 0.75 0.75
Dec 2018 1.04 0.56 0.75 0.52 0.75 0.81 0.75 0.75 0.75

Notes:  AGS—agricultural  soils;  PRO—fuel  exploitation;  RCO—energy  for  building;  REF_TRF—oil  refineries  and  transformation  industry;
SWD_LDF—solid waste landfills;  WWT—waste water handling;  Wetlands—marshland,  mudflats,  and water bodies (rivers,  lakes,  ponds,  and
reservoirs); ENF—enteric fermentation. Data shown in bold italics are in the “Other” group having the same monthly scaling factor.

Table 2.   Monthly scaling factors for the main CH4 sources in EDGAR v50. Refer to Table 1 for source category definition.

Time AGS PRO RCO REF_TRF SWD_LDF WWT Wetlands Other

Dec 2017 0.97 0.59 0.98 0.31 0.97 0.97 0.97 0.97
Jan 2018 1.10 0.38 1.04 0.64 1.10 1.04 1.10 1.10
Feb 2018 0.68 0.44 0.79 0.26 0.68 0.63 0.68 0.68
Mar 2018 0.92 0.35 0.92 0.38 0.92 0.95 1.06 0.92
Apr 2018 1.67 1.33 0.65 0.65 0.65 1.23 1.28 0.65
May 2018 1.47 1.34 0.97 0.97 0.97 1.01 1.10 0.97
Jun 2018 1.36 1.13 1.17 1.17 1.17 1.04 1.00 1.17
Jul 2018 1.95 1.22 1.22 1.22 1.09 1.18 1.28 1.22

Aug 2018 1.76 1.12 1.12 0.99 1.12 1.07 1.38 1.12
Sept 2018 1.80 1.33 1.57 0.96 1.57 1.13 1.57 1.57
Oct 2018 1.09 0.86 1.09 0.46 1.09 0.98 1.23 1.09
Nov 2018 0.95 0.79 0.95 0.63 0.95 1.00 1.07 0.95
Dec 2018 1.19 0.57 1.02 0.36 1.19 0.98 1.19 1.19
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Originally the PRO enhancement was high in the winter and
low in the summer for both EDGAR inventories (Fig.  S5).
Although  the  a  priori  PRO  emissions  were  invariant
throughout  the  year,  the  prevailing  northwest  wind  in  the
winter  meant  that  our  observational  site  was  heavily
affected by emissions in Anhui, which is the only province
with coal mining in the YRD, resulting in a large concentra-
tion  enhancement.  After  using  the  scaling  factor  for  PRO
(Tables 1 and 2),  this seasonality of the PRO enhancement
was weakened (Fig. S5).

Figure 5 compares the monthly observed concentration
throughout the year with the simulated concentration using
different  emission  configurations.  The  a  priori  simulation
with EDGAR v432 gave the highest concentration in March
(2304.8 ppb) and lowest concentration in July (2046.3 ppb),
in sharp contrast to the observed seasonality showing the low-
est monthly mean in February (2033.8 ppb) and the highest
in  August  (2379.0  ppb).  The  a  priori  simulation  with
EDGAR  v50  displayed  a  much  weaker  seasonality  (min-
imum of 2077.2 ppb in March and maximum of 2199.0 ppb
in June) than the observed seasonality. After the scale factor
adjustments, both the EDGAR v432 and EDGAR v50 posteri-
ori  simulations  reproduced  the  observed  seasonality  quite
well. If the AGS source was excluded from the posteriori sim-
ulations,  the  simulated  concentration  was  in  the  range  of
2034.3 ppb to 2156.3 ppb (EDGAR v432) and 2001.8 ppb
to 2160.6 ppb (EDGAR v50), much lower than the observed
range of seasonal variation. These results indicate that AGS
was the main source of  the seasonal  variation of the atmo-
spheric  methane  concentration.  The  simulation  results,
based  on  EDGAR  v432,  showed  that  the  contribution  of
AGS to total CH4 emissions was lowest in winter (30%) and
highest in summer (42%) and was higher than the contribu-

tion  of  natural  sources  (winter:  2%,  spring:  6%,  summer:
15%, autumn: 9%). For the EDGAR v50 simulations, the con-
tribution of AGS to total CH4 emissions was 0 in winter and
reached  the  maximum  in  summer  (64%).  The  contribution
of natural sources to total CH4 emissions was the smallest in
winter (4%), followed by spring and summer (10%) and the
largest in autumn (14%).

