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ABSTRACT

The change  in  ocean net  surface  heat  flux  plays  an  important  role  in  the  climate  system.  It  is  closely  related  to  the
ocean heat content change and ocean heat transport, particularly over the North Atlantic, where the ocean loses heat to the
atmosphere,  affecting the AMOC (Atlantic  Meridional  Overturning Circulation)  variability  and hence the global  climate.
However, the difference between simulated surface heat fluxes is still large due to poorly represented dynamical processes
involving multiscale interactions in model simulations. In order to explain the discrepancy of the surface heat flux over the
North Atlantic,  datasets from nineteen AMIP6 and eight highresSST-present climate model simulations are analyzed and
compared with the DEEPC (Diagnosing Earth's Energy Pathways in the Climate system) product. As an indirect check of
the ocean surface heat flux, the oceanic heat transport inferred from the combination of the ocean surface heat flux, sea ice,
and ocean heat content tendency is compared with the RAPID (Rapid Climate Change-Meridional Overturning Circulation
and Heat flux array) observations at 26°N in the Atlantic. The AMIP6 simulations show lower inferred heat transport due to
less  heat  loss  to  the  atmosphere.  The  heat  loss  from  the  AMIP6  ensemble  mean  north  of  26°N  in  the  Atlantic  is  about
10 W m–2 less than DEEPC, and the heat transport is about 0.30 PW (1 PW = 1015 W) lower than RAPID and DEEPC. The
model horizontal resolution effect on the discrepancy is also investigated. Results show that by increasing the resolution,
both surface heat flux north of 26°N and heat transport at 26°N in the Atlantic can be improved.
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Article Highlights:

•  Surface  heat  loss  from  the  AMIP6  ensemble  mean  north  of  26°N  in  the  Atlantic  is  about  10  W  m–2 less  than  the
observation.

•  Area  mean  surface  heat  loss  north  of  26°N  in  the  Atlantic  increases  by  5.5  W  m–2 per  degree  increase  in  horizontal
resolution.

•  The resolution dependence of the net surface heat flux is primarily related to the latent heat flux component.
 

 
 

 1.    Introduction

The  ocean  net  surface  heat  flux  (FS)  determines  how

much energy enters the ocean. It is an indicator of the Earth’s

energy  budget  imbalance,  since  about  84%–93%  of  the

excess energy entering the Earth system has accumulated in
the ocean (Von Schuckmann et al., 2016, 2020; Cheng et al.,
2017; Cuesta-Valero et al., 2021), due to the small heat capac-
ity of the atmosphere and upper layer soil. Regionally, FS is
also  closely  related  to  the  oceanic  heat  transport,  which
affects  regional  climates  (Caesar  et  al.,  2021)  and  the
intertropical convergence zone (Frierson and Hwang, 2012;
Donohoe et al., 2013; Kang et al., 2018). Therefore, accurate
estimation of FS is essential for understanding current climate
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change and its projections.
The FS from both climate model simulations and atmo-

spheric  reanalyses  has  large  discrepancies  (Liang  and  Yu,
2016; Josey et al., 2013). The varying subgrid-scale parame-
terizations, the spatially and temporally unevenly distributed
samplings of in situ measurements, the near-surface air tem-
perature and humidity that cannot be directly retrieved from
satellites,  and  changes  related  to  the  observational  systems
can all introduce a great number of uncertainties to the FS esti-
mations (Yu et al., 2013). So far, the FS estimated from the
residual of the net TOA (Top of the Atmosphere) radiative
flux  minus  the  accumulated  total  column  atmospheric
energy tendency and divergence has been widely used in the
community  (Trenberth  et  al.,  2019).  This  residual  method
can ensure the energy conservation of the entire atmospheric
column. Much progress in applying the energy budget resid-
ual  method has  been made in  recent  years  using data  from
atmospheric reanalyses (Trenberth, 1991; Mayer and Haim-
berger,  2012; Liu  et  al.,  2015, 2017, 2020; Mayer  et  al.,
2017). The mass correction has been applied to the reanalysis
data because of mass conservation issues leading to spurious
wind divergences associated with the data assimilation pro-
cess  (Trenberth,  1991; Mayer  and  Haimberger,  2012).  A
recent  study (Mayer  et  al.,  2017)  showed that  the  enthalpy
of the atmospheric water vapor should also be accounted for
to  avoid  inconsistencies  arising  from  the  non-zero  atmo-
spheric  lateral  total  (dry  plus  moist)  mass  flux  divergence,
which  balances  surface  freshwater  flux  (i.e.,  precipitation
minus  evaporation).  These  inconsistencies  are  particularly
large when using the Kelvin temperature scale that is common
in  atmospheric  science.  However,  the  inferred  multiannual
global land area mean net surface flux (FSL) is still not realistic
from  the  residual  method  after  these  treatments,  so  the
deficit/excess of the FSL needs to be further adjusted based
on  land  surface  energy  budget  considerations  and  redis-
tributed  to  the  oceans  (Liu  et  al.,  2015, 2017, 2020).  The
results after the FSL adjustment showed improved consistency
with  buoy  data  (Liu  et  al.,  2017)  and  other  observations
(Mayer et al., 2022).

