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ABSTRACT

Seamless prediction is a weather–climate integrated prediction covering multiple time scales that include days, weeks,
months, seasons, years, and decades. Seamless prediction can provide different industries with information such as weather
conditions and climate variations from the next few days to years, which have important impacts on economic and social
development and important reference value for short-, medium- and long-term decision-making and planning of the country.
Therefore, seamless prediction has received widespread attention from the international scientific community recently. As
Chinese scientists  have also carried out  relevant  research,  this  paper  reviews the research in  China on developments  and
applications  of  seamless  prediction  methods  and  prediction  systems  in  recent  years.  Among  them,  the  main  progress  of
seamless  prediction  methods  studies  is  reviewed  from  four  aspects:  short-  and  medium-range  weather  forecasting,
subseasonal-to-seasonal, seasonal-to-interannual, and decadal climate prediction. In terms of development and application
of  seamless  prediction  systems,  the  main  achievements  made  by  meteorological  operational  departments,  scientific
institutes,  and  universities  in  China  in  recent  years  are  reviewed.  Finally,  some  of  the  issues  in  seamless  prediction  that
need further study are discussed.
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Article Highlights:

•  Some  representative  and  the  latest  prediction  methods  on  multiple  time  scales  from  weather  to  climate  in  China  are
summarized.

•  Separate  weather  and  climate  prediction  systems  and  two  weather–climate  integrated  prediction  systems  have  been
developed in China.

•  Future directions including model improvements, initialization, and prediction methods of seamless prediction in China
are discussed.

 

 
 

 1.    Introduction

There has been a growing desire to obtain weather and

climate  information  on  time  scales  from  several  days  to
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weeks,  months,  seasons,  years,  and  decades.  The  weather
and climate prediction business aims to provide society and
government with products of different time scales. It is a chal-
lenging  project  to  establish  seamless  prediction  of  weather
and climate, and is one of the main tasks of modern weather
and  climate  prediction.  This  is  also  an  important  part  of
“weather  forecasting,  climate  prediction and long-term cli-
mate prediction” proposed by the World Climate Research
Program  (WCRP,  2005).  The  concept  of  “seamless  predi-
ction” was first presented in 2005 and first used by Palmer
et  al.  (2008),  referring  to  predictions  across  the  range  of
weather and climate time scales. Since then, seamless predic-
tion  has  attracted  wide  attention  (Brown  et  al.,  2012;
Hoskins, 2013; Kumar and Murtugudde, 2013; Delworth et
al., 2020; Ruti et al., 2020). The Working Group on Subsea-
sonal  to  Interdecadal  Prediction  (WGSIP)  contributes  to
WCRP  studies  on  predictability  and  prediction  on  a  wide
range  of  time  scales  from several  weeks  to  seasons,  years,
and  decades.  WGSIP  promotes  scientific  research  and  an
international  programme of  seamless  prediction.  Tradition-
ally, weather and climate prediction issues are seen as differ-
ent disciplines. However, integrated modeling and seamless
prediction across multiple time scales stem from a recognition
that the evolution of weather and climate are linked by the
same  physical  processes  in  the  atmosphere–ocean–land–
cryosphere system operating across multiple spatial and tem-
poral scales (Brown et al., 2012). Establishing a weather–cli-
mate integrated prediction system is also an important devel-
opment direction of seamless prediction (Hurrell et al.,2009;
Brown et al., 2012).

Seamless  prediction  covers  short-  and  medium-range,
subseasonal-to-seasonal  (S2S),  seasonal-to-interannual
(S2I), and decadal time scales. With the efforts of Chinese sci-
entists  and  meteorological  operational  departments  in  the
past  three  decades,  short-  and medium-range weather  fore-
casts and S2I climate prediction in China have developed rela-
tively maturely. A representative achievement in short- and
medium-range weather forecasts is the four-dimensional varia-
tional (4DVar) assimilation system independently developed
by  the  Numerical  Weather  Prediction  Centre  (NWPC)  of
the China Meteorological Administration (CMA), making it
one of the few national forecast centers in the world with inde-
pendent  development  and  operational  application  of  a
4DVar assimilation system (Shen et  al.,  2021).  In terms of
S2I  climate  prediction,  meteorological  operational  depart-
ments,  scientific  institutes,  and  some  Chinese  universities
have developed several prediction systems (Bao et al., 2013,
2019; Liu  et  al.,  2015, 2021a; Ren  et  al.,  2017; He  et  al.,
2020a; Song et al., 2021). Based on these systems and some
international advanced systems (Saha et al., 2014; Takaya et
al., 2018; Johnson et al., 2019), the National Climate Center
(NCC) of the CMA developed the China Multi-Model Ensem-
ble  prediction  system  (CMME),  which  performs  well  in
global  and  regional  climate  prediction  (Ren  et  al.,  2019b).
Extended-range  forecasting  lies  between  medium-range
weather  forecasting  and  short-term  climate  prediction,  and
decadal  prediction lies  between interannual  climate  predic-

tion and long-term climate change projection, both of which
are  essential  components  of  seamless  prediction.  In  recent
years,  the  sources  of  predictability,  initialization  schemes,
and prediction methods of extended-range and decadal predic-
tion have become the focus of international research. Chinese
researchers  have  also  participated  extensively  and  made
important  contributions.  For  example,  several  extended-
range forecast methods and decadal prediction initialization
schemes have been proposed (Ren et al., 2014a; Hsu et al.,
2015; Wu et al., 2018a, 2022). Multiple S2S and decadal pre-
diction systems have been developed and used for operational
prediction (Liu et al., 2017; Wu et al., 2018a). These systems
participated in  the international  S2S Prediction Project  and
Decadal Forecast Exchange, separately. Research on different
time scales lays a solid foundation for developing a seamless
prediction system.