By applying the scaling factors from Table 1 and Table 2,
the slope between the observed CH4 and simulated CH4 con-
centration  enhancement  for  EDGAR  v432  changed  from
0.60  to  0.65,  and  the  coefficient  of  determination R2

increased  from  0.05  to  0.40  (Fig.  S6  in  the  ESM).  The
RMSE were reduced by 25%. Similar results were obtained
for the EDGAR v50 simulations. The absolute value of the
MBE for EDGAR v432 increased by 36%.

Figure  6 compares  the  simulated  and  observed
ensemble diel variation of CH4 concentration for the four sea-
sons. The SFBI method improved the simulated diel pattern
the most for the summer season, in terms of both the mean
value and the diel amplitude. In the other three seasons, the
observed  and  simulated  diel  amplitudes  were  weaker,  and
the improvement brought by the SFBI appeared as a reduc-
tion of the MBE. Both a priori and posteriori simulations pro-
duced a  diel  peak value  at  about  0600 LST in  the  summer
and  in  the  autumn,  which  was  1  to  2  h  ahead  of  the
observed diel cycle (Figs. 6c and 6d). Some of the time mis-
match may have been a result of inaccurate PBLH diel vari-
ations.  The PBLH simulated by WRF has the lowest  value
at  0700  LST  in  the  winter,  and  the  PBLH  was  lowest  at
0600–0800  LST in  the  autumn.  The  timing  of  these  simu-
lated peaks may have been too early in comparison to the lim-
ited wind profiler observations (Fig. S7 in the ESM). 

 

 

Fig. 5. Time series of monthly CH4 background concentration (bg), observed
concentration (obs), simulated concentrations with a priori and posteriori CH4

fluxes, and simulated concentrations with posteriori CH4 fluxes but excluding
emission from agricultural soils (posteriori - AGS).
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3.4.    A priori and posteriori CH4 flux by source category

Tables  S2  and  S3  (in  the  ESM)  compare  the  a  priori
and posteriori CH4 emissions for the major source categor-
ies  in  the  YRD on  a  monthly  time  scale  in  2018.  We first
examine  the  wetland  emission.  This  source  category  is
broadly  defined  to  include  marshland,  mudflats,  and  water
bodies (rivers, lakes, ponds, and reservoirs). Recall that the
a  priori  emission  factors  (flux  density,  emission  per  unit
time per  unit  wetland  surface  area)  for  the  natural  wetland
sources were the same for each season, with the highest flux
density  of  128.01  nmol  m−2 s−1 in  summer  and  the  lowest
flux of 15.86 nmol m−2 s−1 in winter (Table S1 in the ESM).
Considering  that  the  regional  flux  of  each  source  obtained
from  EDGAR  products  is  total  emission  per  unit  time
divided  by  the  total  YRD  area,  it  is  necessary  to  multiply
the  wetland  flux  density  by  the  percent  of  water  body  and
marshland  area  in  the  YRD  (7.13%,  according  to  the  land
use  statistics,  consisting  of  0.22%  marshlands  and  6.91%
water  bodies;  section  2.1)  to  estimate  the  a  priori  regional
emission for wetlands. After optimization, the regional wet-
land emission varied on the monthly time scale, peaking in
August at 19.52 nmol m−2 s−1 and 12.62 nmol m−2 s−1, when
other sources were constrained by EDGAR v432 and v50 as
a  priori  inventories,  respectively.  A  similar  peak  monthly
regional flux of 17 nmol m−2 s−1 has been reported by Chen

et  al.  (2018) for  the  U.S.  Midwest  using  the  WRF-STILT
inverse  modeling  strategy.  The  high  regional  wetland  flux
in  July  and  August  (Fig.  S8  in  the  ESM)  appeared  to  be
related  to  key  climate  drivers.  These  two  months  experi-
enced  the  highest  and  second  highest  monthly  temperature
(30.3°C in July and 29.9°C in August) and monthly precipita-
tion  (181  mm  in  July  and  304  mm  in  August, Fig.  4a).
These  conditions  are  known  to  favor  methanogenesis  and
CH4 production  (Bridgham  et  al.,  2006; Melton  et  al.,
2013).