The  energy  budget  over  the  North  Atlantic  plays  an
important role in the climate system since it is related to the
atmospheric  and  oceanic  heat  transports  from the  low lati-
tudes to the high latitudes (Hirschi et al., 2020), influencing
the  Atlantic  Meridional  Overturning  Circulation  (AMOC)
and  the  pronounced  warming  trend  in  the  Arctic  in  recent
decades, which is stronger than the global average warming
near the surface (Serreze and Barry, 2011). The surface heat
loss to the atmosphere in the North Atlantic can affect the cli-
mate in western Europe and even in Eurasia (Rahmstorf and
Ganopolski, 1999).

Direct  observations  of  ocean  surface  fluxes  are  rare.
There  are  only  some  limited  sectional  measurements  of
ocean  heat  transport  in  the  North  Atlantic.  The  most  well
known of these is the RAPID (Rapid Climate Change-Merid-
ional Overturning Circulation and Heat flux array) observa-
tions at 26°N across the Atlantic (Johns et al., 2011; Smeed

et al., 2017), which can be used as an indirect check of the
ocean net surface heat fluxes (Liu et al., 2017, 2020; Trenberth
et al., 2019). In order to investigate the discrepancies of the
ocean net heat flux over the North Atlantic, ocean net surface
heat fluxes from AMIP6 (Atmospheric Model Intercompari-
son Project Phase 6) and the HighresSST-present experiment
(Eyring  et  al.,  2016)  are  compared  with  those  from  the
DEEPC (Diagnosing Earth's Energy Pathways in the Climate
system)  product  (Liu  and  Allan,  2022)  estimated  from  the
residual method, using the recently released ERA5 (the fifth
generation  ECMWF  ReAnalysis)  atmospheric  reanalysis
(Hersbach et al., 2020). The inferred oceanic heat transport
is  compared  with  RAPID  observations,  and  the  effect  of
model horizontal resolution on the discrepancy is assessed.
Data  and  methods  are  described  in  section  2,  results  are
shown in  section 3,  and section 4  presents  discussions  and
conclusions.

 2.    Data and methods

The FS estimated  from  observations  is  based  on  the
energy budget residual method, which is the net TOA radia-
tive  flux  minus  the  accumulated  total  column  atmospheric
energy  tendency  and  divergence  (Trenberth  and  Solomon,
1994; Mayer and Haimberger, 2012; Liu et al., 2015, 2017).
The  high-quality  TOA  radiative  fluxes  are  from  CERES
(Clouds  and  the  Earth’s  Radiant  Energy  System)  from
March  2000  (Loeb  et  al.,  2012; Kato  et  al.,  2013)  to  the
present.  The  TOA fluxes  since  1985 prior  to  CERES have
been reconstructed by Liu et al. (2020), following the proce-
dure of Allan et al. (2014) with some modifications. The cli-
matology  for  the  reconstructed  TOA  flux  is  from  CERES,
and anomalies are from ERA5 (Hersbach et al., 2020), con-
strained by ERBE WFOV (Earth Radiation Budget Experi-
ment Satellite wide field of view, 72-day mean, Wong et al.,
2006)  anomalies  at  10°  ×  10°  resolution  to  represent  the
observed spatial and temporal variability. Discontinuities in
the  reconstruction  were  dealt  with  using  an  ensemble  of
AMIP6 simulations. The global mean OHCT (ocean heat con-
tent tendency) and net TOA flux have been compared. The
general agreement in both the absolute value and variability
between them suggests the robustness of the reconstruction
over 1985–99 (Liu et al., 2020).

The mass-corrected total atmospheric energy divergence
(TEDIV) has been calculated by Mayer et al. (2021a) from
the  recently  released  ERA5  atmospheric  reanalysis,  with
137  model  levels  and  a  horizontal  resolution  of  0.25°  ×
0.25°. The land surface flux adjustment has been applied to
the  mass-corrected  TEDIV  to  estimate FS,  as  described  in
detail  by Liu et al.  (2017, 2020). The inferred global mean
ocean net surface heat flux of 1.7 W m–2 (over 1985–2018)
agrees  well  with  recent  observation-based  estimates  from
Von Schuckmann et al. (2020) to within 1 W m–2, which is
substantially  better  compared  to  model-  and  satellite-based
estimates  (Mayer  et  al.,  2021).  For  example,  CERES+
OAFlux  (Objectively  Analyzed  air–sea  Fluxes,  Yu  and
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Weller,  2007)  has  an  ocean  mean  of  ~28  W  m–2 for  60°
N–60°S,  and  simulated  fluxes  from ERA5 model  forecasts
exhibit  an  ocean  mean  of  ~6  W  m–2.  The  JRA55  (the
Japanese  55-year  reanalysis, Kobayashi  et  al.,  2015)  ocean
mean heat flux is –17 W m–2,  and the MERRA2 (Modern-
Era  Retrospective  analysis  for  Research  and  Applications,
Version 2, Gelaro et al., 2017) ocean surface heat flux has a
mean of –5 W m–2 (Cronin et al., 2019). The inferred ocean
heat transport of 1.23 PW (over the RAPID period; 1 PW =
1015 W) is very close to the RAPID observation of 1.22 PW
at  26°N  in  the  Atlantic,  much  better  than  the  0.66  PW
inferred  from  the  ERA-Interim  surface  flux  (Liu  et  al.,
2020).