Since the concept of seamless prediction was proposed,
several  international  research  and  operational  centers  have
used the seamless approach to develop weather–climate inte-
grated prediction systems that provide forecasts with multiple
time scales (Vitart et al., 2008; Brown et al., 2012; Ham et
al., 2019a; Delworth et al., 2020). For example, the European
Centre  for  Medium-Range  Weather  Forecasts  (ECMWF)
developed a combined medium-range and monthly coupled
forecasting  system  (Vitart  et  al.,  2008),  and  the  UK  Met
Office developed the Met Office Unified Model for weather
and climate prediction (MetUM; Brown et al., 2012). These
achievements  indicate  that  seamless  prediction  has  transi-
tioned  from concept  to  practice.  In  recent  years,  the  CMA
and  the  Institute  of  Atmospheric  Physics  of  the  Chinese
Academy of Sciences (CAS-IAP) have independently devel-
oped  weather–climate  integrated  prediction  systems—
namely,  the  CMA  Climate  Prediction  System  version  3
(CMA-CPSv3) and CAS Flexible Global Ocean–Atmosphere
–Land  System  model  finite-volume  2  (FGOALS-f2).  The
development  of  these  systems demonstrates  that  China  has
taken a significant step towards developing seamless predic-
tion  systems  providing  forecasts  from  weather  to  climate
scales.

In  the  past  three  decades,  Chinese  researchers  have
made many achievements in weather and climate prediction,
as well as some significant progress in weather–climate inte-
grated  prediction.  This  paper  reviews  the  main  research
achievements of prediction methods and systems on different
time scales in seamless prediction in China over the past 30
years, including the recent achievements in weather–climate
integrated  prediction.  A  summary  and  discussion  of  future
research  directions  in  seamless  prediction  are  provided  in
the final section.

 2.    Progress of seamless prediction methods

 2.1.    Progress  of  short-  and  medium-range  weather
forecasts

The  short-  and  medium-range  weather  forecast  is  the
main  component  of  the  traditional  weather  forecast,  which
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has the characteristics of a long development time, solid foun-
dation,  and  high  level  of  maturity  (Dai  et  al.,  2016; Xiu,
2019).  The  uncertainty  of  the  initial  value  is  the  primary
source  of  forecast  error  in  numerical  weather  prediction
(NWP). A high-quality initial value of a model is formed by
a specific data assimilation scheme based on meteorological
observation data and background field information at the ini-
tial  time.  Therefore,  data  assimilation  is  a  key  technology
for NWP (Gong, 2013). Advanced data assimilation technol-
ogy is considered one of the important reasons for improving
NWP  skills  (Bannister,  2017).  With  multi-year  research
efforts,  CMA-NWPC  realized  the  operational  implementa-
tion of its 4DVar assimilation system in 2018 (Zhang et al.,
2019).  Its  subsequent  application has great  significance for
global medium-range weather forecasts in China and demon-
strates  that  operational  NWP  assimilation  technology  in
China  has  reached  the  forefront  of  the  international  NWP
field.  The  4DVar  assimilation  system  can  significantly
increase the types of available observation data, improve the
quality of global analyses, and further improve NWP skills
(Zhang et al., 2019; Shen et al., 2021). Currently, the observa-
tion data of the NWP data assimilation system mostly come
from satellite data. However, bias correction of satellite data
is one of the critical factors affecting the assimilation effect
of satellite data. In terms of satellite data bias correction tech-
nology, Zhang et al. (2018) developed a dynamic bias correc-
tion scheme suitable for satellite radiance data. This scheme
is used in actual business and can effectively solve the drift
of observation data caused by the aging of satellite detection
instruments, degradation of the bias correction equation coef-
ficients, and seasonal changes.

Precipitation  forecasting  is  the  key  to  short-  and
medium-range weather forecasts. Improving the accuracy of
precipitation forecasts  has long been the focus of  meteoro-
logical  business  and  scientific  research.  In  recent  years,
NWP has changed from a single-value forecast to an ensemble
forecast, and from a deterministic forecast to a probabilistic
forecast. Chinese researchers have used different parametric
schemes to  confirm that  ensemble forecasting can improve
the skills of precipitation forecasts (Chen et al., 2003; Li et
al.,  2007).  However,  due  to  the  existence  of  initial  value
error,  the  approximation  of  numerical  calculation,  and  the
imperfection  of  the  physical  processes  in  the  NWP model,
there are often certain systematic and random errors in precipi-
tation forecast results. Therefore, it is vital to correct model
outputs to obtain more accurate precipitation forecast results.
Four methods are usually used for post-processing precipita-
tion forecasts, including quantitative precipitation correction
and integration methods, probabilistic forecast processing, sta-
tistical downscaling, and stepwise correction based on seg-
mented  hierarchical  clustering  (Bi  et  al.,  2016; Gao  et  al.,
2023). They are also important ways to improve precipitation
forecasts  in  practice.  In  addition  to  precipitation  elements,
other continuous variables such as temperature, wind, and vis-
ibility adopt the same correction method: on the basis of the
model  background field  and urban stations’ guidance  fore-
casts,  the  grid-point  forecast  is  gradually  approximated  to

the  stations’ guidance  forecasts  to  form  the  final  refined
grid forecast products by considering the stepwise interpola-
tion analysis method of refined geographic information correc-
tion (Jin et al., 2019).

 2.2.    Progress of S2S prediction

The extended-range forecast  is  a  crucial  component  of
establishing a seamless prediction system. The error source
of weather forecasts is mainly the initial value, and the error
source  of  climate  prediction  is  mainly  the  boundary  value.
The extended-range forecast lies between the weather forecast
and short-term climate prediction, which constitute both an
initial value problem and boundary value problem. In 2013,
the  World  Meteorological  Organization  (WMO)  identified
the extended-range forecast as one of the most critical tasks
and  proposed  the  international  S2S  Prediction  Project,
which focuses on the sources of S2S predictability.