Our wetland result  can be compared with two bottom-
up estimates for the YRD region found in the literature. Our
estimates  of  the  annual  mean  regional  wetland  flux,  6.60
nmol m−2 s−1 and 5.80 nmol m−2 s−1 according to optimized
EDGAR v432 and EDGAR v50, respectively, are about two
to  three  times  the  annual  mean  reported  by Bloom  et  al.
(2017) for  wetlands  in  the  YRD  region.  In Bloom  et  al.
(2017),  wetland  emission  was  calculated  at  a  grid  resolu-
tion of 0.5° × 0.5° using an ensemble approach consisting of
multiple  parameterizations of  wetland extent,  heterotrophic
respiration, and temperature sensitivity. Data from Bloom et
al. (2017) also indicate a higher wetland flux in the warm sea-
son than in the cold season, but differ from our estimates in
two  details.  First,  their  peak  emissions  occurred  in  June,
whereas  our  peak  values  occurred  in  July  or  August.

 

 

Fig. 6. Ensemble diel variation of CH4 concentration in (a) winter, (b) spring, (c) summer, and (d) autumn.
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Second,  the peak monthly value is  much smaller  than ours
(Fig.  S8  in  the  ESM).  A  literature  survey  by Zhang  and
Jiang  (2014) of  CH4 flux  observations  in  14  wetlands  in
China  reveals  that  these  wetlands  vary  from  a  weak  sink
(flux  density  −1.04  nmol  m−2 s−1)  to  a  strong  emission
source (flux density 781.25 nmol m−2 s−1). Their best estim-
ate of the annual mean flux density for wetlands in Central
China, which includes the YRD region, is 38 nmol m−2 s−1.
Their flux density is expressed on the basis of unit wetland
surface area. Recalling that wetland fraction in the YRD is
about  7.13%,  the  annual  flux  density  found  by Zhang  and
Jiang  (2014) is  equivalent  to  a  regional  CH4 flux  of  2.71
nmol  m−2 s−1,  which  is  about  half  of  our  posteriori  estim-
ates. The disparity between the top-down and bottom-up wet-
land emission estimate exists largely because of the high spa-
tial  variability  of  emissions  from  natural  sources,  differ-
ences  among  measurement  techniques,  and  the  overall
scarcity of direct flux measurements (Ito and Inatomi, 2012;
Wei and Wang, 2016, 2017; Ito et al., 2019). However, com-
bining these top-down and bottom-up methods can give guid-
ance on how to best optimize emission estimates from nat-
ural sources (Verhulst et al., 2017; Kunik et al., 2019).

Agricultural soils (AGS) is another source category that
deserves expanded discussion. Since field measurements gen-
erally  express  the CH4 emission as  a  flux density,  here  we
converted the spatially averaged flux (Table S3 in the ESM
and Table  3)  to  the  flux  density  by  dividing  the  regional
flux  with  the  rice  paddy  areal  percent  of  15.35%  (section
2.1). Agricultural statistics show that 90% of the rice grown
in the YRD is medium- and late-season rice (National Bur-
eau  of  Statistics,  2018).  To  further  facilitate  comparison
with  observational  studies,  we  partitioned  the  annual  flux
density  to  growing-season  and  nongrowing-season  values
assuming  a  growing  season  from  17  June  to  14  October
(length of 120 days). The results are given in Fig. S9 (in the
ESM) and Table 4.