∇ ·EO

Based on Loeb et al. (2016) and Trenberth and Fasullo
(2017), the ocean heat divergence ( ) in a water column
can be calculated by: 

∇ ·EO = FO−OHCT ,

where FO = FS − Fice is  the  energy entering the ocean and
Fice is the energy associated with sea ice formation and melt-
ing  and  is  calculated  from  five  ensemble  members  of
ECMWF’s ORAS5 (Ocean ReAnalysis System 5) reanalysis
(Zuo  et  al.,  2019).  OHCT is  calculated  from OHC (Ocean
Heat Content)  using central  differences (e.g.,  the OHCT in
February is the difference of OHCs between March and Jan-
uary divided by the time difference). The OHCT calculated
by Liu et al. (2020) using the OHC integrated over 0–2000
m  is  used  in  this  study,  since  it  shows  good  agreement  in
both absolute value and variability with the global mean FS.
The ORAS5 is a state-of-the-art eddy-permitting ocean reanal-
ysis running on (1/4)° resolution. The ORAS5 has been vali-
dated, and it is found to provide realistic variability in ocean
heat storage and oceanic transports in the tropics (Mayer et
al.,  2018; Trenberth  and  Zhang,  2019)  and  the  Arctic
(Mayer  et  al.,  2019; Uotila  et  al.,  2019).  Considering  that
the oceanic heat transport is zero at the boudary and the heat
transport  through  the  Bering  Strait  is  small  and  can  be
neglected  (Koenigk  and  Brodeau,  2014),  the  oceanic  heat
transport  at  different  latitudes  in  the  North  Atlantic  can  be
accurately estimated by integration from the North Pole.

The AMIP6 and high resolution highresSST-present cli-
mate model simulations have prescribed observed sea surface
temperature (SST) and sea ice and realistic radiation forcings
(Eyring et  al.,  2016).  The highresSST-present is  defined in
the framework of HighResMIP (Haarsma et al., 2016) and a
configuration  available  in  the  CMIP6  archive  similar  to
AMIP6,  but  with  a  higher  horizontal  resolution.  The  high-
resSST-present experiment is designed to allow for an evalua-
tion of the sensitivity of climate model output to spatial reso-
lution,  and  to  help  understand  the  origins  of  model  biases.
The net surface fluxes from these model simulations are calcu-
lated by summing up four components of surface latent heat
flux, sensible heat flux, and shortwave and longwave radiative
fluxes.  There  are  nineteen  AMIP6  models  and  eight  high-
resSST-present models used in this study. Unless stated other-
wise, the AMIP6 data include both normal AMIP6 and high-

resSST-present simulations. The datasets used in this study
are listed in Table 1, with brief descriptions.

 3.    Results

The multiannual  mean (2006–13)  of  ocean net  surface
heat fluxes in the North Atlantic from DEEPC, ERA5, and
AMIP6  (including  highresSST-present)  are  plotted  in
Figs. 1a–c. It can be seen that, in general, the North Atlantic
loses  heat  to  the  atmosphere,  particularly  over  the  Gulf
Stream and the high latitudes.  This loss is  compensated by
the oceanic heat transport from the low latitudes to the high
latitudes in the Atlantic. The corresponding zonal means are
plotted in Fig. 1d. The shaded area is the AMIP6 ensemble
mean ± one  standard  deviation  (STD).  The maximum heat
loss is at 39°N, where the heat fluxes are 71, 66, and 63 W
m–2 from DEEPC, ERA5, and the AMIP6 ensemble mean,
respectively. The DEEPC data show more heat loss than the
AMIP6  ensemble  mean  north  of  35°N,  implying  more
oceanic heat transport is needed to compensate this loss.