The difficulty of S2S prediction is the lack of predictabil-
ity sources. Many studies have pointed out that the Madden
–Julian  Oscillation  (MJO)  plays  a  critical  role  in  bridging
weather  and  climate,  and  its  activities  (propagation,  inten-
sity, and phase evolution) have essential effects on weather
and climate (Zhang, 2005; Jia et al., 2011; Hsu et al., 2016).
Therefore, the MJO has long been considered the most impor-
tant  predictability  source  for  S2S  prediction  (Brunet  et  al.,
2010; Robertson  et  al.,  2015).  However,  MJO  signals  are
weaker  in  boreal  summer  than  in  other  seasons  (Wheeler
and Hendon, 2004; Zhang, 2005). Boreal Summer Intrasea-
sonal  Oscillation  (BSISO)  is  the  most  remarkable  large-
scale convection and circulation mode in the Asian summer
monsoon  region  (Wu  et  al.,  2016).  The  East  Asia–Pacific
(EAP) teleconnection pattern is the dominant mode of circula-
tion variability over East Asia in boreal summer (Lin et al.,
2018; Wu et  al.,  2020b).  They  are  important  predictability
sources of subseasonal variability in boreal summer (Wang
et al., 2009; Lee et al., 2013; Hsu et al., 2020a). Sudden strato-
spheric warming (SSW) is the most intense circulation evolu-
tion phenomenon in the stratospheric polar region in boreal
winter. Many studies have noted that the downward propaga-
tion of the Northern Annular Mode signal during SSW from
the  stratosphere  to  the  troposphere  can  increase  the  pre-
dictability of surface weather on subseasonal time scales (Tri-
pathi  et  al., 2015;  Domeisen  et  al., 2020a, b).  In  addition,
external forcing factors with “memory” characteristics, such
as the ocean, soil moisture, and snow, are also predictability
sources for S2S prediction (Koster et al., 2011; Jeong et al.,
2013; Yuan et al., 2015).

S2S prediction methods mainly include physical statisti-
cal  models,  dynamical  models,  and  dynamical–statistical
approaches.  Physical  statistical  models  are  generally estab-
lished by the linear or nonlinear relationship between meteoro-
logical elements (prediction variables) and large-scale signals
(prediction  factors).  In  recent  years,  Chinese  researchers
have established several physical statistical models to carry
out S2S prediction research; for example, the Low-Frequency
Synoptic Map (Li et al., 2018), Extended Complex Autore-
gressive model (Yang, 2018), and Spatial-Temporal Projec-
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tion Model (STPM, Hsu et al., 2015, 2020b). Among them,
the STPM method uses the coupling mode of the evolution
of  prediction  factors  and  variables  with  time  and  space  to
establish  a  statistical  model,  which effectively  extracts  and
utilizes the low-frequency components and historical informa-
tion in the observation data and is widely used in the subsea-
sonal prediction of precipitation (Hsu et al., 2015; Zhu and
Li, 2017a), tropical convective activities (Zhu et al., 2015),
tropical cyclones (Zhu et al., 2017), winter surface air temper-
ature and extremely cold days (Zhu and Li, 2017b), and sum-
mer  surface  air  temperature  and  heat  waves  (Zhu  and  Li,
2018), showing higher forecast skill than traditional statistical
models. Pan et al. (2020) confirmed that the STPM method
could also be used for S2I prediction, such as ENSO evolution
prediction. To date, the STPM method has also been applied
to the operational prediction system of the CMA. Hsu et al.
(2020b) pointed out that, although the STPM method can pro-
vide highly skilled and stable S2S prediction products, its abil-
ity  to  predict  the  intensity  and  process  of  extreme weather
needs to be further improved.

In  the  past  decade,  dynamic  models  have  become  the
most  powerful  tool  for  S2S  prediction.  Since  2013,  the
CMA-NCC has successively developed the Beijing Climate
Center Atmospheric General Circulation Model version 2.2
(BCC-AGCM2.2)  and  the  Beijing  Climate  Center  Climate
System Model  version  1.2  (BCC-CSM1.2),  which  fills  the
gap between the medium-range weather forecast and short-
term climate prediction. The Beijing Climate Center Sub-sea-
sonal to Seasonal prediction system version 1 (BCC-S2Sv1)
was  established  based  on  BCC-CSM1.2,  which  is  the  first
model in China to participate in Phase I of the S2S Prediction
Project. The widely used metric to measure the MJO and its
prediction is the Real-time Multivariate MJO (RMM) index
developed by Wheeler and Hendon (2004). The main charac-
teristics  of  the  MJO,  such  as  intensity,  periodicity,  spatial
structure, and temporal evolution, can be well simulated by
BCC-S2Sv1  (Zhao  et  al.,  2015).  However,  the  prediction
skill of the MJO (RMM) index is only about 16 days for the
submitted  dataset  (Liu  et  al.,  2017),  which  is  relatively
lower than most of the other participants in the S2S Prediction
Project (Lim et al.,  2018). To improve the prediction skills
for  the  MJO,  Chinese  researchers  have  carried  out  a  lot  of
research  work,  such  as  improving  the  initial  conditions  of
dynamical models and optimizing ensemble prediction strate-
gies. Liu et al. (2017) stated that improving atmospheric and
oceanic  initial  conditions  can  increase  the  MJO  prediction
skill to 21–22 days. Introducing a moderate moisture initial-
ization  scheme  could  also  extend  the  MJO prediction  skill
by about 2–3 days and enable a more reliable subseasonal pre-
diction of extratropical circulation and precipitation through
a more realistic description of MJO-related teleconnections
(Wu et al., 2020a). Moreover, by combining the perturbations
of multiple parameters that are mainly responsible for cloud
and  convection  parameterization  schemes,  MJO  prediction
can be further enhanced during lead times of 2–3 weeks, as
well  as  an  improved  spectrum,  intensity,  spatial  structure,