The posteriori AGS flux density had much more reason-
able seasonality than the a priori flux density (Fig. S9 in the
ESM).  After  applying  the  SFBI  method,  the  flux  density

peaked in  July,  during  the  middle  of  the  rice  growing sea-
son  in  the  YRD  (mid-June  to  mid-October). Zou  et  al.
(2005) also observed that the highest flux density occurred
in early July after rice transplanting. Their field experiment
was conducted in the rice phase of a typical wheat-rice rota-
tion field in Jiangsu Province. Kong et al. (2019) observed a
sharp  drop  in  CH4 flux  that  lasted  for  a  week  during  the
mid-season  drainage  at  the  end  of  the  tillering  period  in
August.  This water  management regime is  commonly used
in  other  regions  of  China  except  the  southwest  (Shi  et  al.,
2010).  This  may be  part  of  the  reason why CH4 flux  from
AGS in August was lower than in July (Fig. S9). Under the
policy  of  banning straw burning and government  subsidies
for returning straw to the field, increased demand for food pro-
duction  has  promoted  the  use  of  fertilizer  and  returning
straw to rice fields in China.  Therefore,  the CH4 flux from
AGS  in  July  for  the  tillering  stage  is  expected  to  have  an
increasing  trend  in  the  YRD  (Cai  et  al.,  2007; Fan  et  al.,
2016). Wang  et  al.  (2015) reported  that  the  flux  density
peaked  in  August  in  a  late  season  rice  crop  in  Fujian
Province, a province at the southern boundary of the YRD.
Using a process model that integrates the distribution of rice
paddies,  rice  calendar,  climate,  and  soil  conditions, Cao  et
al.  (1996) showed that  in  the  rice  growing  regions  at  latit-
udes north of 20°N, the highest flux density occurs between
July and September.

Previous  field-based  measurements  (e.g.,  chambers,
eddy  covariance)  of  CH4 emissions  from rice  have  mainly
been conducted during the growing season (e.g., Cai et al.,
1999; Khan et  al.,  2015).  The growing season flux density
was 132.7 nmol m−2 s−1 and 222.0 nmol m−2 s−1 in EDGAR
v432 and EDGAR v50, respectively. These values were adjus-
ted upward to 270.2 nmol m−2 s−1 and 389.3 nmol m−2 s−1

after applying the SFBI method (Table 4). The adjusted flux
densities  were higher than the growing season flux density
of 211.8 nmol m−2 s−1 reported by Shi et al. (2010) for rice
paddies  in  the  middle  and  lower  reaches  of  the  Yangtze
River.  The process model of Cai (1997) yielded a growing
season mean flux density of 184.5 nmol m−2 s−1 for rice pad-

Table 3.   CH4 emissions in the YRD in 2018 (units: Tg CH4).

Anthropogenic source: agricultural soils All anthropogenic sources Wetlands Total

EDGAR v432 a priori 4.01±1.49 10.08±1.76 0.87±0.33 10.96±1.79
posteriori 4.58±1.37 10.68±1.63 1.21±0.48 11.89±1.71

EDGAR v50 a priori 3.17±1.49 8.16±1.68 0.87±0.33 9.04±1.72
posteriori 5.21±1.53 10.07±1.67 1.06±0.39 11.13±1.71

Table 4.   Seasonal  and annual  mean CH4 flux density (units:  nmol m−2 s−1)  from agricultural  soils  (AGS).  Flux density is  defined as
emission per unit time per unit area of agricultural soils.

Growing season Non-growing season Annual

EDGAR v432 a priori 132.7 149.3 144.4
posteriori 270.2 112.5 163.8

EDGAR v50 a priori 222.0 60.6 113.0
posteriori 389.3 87.5 185.5
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dies  in  the  latitudinal  range  of  20°–30°N,  which  is  also
much lower than our posteriori estimates for AGS. These dif-
ferences may be related to the promotion of management prac-
tices  that  return  straw residues  to  the  field  in  recent  years.
By 2014, straw fertilization had reached 35% in China (Edit-
orial  Committee  of  China  Agricultural  Yearbook,  2015).
The  estimate  by Shi  et  al.  (2010) is  based  on  a  meta-ana-
lysis of observational studies made before 2009 when reten-
tion  of  crop  residues  was  not  a  common  farming  practice.
The application of wheat straw in Nanjing, China, increased
the CH4 flux density by 250% during the rice-growing sea-
son  (Zou  et  al.,  2004).  The  CH4 flux  density  peaked  at
1644.1  nmol  m−2 s−1 and  293.4  nmol  m−2 s−1 with  and
without straw application, respectively, in a late-season rice
field in southeastern China (Wang et  al.,  2015).  Incorpora-
tion of  crop straw into the soil  increased the seasonal  total
emission by 3.6  to  5.5  times  in  comparison to  the  conven-
tional management practice that disposed of crop straw offs-
ite,  in  a  paddy  field  in  subtropical  central  China  (Wang  et
al., 2017). 