The  differences  in Fig.  1e (ERA5 minus  DEEPC)  and
Fig. 1f (AMIP6 minus DEEPC) show similar large discrepan-
cies over the mid-high latitudes. However, it must be borne
in  mind  that  the  AMIP6  models  have  prescribed  observed
SST  and  sea  ice  and  realistic  radiative  forcings;  therefore,
the  atmospheric  internal  component  of FS is  mostly
removed when taking the ensemble mean, which is primarily
the atmospheric response to the prescribed forcings. Mean-
while,  the FS from  the  DEEPC  product  includes  both  the
atmospheric  internal  component  and  the  atmospheric
response to  the prescribed forcings;  thus,  the FS difference
between  DEEPC  and  the  AMIP6  ensemble  mean  may  not
indicate  the  discrepancy  of FS between  them,  but  may  be
largely  due  to  the  atmospheric  internal  component  of FS,
which was found to be critical in forcing the oceanic variabil-
ity in the mid-high-latitude North Atlantic (Barsugli and Bat-
tisti,  1998; Delworth and Greatbatch, 2000; Dong and Sut-
ton, 2005; Kwon and Frankignoul, 2012; Colfescu and Schnei-
der, 2020; Chen et al., 2021). However, after checking the dif-
ference between DEEPC and individual AMIP6 models, spa-
tial  patterns  similar  to Figs.  1e and 1f are  found  (not
shown).

The large discrepancy region also displays a large STD
of the AMIP6 ensemble, as shown in Fig. 1g, with the excep-
tion  of  the  area  around  the  Arctic  region  where FS is  con-
strained  to  be  close  to  zero.  The  STD  along  the  western
boundary current, such as in the slope regions of the Green-
land Ocean and in the Gulf Stream, is large because of the
intense  mesoscale  activity  there  (Chelton  and  Xie,  2010;
Putrasahan  et  al.,  2013; Roberts  et  al.,  2017).  The  ocean
eddy activity will affect the turbulent heat fluxes (Roberts et
al., 2016), but it cannot be well represented by the prescribed
SST over  these  regions.  The  zonal  mean  in Fig.  1h shows
that the mean heat loss from DEEPC between 50°–75°N is
about 15 W m–2 more than that from ERA5 and 13 W m–2

more than simulated by the AMIP6 ensemble mean. The dif-
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ference  between  DEEPC and  the  individual  AMIP6 model
is  also  examined  (not  shown),  and  it  is  found  that  74% of
these  models  (20  out  of  27  models)  show  differences
between 9–25 W m–2 over 50°–75°N. The mean STD of the
AMIP6 net surface heat flux over 50°–75°N is about 12 W
m–2.  The heat  loss  averaged over  the region north of  26°N
from  the  AMIP6  ensemble  mean  is  about  10  W  m–2 less
than  that  from  DEEPC,  and  the  STD  of  the  difference
between  DEEPC  and  AMIP6  models  is  about  4.3  W  m–2.
The deseasonalized time series  of  the  area  mean ocean net
surface  heat  flux  north  of  26°N  is  plotted  in Fig.  2.  Both
DEEPC and the AMIP6 ensemble mean show more-or-less
consistent  decadal  variability  after  1995,  such  as  the  dec-
rease  over  2002–08  and  the  increase  after  2010.  The
DEEPC estimate  does  not  have  a  significant  trend,  but  the
AMIP6 ensemble mean has a significant trend of –0.34 (W
m–2) per  decade.  The  inferior  agreement  in  the  interannual
variability between DEEPC and the AMIP6 ensemble mean

is  partly  due  to  the  aforementioned  atmospheric  internal
component  of FS.  Different  horizontal  resolutions  of
AMIP6 models may also play an important role and will be
further  discussed  below.  AMIP6  models  have  prescribed
sea ice, but in the real world the sea ice at high latitudes can
not only insulate and impede the heat loss from the ocean to
the atmosphere,  but  also can alter  the water  salinity by the
brine rejection during the sea ice formation, therefore increas-
ing the water density and influencing the AMOC and ocean
current (Jansen, 2017), affecting the turbulent fluxes. The vari-
ability  of  ERA5  shows  less  consistency  with  DEEPC  and
the AMIP6 ensemble mean, mainly due to the imbalance of
the  wind-induced  mass  transport  and  surface  pressure
changes,  which  arises  from  the  lack  of  observational  con-
straint  on  divergent  winds  (Trenberth  et  al.,  2009; Mayer
and Haimberger, 2012; Liu et al., 2015, 2020).

As  an  indirect  check  of  the  ocean  net  surface  heat
fluxes  in  the  North  Atlantic,  the  multiannual  mean

Table 1.   Datasets and brief descriptions.

Dataset Period (in this study) Resolution References Model number

DEEPC
RAPID
ORAS5

AMIP6
ACCESS-CM2

ACCESS-ESM1-5
BCC-CSM2-MR
CAMS-CSM1-0

CanESM5
CESM2
CIESM

CMCC-CM2-SR5
CNRM-CM6-1

CNRM_CM6_1_HR
FGOALS-f3-L
GFDL-AM4
IITM-ESM

INM-CM5-0
IPSL-CM6A-LR

MIROC6
MRI-ESM2-0

NESM3
UKESM1-0-LL

highresSST-present
BCC-CSM2-HR
CAMS-CSM1-0
FGOALS-f3-H
FGOALS-f3-L

GFDL-CM4C192
INM-CM5-H

IPSL-CM6A-ATM-HR
IPSL-CM6A-LR

1985–2017
2004–2017
1993–2016

1985–2014

1985–2014

0.7° × 0.7°

0.25° × 0.25°

1.25° × 1.875°
1.25° × 1.875°
1.25° × 1.875°
1.125° × 1.125°
2.81° × 2.81°
0.94° × 1.25°
0.94° × 1.25°
0.94° × 1.25°
1.41° × 1.41°
0.5° × 0.5°
1.0° × 1.25°
1.0° × 1.25°