and propagation of  the MJO (Liu et  al.,  2019).  In terms of
optimizing  ensemble  prediction  strategies,  several  studies
have  shown  that  the  lagged  average  forecasting  (LAF)
scheme (Ren et al., 2017), an ensemble of different initializa-
tion  schemes  (Ren  et  al.,  2016; Wu et  al.,  2020a),  and  the
multi-model ensemble (MME) of several S2S project models
(Wang et al., 2020b), are helpful for improving MJO predic-
tion. As the number of models participating in the S2S Predic-
tion  Project  increases,  the  MME  will  be  recognized  as  an
important development direction in S2S prediction. In addi-
tion to MJO prediction, the submitted dataset shows that the
prediction  skills  for  the  EAP  teleconnection  during
May–September and BSISO index are about 10 days and 9
days, respectively (Bo et al., 2020; Wu et al., 2020b). Bo et
al. (2020) showed that optimizing atmospheric and oceanic
initial  conditions  can  also  increase  the  prediction  skill  for
the BSISO index to 12 days.

Dynamical–statistical  prediction  methods  have  been
widely used for S2S prediction in recent years. The prediction
skills of dynamical models can be further improved by effec-
tively combining dynamical models and empirical/statistical
methods.  Ren  et  al.  (2014a)  proposed  the  Dynamical-Ana-
logue  Ensemble  Method  to  effectively  reduce  prediction
errors  and  increase  prediction  skills  for  the  monthly  mean
and  daily  atmospheric  circulation  forecasts.  Wu  et  al.
(2018b)  established  a  seasonal  rolling  MJO  dynamical–
statistical downscaling precipitation prediction model based
on  the  forecasted  MJO  information  by  a  dynamical  model
and  achieved  higher  prediction  skills  than  in  the  original
dynamical  model’s  forecast.  In  addition,  Wu  et  al.  (2022)
recently developed a dynamical–statistical prediction model
that improves the prediction skills for the MJO (RMM) and
BSISO indices to 22–23 days and 10–13 days, respectively,
both of which are largely improved compared with the origi-
nal  dynamical  model  forecasts  (Jie  et  al.,  2017; Liu  et  al.,
2017).

Since 2019, the CMA and CAS-IAP have successively
developed  the  latest  generation  of  climate  prediction  sys-
tems.  The  third-generation  climate  prediction  system  was
developed by the CMA (CMA-CPSv3). The S2S prediction
sub-system of  CMA-CPSv3 (BCC-S2Sv2)  has  participated
in  Phase  II  of  the  S2S  Prediction  Project.  Compared  with
BCC-S2Sv1, BCC-S2Sv2 has significantly improved the pre-
diction skill  for the MJO (RMM) index, which is about 23
days for the submitted dataset. Version 1.3 of the FGOALS-
f2 (FGOALS-f2-V1.3) subseasonal-to-decadal (S2D) predic-
tion system was developed by the State Key Laboratory of
Numerical Modeling for Atmospheric Sciences and Geophysi-
cal Fluid Dynamics (LASG) at CAS-IAP. The S2S prediction
subsystem of the FGOALS-f2-V1.3 S2D system also partici-
pated in Phase II  of the S2S Prediction Project,  which was
launched in January 2019. Based on the MJO (RMM) index
calculated by ECMWF, the prediction skill for the MJO for
the submitted dataset is about 23 days, as determined by the
maximum lead time with an anomaly correlation coefficient
(ACC) exceeding 0.5. They have reached the advanced inter-
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national level for MJO prediction.

 2.3.    Progress of S2I prediction

Primary sources of S2I predictability consist  of slowly
evolving boundary conditions, such as sea surface tempera-
ture  (SST),  land  surface  conditions  (moisture  and  snow
cover),  and  sea-ice  variations  (Zuo  et  al.,  2016; Acosta
Navarro et al., 2020). Quasi-Biennial Oscillation (QBO; Mar-
shall and Scaife, 2009; Portal et al., 2022) and stratospheric
states  (Butler  et  al.,  2016; Nie  et  al.,  2019)  are  considered
the  upper  boundary  conditions  to  affect  S2I  prediction.  It
has been well recognized that El Niño–Southern Oscillation
(ENSO) is considered the most important source of S2I pre-
dictability, which is the primary mode of interannual variabil-
ity and affects temperature and precipitation anomalies in vari-
ous regions through global teleconnection.

S2I prediction methods also mainly include physical sta-
tistical models, dynamical models, and dynamical–statistical
approaches. In recent years, supported by high-performance
computing, big data, and advanced algorithms, machine learn-
ing  has  provided new ideas  for  S2I  prediction.  In  terms of
physical statistical models, Liu and Chan (2003) developed
a  statistical  prediction  model  based  on  ENSO-related
indices and predicted reasonably the annual number of land-
falling tropical cyclones. Ren et al. (2019c) and Wang et al.
(2019)  developed  different  statistical  prediction  models
based on the comprehensive use of external precursors and
effectively improved the prediction skill of ENSO. Fan et al.
(2008)  proposed  an  interannual  incremental  prediction
method, which chooses the year-to-year increment for a quan-
tity as the object that is to be predicted. This unique statistical
model is considered an efficient prediction approach and is
widely used in S2I prediction of summer rainfall in eastern
China, temperature in northeastern China, activity of western
North Pacific typhoons, Atlantic hurricanes, and the winter
North  Atlantic  Oscillation  (NAO)  (Fan  et  al.,  2008; Fan,
2009, 2010; Fan and Wang, 2009; Huang et al., 2014; Tian
and Fan, 2015), showing increased prediction skills and appli-
cation prospects.