3.5.    Regional CH4 budget in 2018

The total regional CH4 emission from the YRD in 2018
was  10.96  ±  1.79  Tg  and  9.04  ±  1.72  Tg  according  to
EDGAR v432 and EDGAR v50, respectively (Table 3). The
proportion of AGS contribution was 37% and 35%, respect-
ively.  The  uncertainties  of  these  results  were  based  on  the
Monte Carlo method.

After  applying  the  SFBI,  the  total  regional  emission
was  11.89  ±  1.71  Tg  and  11.13  ±  1.71  Tg  according  to
EDGAR  v432  and  EDGAR  v50,  respectively.  Emission
from AGS accounted for 39% (4.58 Tg, EDGAR v432) and
47%  (5.21  Tg,  EDGAR  v50)  of  the  total  emission.  PRO
(fuel  exploitation)  and  WWT  (wastewater  handling)  were
two other dominant anthropogenic emission sources, account-
ing  for  35%  (EDGAR  v432,  3.70  Tg)  and  27%  (EDGAR

v50,  2.72  Tg)  of  the  anthropogenic  emission  subtotal  and
31%  (EDGAR  v432)  and  24%  (EDGAR  v50)  of  the
regional  total  emission.  The  proportion  of  natural  wetland
emission  to  the  regional  total  was  ~10%  (1.21  Tg  in
EDGAR v432 and 1.06 Tg in EDGAR v50).

The seasonal characteristics of the CH4 budget (Fig. 7)
can  largely  explain  why  our  regional  total  (11.89  Tg  and
11.13 Tg) was higher than 6.52 ± 1.59 Tg obtained by Hu et
al. (2019) for the YRD in the calendar year 2011. Their estim-
ate,  which  did  not  consider  wetland  contributions,  was
obtained with the same inverse model using EDGAR v432
as a priori emission, but the model was constrained with con-
centration observations made in the cold season (November
2020 to April 2011) at a different site (about 50 km to north-
east  of  our  site).  They  found  that  the  posteriori  anthropo-
genic CH4 flux (36.0 nmol m−2 s−1) was 31% lower than the
priori  anthropogenic  CH4 flux  (52.1  nmol  m−2 s−1).  Simil-
arly,  in  this  study  the  posteriori  anthropogenic  flux  (38.8
nmol m−2 s−1) for the period from November to April 2018
was 36% lower than that (60.7 nmol m−2 s−1) obtained from
EDGAR  v432  after  the  annual  growth  adjustment  from
2011 to 2018 (Fig. 7a). Extrapolating our posteriori cold-sea-
son anthropogenic flux values to the full year, we obtained
an  annual  regional  emission  total  of  7.05  Tg  (EDGAR
v432), in close agreement with Hu et al. (2019)’s estimate,
especially  if  we  accounted  for  the  annual  growth  rate  of
anthropogenic CH4 emission in the YRD region (2% yr−1; sec-
tion 2.3). While using EDGAR v50 as a priori emission, an
annual regional emission total of 5.02 Tg was smaller than
7.05  Tg  achieved  by  EDGAR  v432.  This  difference  was
mainly  attributed  to  a  priori  AGS.  In  EDGAR v50,  during
half of the cold-season (November–January), the emissions
for AGS were 0, and the emissions for the remaining three
cold  months  were  also  very  small  (4.92  nmol  m−2 s−1).
However,  the a priori  emissions for AGS in EDGAR v432
are  overestimated  in  February  and  March,  with  the  emis-

 

 

Fig.  7.  Comparison  of  a  priori  (left  column)  and  posteriori  (right  column)  monthly  emission  total  on  (a)  EDGAR
v432 and (b) EDGAR v50. Refer to Table 1 for source category definition.
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sions  of  AGS  for  the  cold-season  period  being  8.72  nmol
m−2 s−1. Therefore, when the annual regional emissions total
was estimated only based on the anthropogenic CH4 flux dur-
ing the cold season, the results had a large deviation.