1.91° × 1.875°
1.5° × 2.0°
1.26° × 2.5°

1.41° × 1. 41°
1.125° × 1.125°
1.875° × 1.875°
1.25° × 1.875°

0.45° × 0.45°
0.47° × 0.46°
0.25° × 0.25°
1. 25° × 1.0°
0.625° × 0.5°
0.67° × 0.5°
0.7° × 0.5°
2.5° × 1.27°

Liu et al. (2020)
Smeed et al. (2017)

Zuo et al. (2019)

Dix et al. (2019)
Ziehn et al. (2020)
Wu et al. (2019)

Rong (2019)
Swart et al. (2019)

Danabasoglu et al. (2020)
Lin et al. (2020)

Cherchi et al. (2019)
Voldoire et al. (2019)
Voldoire et al. (2019)

He et al. (2020)
Zhao et al. (2018a)

Krishnan R. et al. (2019)
Volodin and Gritsun (2018)

Boucher et al. (2020)
Tatebe et al. (2019)
Kawai et al. (2019)
Cao et al. (2018)

Sellar et al. (2019)

Wu et al. (2021a)
Rong (2020)

Bao et al. (2020)
Bao et al. (2020)

Zhao et al. (2018b)
Volodin et al. (2019)

Boucher et al. (2019a)
Boucher et al. (2019b)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
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(2006–13)  meridional  heat  transport  is  integrated  from  the
North Pole using the above equation from different datasets
of net surface heat fluxes, including the DEEPC, ERA5, and
nineteen  AMIP6  and  eight  highresSST-present  climate
model  simulations.  The  sea  ice  and  OHCT  are  from  the
ORAS5  ocean  reanalysis.  The  results  are  shown  in Fig.  3.
Grey lines are the heat transport from individual AMIP6 simu-
lations,  and the ensemble mean is the solid black line.  The
symbols represent short-term historical observations from var-
ious sources and the bars are one standard deviation of multi-
ple measurements (Macdonald, 1998; Bryden and Imawaki,
2001; Ganachaud and Wunsch, 2003; Talley, 2003; Lumpkin
and Speer, 2007; Johns et al., 2011). The vertical dashed red
line shows the location of 26°N. It can be seen that the trans-
port  from  most  of  the  AMIP6  members  is  lower  than  that
inferred from DEEPC in the area north  of  26°N.  Only one
member  has  a  heat  transport  comparable  with  that  inferred
from DEEPC, implying that the area mean FS from AMIP6
in  the  area  north  of  26°N  is  higher  than  the  estimated
DEEPC  product  (i.e.,  less  heat  loss).  The  inferred  AMIP6
ensemble mean oceanic heat transport in the Atlantic is com-
parable  with  that  inferred  from  the  direct  ERA5  surface
fluxes in the area north of 26°N, but is much lower than that
of DEEPC. The heat transport from AMIP6 spreads quickly
after starting the integration from the North Pole, indicating
the  large  spread  of  the  simulated FS in  the  North  Atlantic,
since  both Fice and  OHCT  are  all  from  the  ORAS5.  The
AMIP6 ensemble mean is closer to DEEPC in the Southern
Hemisphere,  but  it  is  still  about  0.3–0.4  PW  lower.  The
oceanic  heat  transport  inferred  from  direct  ERA5  surface

heat flux in the Southern Hemisphere is nearly at the lower
end of that from the AMIP6 ensemble.

The time series of the oceanic heat transport at 26°N is
plotted  in Fig.  4.  The  inferred  heat  transport  from DEEPC
shows reasonable agreement with the RAPID observation in
both  variability  and  quantity.  The  correlation  coefficient
over the RAPID period (April 2004 to February 2017 in this
study) is 0.32, and the mean heat transports are 1.21 PW for
RAPID and 1.24 PW for DEEPC, respectively.  The earlier
trend of RAPID data from 2006–08 is subject to greater uncer-
tainty  in  observations  (Trenberth  and  Fasullo,  2018; Tren-
berth et al.,  2019). The variability agreement is better after
2008, and the correlation coefficient  is  0.73 over 2008–16.
The transport inferred directly from the ERA5 surface heat
fluxes is much lower than that from DEEPC, even though it
is  higher  than  that  from ERA-Interim,  which  is  about  0.66
PW over 2004–16 (Liu et al., 2020). There is good agreement
in  both  the  variability  and  quantity  of  the  heat  transport
between the AMIP6 ensemble mean and ERA5. The correla-
tion coefficient is 0.66, and the mean transports are all 0.91
PW  over  1985–2014.  The  correlation  coefficient  between
DEEPC and AMIP6 is 0.73 over the same period.