With the continuous improvement of physical processes
in dynamical models and the rapid development of high-per-
formance computing, some Chinese universities, meteorologi-
cal  operational  departments,  and  scientific  institutes  have
developed  several  relatively  complex  dynamical  models  in
recent  years,  such  as  a  global  atmosphere–ocean  coupled
model  (He et  al.,  2020a),  atmosphere–ocean–land–ice  cou-
pled  climate  system  models  (Li  et  al.,  2013a; Ren  et  al.,
2017; Bao et  al.,  2019; Wu et  al.,  2021),  and atmosphere–
ocean–land–ice–wave coupled climate system models (Bao
et al., 2020b; Song et al., 2020). Several studies have demon-
strated  that  these  dynamical  models  have  good  prediction
skills for climate phenomenon, such as precipitation (Wu et
al.  2017; He  et  al.,  2020a; Liu  et  al.,  2021c; Wang  et  al.,
2022a),  SST  (Zhao  et  al.,  2019; Song  et  al.,  2020, 2022;
Ying  et  al.,  2022),  sea  surface  height  (Wang  et  al.,  2023),
and  tropical  cyclones  (Lang  and  Wang,  2008; Li  et  al.,
2021b), as well as major climate variability modes, such as

ENSO (Luo et al., 2008b; Ren et al., 2017, 2019a; Cheng et
al., 2022), the Indian Ocean Dipole (IOD; Luo et al., 2007,
2008a; Ren et al., 2017), and the primary East Asian summer
circulation  patterns  (Ren  et  al.,  2017; Zhou  et  al.,  2020a).
However, the existence of model errors in a single dynamical
model,  which leads to limited prediction ability,  means the
MME  has  been  found  to  be  an  effective  approach  to
improve  S2I  prediction  (Palmer  et  al.,  2000; Wang  et  al.,
2009, 2020a, 2022a). In recent years, several major interna-
tional research and operational centers, such as the ECMWF,
the  Asia-Pacific  Economic  Cooperation  Climate  Center
(APCC), and the National Centers for Environmental Predic-
tion (NCEP), have developed their own MME prediction sys-
tems for  dynamical  seasonal  climate  prediction.  To fill  the
gap in the field of operational MME prediction in China, the
NCC/CMA developed a  Chinese operational  MME predic-
tion system, the aforementioned CMME, based on a combina-
tion of several Chinese operational climate prediction systems
and imported prediction data  of  international  advanced cli-
mate  models  (Ren  et  al.,  2019b).  The  CMME  system  is
presently  applied  to  real-time  climate  prediction  at  the
NCC/CMA,  which  provides  monthly  and  seasonal  predic-
tions  of  several  climate  variability  modes,  such  as  ENSO
and the IOD, as well as climate anomalies of temperature, pre-
cipitation, and so on. On the other hand, many studies have
shown that improving the initial conditions of dynamical mod-
els  can  achieve  higher  prediction  skills.  Nie  et  al.  (2019)
stated  that  the  upper-stratospheric  zonal  wind  anomaly  on
the initial date plays a significant role in the winter prediction
of  the  NAO  and  Arctic  Oscillation  (AO).  Ren  and  Nie
(2021) further significantly improved the prediction skill for
the winter AO relative to current multi-model dynamical pre-
dictions  through  constructing  a  linear  empirical  model
based on the previous-summer tropical oceanic temperature
and Arctic sea-ice signals. Song et al. (2020) and Yang et al.
(2020) developed different data assimilation frameworks to
predict SST and Arctic sea ice, respectively, and pointed out
that realistic initial conditions can significantly increase the
seasonal  prediction skill.  Liu et  al.  (2021b) highlighted the
role of sea-ice assimilation for global analysis and developed
the  first  atmosphere–ocean–ice  coupled  data  assimilation
scheme in China. This scheme is currently applied in CMA-
CPSv3 and can generate stable and reliable initial conditions
of  the  atmosphere,  ocean,  and  sea  ice,  which  are  used  for
weather and climate prediction.

Based on dynamical model prediction, empirically cor-
recting  model  outputs  by  using  historical  information  can
also improve the prediction skills of dynamical models (Ren
and  Chou,  2005).  Chinese  researchers  have  used  several
dynamical–statistical prediction methods, such as empirical
orthogonal function analysis, singular value decomposition,
the Pattern Project Method (Kug et al., 2007), and the Step-
wise Pattern Project Method (Kug et al., 2008), to improve
the  S2I  prediction  skills  for  precipitation  in  China  and
ENSO (Qin et al., 2011; Kang et al., 2012; Su et al., 2013;
Shi et al., 2016; Wang et al., 2017, 2020a). In recent years,
based on dynamical models and historical data, a dynamical
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–statistical  prediction  method  of  analogue  correction  of
errors  (ACE)  was  developed  and  applied  (Ren  and  Chou,
2005, 2006, 2007a, b; Ren  et  al.,  2009; Li  et  al.,  2013b).
Ren et al. (2014b) and Liu and Ren (2017) applied the ACE
method  to  predict  ENSO  and  achieved  better  prediction
results. The ACE method is considered to be a pioneering pre-
diction method in  recent  years  (Xiao et  al.,  2012),  and has
been recognized by international scholars (Plenković et al.,
2018, 2020; Yang  et  al.,  2018).  In  addition,  Chinese
researchers have established a variety of dynamical–statisti-
cal  downscaling  models  based  on  the  close  relationship
between  prediction  variables  and  factors  from  the  atmo-
sphere,  ocean,  or  sea  ice  in  different  seasons,  which  have
effectively improved the S2I prediction skills for regional cli-
mate, such as precipitation (Chen et al., 2012; Liu and Fan,
2012, 2013; Liu  and  Ren,  2015; Liu  et  al.,  2018, 2021c;
Wang et al., 2022b), temperature (Dai et al., 2018; Liu et al.,
2022a), and tropical cyclones (Sun and Chen, 2011).