Our  results  also  highlight  the  role  of  rice  paddies  in
regional  CH4 budgets.  It  remains  difficult  to  extrapolate
field-scale  experimental  data  to  assess  national  total  emis-
sions  on  an  annual  scale. Zou  et  al.  (2009) classified  five
major rice regions in China. Shi et al. (2010) obtained typ-
ical  CH4 flux  estimates  for  these  regions  by  conducting  a
meta-analysis  of  field  experimental  results.  Combining  the
areas of these five regions as weighting factors (National Bur-
eau of Statistics, 2018), the weighted average CH4 flux was
taken as China's average flux (10.88 mg m−2 h−1). This flux
estimate  was  compared  with  that  of  the  Middle  and  lower
Yangtze  River  rice  planting  area  (12.59  mg  m−2 h−1)  to
obtain a conversion factor (10.88/12.59=0.86). We used this
conversion  factor  to  upscale  the  CH4 flux  in  the  YRD
obtained  in  our  study  to  estimate  the  CH4 flux  for  all  of
China. The difference in rice growing days (from transplant-
ing  to  harvesting)  in  each  region  was  not  considered.  The
average value (representing 115 days) in the integrated data-
base was selected by default (Shi et al.,  2010). As a result,
the upscaled CH4 emissions during the rice growing season
(representing  120  d)  in  China  (rice  area  3.02  ×  1011 m2;
National  Bureau  of  Statistics,  2018)  were  11.67  Tg  and
16.82  Tg  according  to  the  optimized  EDGAR  v432  and
EDGAR  v50,  respectively.  The  corresponding  annual  rice
emission  was  21.52  Tg  (EDGAR  v432)  and  24.37  Tg
(EDGAR v50).  Based  on  a  bottom-up  method, Peng  et  al.
(2016) estimated that  the  CH4 emissions  from rice  paddies
in China in 2010 were 7.4 ± 1.4 Tg, accounting for 16% of
anthropogenic CH4 emissions. The large disagreement may
be related to methodological differences between top-down
and  bottom-up  approaches  and  also  raises  the  possibility
that recent changes in agricultural practices, such as retain-
ing crop residues in rice paddies, may have unintended cli-
mate consequences. 

4.    Conclusions

Continuous observation of atmospheric CH4 concentra-
tion was made at a 70-m tower in Chuzhou, Anhui Province
from December 2017 to December 2018. An SFBI analysis
was performed using the WRF-STILT model and the atmo-
spheric  CH4 observations  to  provide a  top-down constraint
on the CH4 sources in the Yangtze River Delta region. The
key findings include:

1.  The  main  factor  causing  seasonal  changes  in  atmo-
spheric  CH4 concentration  in  the  Yangtze  River  Delta  was
rice cultivation.

2. The posteriori anthropogenic emissions of the whole
region  were  10.68  ±  1.63  Tg  and  10.07  ±  1.67  Tg  when
using  EDGAR v432  and  EDGAR v50  as  priori  emissions,
respectively.

3.  Among  anthropogenic  emissions,  the  proportion  of

AGS  ranged  from  42.9%  (using  EDGAR  v432  as  a  priori
emission)  to  51.7%  (using  EDGAR  v50  as  a  priori  emis-
sion). The posteriori emissions from natural sources (includ-
ing  wetlands  and  water  bodies)  were  1.21  ±  0.18  Tg  and
1.06 ± 0.39 Tg in YRD in 2018.

4. The underestimation of the anthropogenic CH4 emis-
sions  in  the  YRD from the  inventory  products  was  mainly
caused by the underestimation of emissions from rice cultiva-
tion, especially during the growing seasons.

5. For anthropogenic sources other than AGS, the devi-
ation  between  the  a  priori  emission  and  the  posteriori  res-
ults was small (0.03 Tg for EDGAR v432 and −0.13 Tg for
EDGAR v50).
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