The spread of FS is large between AMIP6 model simula-
tions because of different subgrid-scale parameterizations in
the model dynamics, such as the cumulus convection, cloud
microphysics,  turbulence,  radiation,  and  land-surface  pro-
cesses. However, the model resolution may play a role. The
resolution  effects  on  the  multiannual  (2006–13)  area  mean
FS over  the  globe and the  ocean area  north  of  26°N in  the
Atlantic  are  plotted  in Figs.  5a and 5b,  respectively.  The
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Fig. 2. Deseasonalized time series of the area mean ocean net surface heat flux north of 26°N in the Atlantic.  The
shaded  area  is  the  AMIP6 ensemble  mean  (solid  black  line)  ±  one  standard  deviation.  All  lines  are  twelve-month
running means.
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effect  on  the  oceanic  heat  transport  at  26°N  is  plotted  in
Fig.  5c. Figure  5a shows  the  decrease  of  the  global  area
mean FS with the increase of the model grid-point distance.
Model  5  (CanESM)  behaves  differently.  The  regression
slopes are m =  −1.57±1.40 W m–2 and m =  −0.48±1.21 W
m–2 per  degree  horizontal  resolution  without  and  with
model  5  counted,  respectively.  The  correlation  coefficients
between the FS and latitudinal resolution are r = –0.43 and
–0.16 without  and with model  5  counted,  respectively.  For
the  region  north  of  26°N  in  the  Atlantic,  the  heat  loss
increases  with  the  increase  of  the  model  resolution.  The
regression slopes are m = 5.47±3.56 and m = 3.63±2.88 W
m–2 per degree resolution without and with model 5 counted,
respectively. The influence of model 5 on FS north of 26°N
is not as large as that for the global mean. The corresponding
correlation coefficients between the mean FS north of 26°N
and the latitudinal resolution are r = 0.54 and 0.46, respec-
tively.  Based on the above equation,  it  is  expected that  the
relationship between FS and model resolution should be the
opposite of that between the oceanic heat transport and the res-
olution. This is shown in Fig. 5c. The heat transport at 26°N
increases with the increasing model resolution. The regres-
sion slopes are m = −0.22±0.13 and m = −0.15±0.10 PW per
degree  resolution  without  and  with  model  5  counted,  and
the corresponding correlation coefficients between the heat

transport at 26°N and the latitudinal resolution are r = –0.59
and –0.52, respectively. It is observed that when the model
resolution is high enough, the heat transport can be compara-
ble with that inferred from DEEPC products.

To investigate the causes of the resolution dependence
of FS in the global mean and north of 26°N in the Atlantic,
the dependence of flux components at TOA and surface on
the  resolution  has  been  plotted  in Fig.  6.  For  global  mean
TOA radiative fluxes, the RSW (Reflected Shortwave Radia-
tion)  decreases  with  increasing  resolution  (Fig.  6a),  but
more OLR (Outgoing Longwave Radiation) leaves the TOA
to compensate for it to some extent (Fig. 6b). The net effect
is  that  the  radiation  flux  entering  the  TOA  (FT)  increases
with higher resolution (Fig. 6c). These results are consistent
with Vannière et al. (2019), which used a different set of cli-
mate models. Due to the small atmospheric heating capacity
and  no  horizontal  divergence  for  the  global  mean,  most  of
the energy enetering the TOA will reach the surface. There
is  a  strong  correlation  between FT and FS (Fig.  6d);  there-
fore, the global mean FS also increases with the higher resolu-
tion (Fig.  5a).  The physical processes leading to the global
area mean RSW and OLR dependence on the model resolu-
tion are complicated due to the bias compensation between
different  regions  (Moreno-Chamarro  et  al.,  2022).  The
increase of  OLR and the decrease of  RSW with the higher
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Fig. 3. Multiannual mean (2006–13) northward total meridional oceanic heat transports (unit is PW) in the Atlantic derived
from net DEEPC surface fluxes, ORAS5 sea ice, and OHCT, together with some short-term historical observations (symbols,
error bars show one standard deviation) and those inferred from ERA5 and AMIP6 model surface fluxes (including nineteen
AMIP6 and eight highresSST-present model simulations). The vertical dashed red line shows the location of 26°N.
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model horizontal resolution are primarily due to a change of
cloud  radiative  forcings  in  regions  of  mean  ascending
motion. Vannière et al. (2019) suggested a possible explana-
tion: at higher resolution, high intensity precipitation events
are generated by more compact and more intense convective
systems,  thus  reducing  the  mean  cloud  fraction.  A  more
detailed analysis of cloud radiative properties is beyond the
scope of this study but will be the object of a future study.