Recently,  the  rapid  progress  in  machine  learning  has
shown strong potential in S2I prediction. For example, Ham
et al. (2019b) established a statistical model based on a deep
learning  approach  and  reported  good  prediction  skill  for
ENSO at lead times of up to 1.5 years. Chinese researchers
have  conducted  a  lot  of  research  mainly  on  two  aspects:
machine learning prediction models, and improving dynami-
cal  prediction  by  using  machine  learning  methods.  Due  to
the low cost of statistical models and the high capability of
machine learning in processing data, many researchers have
established statistical models based on machine learning meth-
ods to predict climate state variables and climate variability
modes,  such  as  summer  rainfall,  winter  temperature,
drought  conditions,  SST,  and  the  IOD  (Wu  et  al.,  2006;
Feng et al., 2020; Zheng et al., 2020; He et al., 2021a; Jiang
et  al.,  2021; Liu  et  al.,  2022b).  On  the  other  hand,  many
researchers have tried to correct the error of dynamical predic-
tion  by  using  machine  learning  methods.  For  example,
Wang et al. (2021) developed a machine learning and dynami-
cal  hybrid  seasonal  prediction  method  that  significantly
improves the dynamical prediction skill for summer rainfall
in China. Jin et al. (2022) proposed a hybrid model that com-
bines  a  convolutional  neural  network  and  ridge  regression
to  predict  the  seasonal  precipitation  anomaly  over  China.
These studies show that machine learning methods can not
only  mine  nonlinear  relationships,  but  correct  the  error  of
dynamical models and achieve higher S2I prediction skills.
Machine learning will be a promising method for improving
climate prediction. It is worth noting, however, that the lack
of  training  data  is  a  factor  that  limits  the  performance  of
machine learning prediction models (He et al., 2021b). Never-
theless,  this  does  not  mean  that  having  enough  “big  data ”
can develop a high-performance prediction model. Establish-
ing  a  machine  learning  prediction  model  based  on  climate
dynamics is essential to realize its potential in climate predic-
tion (He et al., 2021b; Yang et al., 2022).

 2.4.    Progress of decadal prediction

In recent years, decadal climate prediction for the next

year to the next 10–30 years has been a hot topic of research
in  the  international  climate  science  community  because  of
its  potential  value  in  dealing  with  the  economic  and social
problems  associated  with  climate  change.  The  focus  of
decadal  climate  prediction  is  the  average  climate  state  for
many years in the future, especially the next 2–5 years’ aver-
age prediction for the near-term climate. Phase 5 of the Cou-
pled Model Intercomparison Project (CMIP5) listed decadal
prediction  as  one  of  the  core  experiments  (Taylor  et  al.,
2012), and prediction results were used in the fifth Assess-
ment  Report  of  the  Intergovernmental  Panel  on  Climate
Change  (Kirtman  et  al.,  2013).  CMIP6  established  the
Decadal  Climate  Prediction  Project  (Boer  et  al.,  2016)
around the problem of decadal climate prediction.

Decadal climate prediction is considered to be a combina-
tion of an initial value problem and an external forcing condi-
tion problem, and its predictability depends on internal vari-
abilities in the climate system and changes of external forcing
(Palmer et al., 2008; Meehl et al., 2009, 2014; Zhou and Wu,
2017).  External  forcing,  including  changes  in  atmospheric
compositions associated with human activity or volcanic erup-
tions, solar variations, and others, can be done by historical
simulations or Representative Concentration Pathway projec-
tions in dynamical models (Taylor et al., 2012). The predic-
tion of internal variabilities, such as the Pacific Decadal Oscil-
lation (PDO) and Atlantic Multidecadal Oscillation (AMO),
depends on the accurate estimation of initial climate states,
which is crucial and challenging in decadal climate prediction
(Wu et al., 2015; Zhou and Wu, 2017).

Initialization enables the dynamical model to obtain the
internal variability signals of the climate systems from obser-
vation  data.  Several  studies  have  shown  that  initialized
decadal prediction has higher prediction skills than uninitial-
ized prediction (Meehl et al., 2009; Xin et al., 2018, 2019).
The initialization scheme is key to determining the level of
decadal  climate  prediction  skills.  In  recent  years,  Chinese
researchers have used several assimilation methods, such as
nudging  (Gao  et  al.,  2012; Wei  et  al.,  2016; Han  et  al.,
2017; Wu et al., 2018c; Xin et al., 2018), Incremental Analysis
Updates  (IAUs; Wu  and  Zhou,  2012; Wu  et  al.,  2015),
3DVar (Wang et al., 2013), Dimension-Reduced Projection
4DVar (He et al., 2017, 2020b), Ensemble Optimum Interpo-
lation (EnOI, Wei et al., 2017; Xin et al., 2019), and EnOI-
IAU  (Wu  et  al.,  2018a; Zhou  et  al.,  2020b),  to  carry  out
research  on  decadal  climate  prediction.  Among  them,  the
EnOI and EnOI-IAU methods are considered to be relatively
efficient  assimilation  methods  and  have  been  successfully
applied in the decadal climate prediction business.

In  previous  studies,  the  initialization  of  most  models
just  assimilated the temperature and salinity of  the oceanic
surface and subsurface due to the heat flux and memory of
the  ocean  (Meehl  et  al.,  2021).  As  noted  in  Bellucci  et  al.
(2015),  the  initialization  of  other  components,  such  as  sea
ice, the land surface, stratosphere, and aerosols in the climate
system, may have a potential impact on decadal climate pre-
diction. However, these components cannot be adequately ini-
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tialized due to the lack of reliable data, and their effects on
decadal climate prediction have yet to be further explored.