For FS in the region north of 26°N in the Atlantic, four
flux components are assessed, and it is found that latent heat
(LH) has a similar resolution dependence with FS, as shown
in Fig. 6e. Figure 6f shows the scatter plot between the area
mean FS and LH (both over the region north of 26°N in the
Atlantic). The same range for both axes is selected, so the con-
tribution  of  LH  change  to FS change  can  be  clearly  seen.
The increase of surface evaporation with increasing resolution
has been reported by Vannière et al. (2019) and is a global fea-
ture. One possible cause of this is the increase of SW radiation
at the surface due to the reduction of the mean cloud fraction
(Demory et al., 2014). However, as the sea surface tempera-
ture is prescribed in AMIP6 simulations, it cannot relate the
increase  of  incoming  shortwave  radiation  to  the  surface
latent heat flux. Another possible cause is the stronger surface
wind speed (Terai et al., 2018), which will affect the relative
motion between the wind at 10 m and the ocean surface cur-

rent  and  influence  the  turbulent  heat  fluxes  based  on  the
bulk formula. The sea ice drift at high latitudes can also influ-
ence the relative motion in the ocean surface and hence the
surface heat flux. Therefore, the ocean surface wind and the
sea ice drift may also play roles contributing to the discrep-
ancy of the ocean surface heat flux, as show in previous stud-
ies  (Wu  et  al.,  2017, 2021b).  Additionally,  high-frequency
atmospheric activity, such as storms, also can contribute to
the discrepancy in the simulated ocean net surface heat flux
(Condron  and  Renfrew,  2013; Holdsworth  and  Myers,
2015; Wu et al., 2016, 2020). More dedicated studies would
be needed to determine the mechanism causing the increase
of LH with increasing resolution across models (Vannière et
al., 2019).

 4.    Discussion and conclusions

The North Atlantic net surface heat flux plays an impor-
tant role in the climate system. It can affect the AMOC varia-
tion and climate change on the global scale. However, direct
observations of FS over the North Atlantic are sparse; there-
fore,  the  estimated FS from  DEEPC  using  the  residual
method (Liu et al., 2020) has been used as the “truth” in this
study. DEEPC products have been widely used in the commu-
nity  for  climate  research  and  model  validation  (Valdivieso
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Fig. 4. Northward meridional ocean heat transports at 26°N in the Atlantic from RAPID observations and DEEPC
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Fig. 5. Model resolution effect on multiannual mean (2006–13) net surface flux (a) globally and (b) over the region north
of 26°N in the Atlantic. (c) The effect on the oceanic heat transport at 26°N in the Atlantic. Circles with numbers inside
represent AMIP6 (red for highresSST) model simulations, and the solid circle is from DEEPC. Correlation coefficients and
the regression slopes are also displayed. The thin line and values in the bracket are with model 5 counted.
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et  al.,  2015; Williams  et  al.,  2015; Roberts  et  al.,  2016,
2017; Senior et al., 2016; Hyder et al., 2018; Mignac et al.,
2018; Cheng et al., 2019; Trenberth et al., 2019; Allison et
al.,  2020; Bryden  et  al.,  2020; Mayer  et  al.,  2021, 2022).

The latest DEEPC (version 5) product uses the mass-corrected
total  atmospheric  energy  divergence  from  the  latest
ECMWF release of ERA5 atmospheric reanalysis (Mayer et
al., 2021). By combining it with the sea ice data and OHCT
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Fig. 6. Model resolution effect on multiannual (2006–13) global mean (a) RSW, (b) OLR, and (c) FT.  (e) The LH
over the region north of 26°N in the Atlantic. (d) The scatter plot between global mean FT and FS. (f) The scatter plot
between LH and FS over the region north of 26°N in the Atlantic. Model numbers are in the circles. The regression
slopes are also displayed. The thin line and values in the bracket are with model 5 counted.
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from  the  ECMWF  ORAS5  ocean  reanalysis,  the  net  heat
flux  entering  the  ocean  (FO)  is  estimated  and  the  oceanic
heat transport in the Atlantic is calculated.

AMIP6 data, including the highresSST-present datasets,
have been widely used for climate research. The ocean net sur-
face heat flux in the North Atlantic from AMIP6 is compared
with the DEEPC product in this study to check the discrep-
ancy.  There  is  a  large  spread  of  net  surface  heat  fluxes
among AMIP6 models. The AMIP6 surface heat loss to the
atmosphere is less than that from the DEEPC product (Fig.
1). The inferred oceanic heat transport in the Atlantic is calcu-
lated  and  compared  with  observations  as  an  indirect  check
of the net surface heat flux. When integrated from the North
Pole to 26°N in the Atlantic, heat transports from all AMIP6
models  are  lower  than  that  from  the  DEEPC  product,  and
the  AMIP6  ensemble  mean  is  close  to  that  inferred  from
direct ERA5 surface heat fluxes. The integrated heat transport
from  AMIP6  spreads  quickly,  implying  a  large  spread  in
zonal distribution of the net surface heat fluxes, as shown in
Fig. 1h. The time series of the heat transport at 26°N across
the Atlantic shows good agreement in variability and magni-
tude  between DEEPC and RAPID observations.  The  mean
heat  transports  are  1.21  PW  for  RAPID  and  1.24  PW  for
DEEPC,  respectively,  over  the  RAPID observation  period.
The  agreement  in  variability  between  them  is  better  after
2008, and the correlation coefficient  is  0.73 over 2008–16.
The inferred heat  transports  from AMIP6 and ERA5 agree
with  each  other  in  terms  of  variability  and  magnitude,  but
they are all  about  0.3 PW lower than the DEEPC observa-
tion-based estimate. It is noticed that the inferred heat trans-
port  from  direct  ERA5  surface  heat  fluxes  is  higher  than
that from ERA-Interim estimated by Liu et al. (2020).