 3.    Development  and  application  of  seamless
prediction systems

 3.1.    Prediction systems of the CMA

In  the  past  three  decades,  the  operational  departments
of the CMA have been committed to developing operational
prediction  systems  for  weather  and  climate  prediction  to
meet the needs of national and social development. In terms
of  weather  forecasting,  the  CMA  has  developed  multiple
numerical forecasting systems for weather forecasting at dif-
ferent time scales and in different regions. In terms of climate
prediction, the CMA developed several climate prediction sys-
tems based on models with different spatiotemporal resolu-
tions in the early stage, which were used for S2S, S2I, and
decadal prediction. In recent years, the CMA has successfully
developed  a  weather–climate  integrated  prediction  system
based on a common model, which is an important component
of the seamless prediction system. This section reviews the
development and application of the CMA models in the past
three decades from two aspects: separate NWP and climate
prediction  systems,  and  weather–climate  integrated  predic-
tion systems.

 3.1.1.    Separate NWP and climate prediction systems

With the support of the “Tenth Five-Year Plan” and a
national key scientific and technology project entitled “Inno-
vative Research on China’s Meteorological Numerical Fore-
casting System”, the CMA has cooperated with many other
institutes to develop and establish a multi-scale general data
assimilation  and  NWP system,  named  the  Global/Regional
Assimilation Prediction System (GRAPES; Xue and Chen,
2008).  Since  then,  with  continued  support  from  the
“Eleventh Five-Year Plan” and “Twelfth Five-Year Plan”, sci-
entific  and  technology  project,  and  the  GRAPES-specific
project of the CMA, the CMA has made continuous improve-
ments to the GRAPES models (Shen et al., 2020, 2021). In
terms of short-range and nowcasting weather forecasts,  the
CMA  established  a  mesoscale  NWP  system  (GRAPES-
Meso; Xu  et  al.,  2017)  and  further  developed  a  regional
typhoon  forecasting  system  (GRAPES-TYM; Qu  et  al.,
2022).  These  systems  play  an  important  role  in  the  daily
weather  forecast  business.  In  terms  of  medium-range
weather  forecasts,  the  Global  Medium-Range  Numerical
Weather  Prediction  System  (GRAPES-GFS; Zhang  and
Shen, 2008; Shen et al., 2017) was established, which is the
first global weather forecast system with independent develop-
ment,  stable  operation,  and  good  forecast  results  in  China.
In addition, ensemble prediction is considered an important
component  of  the  NWP  system.  The  CMA  established  a
regional  mesoscale ensemble prediction system (GRAPES-
REPS; Chen and Li, 2020) and a global medium-range ensem-
ble prediction system (GRAPES-GEPS; Chen and Li, 2020;
Gao et al., 2020), which both provide probabilistic forecast

products and play an important role in weather probabilistic
forecasting.  To  date,  the  CMA has  gradually  established  a
complete  operational  NWP  system  with  deterministic  and
ensemble  prediction  from  the  regional  to  the  global  scale,
and  cultivated  a  research  and  development  team  for  the
entire NWP business chain, including observation data prepro-
cessing,  quality  control,  data  assimilation,  dynamic  model
framework and physical processes improvement, model paral-
lel computing, model system integration, and prediction prod-
uct post-processing (Shen et al., 2021).

In terms of climate prediction system development and
application, three generations of climate prediction systems
have been established by the CMA for operational use since
1995.  The  first  generation  of  the  CMA Climate  Prediction
System (CMA-CPSv1)  was  developed  from 1995  to  2004,
which  consists  of  two  sub-systems  with  different  time
scales:  monthly  dynamical  extended-range  forecasting  and
seasonal  prediction.  Among  them,  the  seasonal  prediction
sub-system was developed based on the Beijing Climate Cen-
ter  ocean–atmosphere  Coupled  Model  version  1.0  (BCC-
CM1.0), which participated in CMIP3. CMA-CPSv1 played
an  important  role  in  China’s  short-term  climate  prediction
business and climate change research after operational appli-
cation (Ding et al., 2002, 2004; Zhang et al., 2004; Li et al.,
2005). The second generation of the CMA Climate Prediction
System (CMA-CPSv2)  was  developed  from 2005  to  2015,
which  added  a  new  S2S  prediction  sub-system  compared
with CMA-CPSv1. In 2005, the CMA began to develop an
ocean–atmosphere–land–ice  coupled  climate  system  model
to  improve  the  ability  in  climate  change  simulation  and
short-term  climate  prediction.  With  the  efforts  of  decades-
long research, several versions of fully coupled climate mod-
els were developed, including the Beijing Climate Center Cli-
mate  Prediction  Model  version  1.1  (BCC-CSM1.1),  BCC-
CSM1.1m,  and  BCC-CSM1.2.  BCC-CSM1.1  and  BCC-
CSM1.1m both participated in CMIP5. However, the horizon-
tal  and  vertical  resolution  of  BCC-CSM1.2  is  the  highest
(T106L40, approximately 110 km) among them. It was used
in the S2S prediction sub-system and participated in Phase I
of  the  S2S  Prediction  Project.  BCC-CSM1.1m,  with  a
medium horizontal  resolution  and  lower  vertical  resolution
(T106L26), was used in the seasonal prediction sub-system
and CMME prediction. CMA-CPSv2 has been able to provide
real-time monthly, seasonal and interannual climate predic-
tion  products  since  its  operational  application  in  2015,
which can meet the public and society’s demands for climate
prediction  products  in  the  next  month  to  a  year.  CMA-
CPSv2 has a good prediction ability for ENSO, with a lead
time  of  over  eight  months,  as  well  as  for  the  East  Asian,
South Asian, Southeast Asian, North Pacific, and Indian sum-
mer  monsoon  indices  (Liu  et  al.,  2014, 2015; Ren  et  al.,
2017).  Wu et  al.  (2017)  compared  the  prediction  ability  of
CMA-CPSv2 and CMA-CPSv1 for seasonal temperature, pre-
cipitation and circulation, and pointed out that CMA-CPSv2
has higher prediction skills. In terms of decadal climate pre-
diction, BCC-CSM1.1, with a coarse horizontal and vertical
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resolution (T42L26, approximately 280 km), participated in
the  Decadal  Prediction  Experiment  in  CMIP5  (Xin  et  al.,
2012). Historical hindcasts showed that BCC-CSM1.1 has rea-
sonable  decadal  prediction  skills  for  SST  in  the  tropical
Atlantic,  western  Pacific,  and  Indian  oceans  (Han  et  al.,
2017), the AO (Wu et al., 2018c), AMO (Wei et al., 2017),
and  near-surface  air  temperature  in  East  Asia  (Xin  et  al.,
2019).  However,  the  decadal  climate  prediction  system
needs to be further developed in future research to meet the
requirements of operational use.