The  effect  of  model  resolution  on  the  net  surface  heat
flux and heat transport has been investigated. Results show
that  the  higher  resolution  did  improve  the  agreement  with
observations  of  net  surface  heat  fluxes  over  the  area  north
of 26°N in the Atlantic, as well as the inferred heat transport.
The global mean FS increases with the increase of the resolu-
tion,  and  the  regression  slope  is  about –1.57  W  m–2 per
degree resolution (i.e.,  the higher the resolution, the higher
the FS). Further investigation found that the RSW decreases
with  increasing  resolution  (Fig.  6a),  primarily  due  to  a
change of cloud radiative forcings in regions of mean ascend-
ing motion. Vannière et al. (2019) suggested that at higher res-
olution, high-intensity precipitation events are generated by
more  compact  and  more  intense  convective  systems,  thus
reducing the mean cloud fraction. It merits a more detailed
analysis  and  will  be  the  objective  of  a  future  study.  Since
the atmospheric heat capacity is small, the global mean net
TOA radiative flux FT and net surface heat flux FS are approx-
imately  balanced  (Fig.  6d).  Therefore,  the  global  mean FS

will  also  increase  with  the  higher  model  horizontal  resolu-
tion.

The correlation coefficient (r = 0.54) between the area
mean FS north of 26°N in the Atlantic and the model horizon-
tal resolution is significant using a two-tailed test and Pearson

critical  values  at  the  5% significance  level.  The  regression
slope  is  about  5.47  W m–2 per  degree  resolution  (Fig.  5b),
implying more heat loss when the resolution is increased. Fur-
ther investigation showed that the surface latent heat flux com-
ponent  displays  similar  resolution  dependence  to  the
regional total surface heat flux, FS (Figs. 6e–f). One possible
cause is the stronger surface wind speed (Terai et al., 2018),
which will affect the relative motion between the wind at 10
m and the ocean surface current and influence the turbulent
heat  fluxes  based  on  the  bulk  formula.  The  sea  ice  drift  at
high  latitudes  can  also  influence  the  relative  motion  in  the
ocean  surface  and  hence  the  surface  heat  flux.  Therefore,
the ocean surface wind and the sea ice drift  may also con-
tribute  to  the  discrepancy  of  the  ocean  surface  heat  flux
(Wu et al., 2017, 2021b). Furthermore, high-frequency atmo-
spheric activity, such as storms, also contributes to the dis-
crepancy in the simulated net ocean surface heat flux (Con-
dron and Renfrew, 2013; Holdsworth and Myers, 2015; Wu
et al., 2016, 2020). AMIP6 models have prescribed sea ice,
but  in the real  world,  sea ice at  high latitudes can alter  the
water salinity by the brine rejection during the sea ice forma-
tion, therefore increasing the water density and influencing
the AMOC and ocean current (Jansen, 2017), affecting the tur-
bulent  fluxes.  More  dedicated  studies  focusing  on  surface
ocean processes and cloud radiative forcing should be con-
ducted in the future (Vannière et al., 2019).

As expected, the regression slope between the heat trans-
port  at  26°N  and  the  resolution  is  about –0.22  PW  per
degree  (Fig.  5c),  indicating  the  higher  the  resolution,  the
greater the heat transport. The deviation of the AMIP6 heat
transport from DEEPC and RAPID is also partly due to the
difference in global mean net surface fluxes of AMIP6 simula-
tions.  However,  the  spread  of  the  global  area  mean FS is
about 6.12 W m–2, while the FS spread of 17.59 W m–2 over
the region north of 26°N in the Atlantic is much larger. There-
fore,  even  when  the  global  mean  net  surface  fluxes  from
AMIP6 are constrained by the DEEPC product, the reduction
in the spread of heat transport will be limited. This remains
a challenge for the modeling community. In order to have a
deep understanding of the discrepancy between model simula-
tions and observations, further research is needed. These find-
ings can help the research community more accurately inter-
pret  the  historical  simulations  and projections  produced by
contemporary models. By using the ocean current and temper-
ature  from the coupled CMIP6 model  simulations,  the link
between  the  ocean  net  surface  heat  fluxes  and  the  oceanic
heat transport can be further investigated.
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