 3.1.2.    Weather–climate integrated prediction system

Since 2010,  the CMA has been developing the second
version  of  its  climate  system  model  (BCC-CSM2).  BCC-
CSM2-HR  is  the  high-resolution  version  of  BCC-CSM2,
with a T266 horizontal resolution (approximately 45 km) in
the  atmosphere,  and  participated  in  the  High-Resolution
Model  Intercomparison  Project  (HighResMIP)  in  CMIP6
(Wu et al., 2021). Based on this model, the CMA developed
its third-generation climate prediction system (CMA-CPSv3)
from 2010 to  2020,  which consists  of  three  sub-systems:  a
high-resolution climate model sub-system, a multi-layer cou-
pling  assimilation  sus-system,  and  an  ensemble  prediction
sub-system. Compared with the previous generation, the cur-
rent  high-resolution  climate  model  sub-system  of  CMA-
CPSv3  combines  many  significant  scientific  and  technical
improvements for the model resolutions and physical process
parameterizations  in  the  atmosphere,  land,  ocean,  and  sea
ice. The simulation performance for temperature, precipita-
tion,  ENSO,  the  MJO,  and  QBO  has  been  significantly
improved (Wu et al., 2021). The multi-layer coupling assimi-
lation  sub-system of  CMA-CPSv3  realizes  the  coordinated
assimilation  of  multi-source  data  from  the  ocean,  sea  ice,
and  atmosphere.  Based  on  the  combination  of  EnOI  and
Local  Ensemble  Transform  Kalman  Filter  algorithms,  an
ocean ensemble assimilation method was built to assimilate
ocean  temperature/salinity  profiles,  SST,  and  sea  level
anomaly (SLA) observation data at a daily frequency. Also,
OI-based  sea-ice  assimilation  and  atmospheric  nudging
were implemented to incorporate daily sea-ice concentration
observation  data  and  6-hourly  atmospheric  multi-variable
reanalysis data (Liu et al., 2021b). The ensemble prediction
sub-system of CMA-CPSv3 consists of 21 ensemble mem-
bers, which can draw on the best of others and eliminate the
forecast uncertainties caused by observation, analysis errors,
and  the  inherent  chaos  of  the  atmospheric  system.  CMA-
CPSv3  is  a  weather–climate  integrated  prediction  system,
which  can  provide  prediction  products  with  several  time
scales. Regarding its weather forecasts, CMA-CPSv3 oper-
ates every day and releases daily temperature and precipita-
tion for the next 7 days and weekly average temperature and
precipitation  for  the  next  30  days.  In  terms  of  S2S predic-
tion,  CMA-CPSv3  operates  every  day  and  hindcasts  twice
every week, which integrates for up to 60 days. In addition,
CMA-CPSv3 operates once every month to release S2I predic-
tion products and integrates for up to 7 months. Liang et al.
(2022)  evaluated  the  seasonal  prediction  performance  of

CMA-CPSv3  for  the  Asian  summer  monsoon  and  stated
that  CMA-CPSv3  has  higher  prediction  skills  for  summer
rainfall,  summer  monsoon  indices,  the  western  North
Pacific  subtropical  high,  ENSO,  and  the  IOD  than  CMA-
CPSv2. Overall, CMA-CPSv3 has reached an advanced inter-
national level for MJO prediction and is significantly superior
to previous seasonal prediction systems in predicting climate
phenomena and anomalies of precipitation and surface temper-
ature in China on seasonal scales.

 3.2.    Prediction systems of CAS-IAP

In recent years, CAS-IAP has also paid more attention
to  the  operational  use  of  scientific  research  models.  With
multi-year  research  efforts,  CAS-IAP  has  developed  a
weather–climate  integrated  prediction  system,  named  the
FGOALS-f2 ensemble forecast display platform, which can
provide short- and medium-range weather forecasts and S2S,
S2I  and  decadal  climate  prediction  products.  In  addition,
CAS-IAP also developed a decadal climate prediction system
in  2018,  and  its  prediction  results  are  published  on  the
“Decadal  Forecast Exchange” platform.  This  section  re-
views the progress of CAS-IAP in operational prediction in
recent years from two aspects: its weather–climate integrated
prediction system and decadal prediction system.

 3.2.1.    Weather–climate integrated prediction system

Jointly funded by the Alliance of International Science
Organizations  in  the  Belt  and Road Region and a  National
Natural Science Foundation of China major research project
entitled “the Earth–Atmosphere Coupling System on the Qing-
hai-Tibet Plateau and its Global Climate Effect”, CAS-IAP
developed  the  FGOALS-f2  ensemble  forecast  display  plat-
form based on the FGOALS-f2-V1.3 S2D prediction system
(Bao et al., 2019; He et al, 2019; Li et al., 2021b). The predic-
tion model used is  FGOALS-f2,  which is  a climate system
model representing the interaction between the atmosphere,
oceans,  land,  and  sea  ice.  The  atmospheric  component  of
FGOALS-f2 is FAMIL2, which is characterized by a scale-
aware  convection  scheme  (Bao  and  Li,  2020)  and  FV3
dynamic core (Zhou et al., 2015). The resolution of the predic-
tion system is  approximately  100 km for  both  atmospheric
and ocean grids. The nudging technique is adopted as the ini-
tialization method for both the atmospheric and oceanic com-
ponents (Bao et al., 2019; Li et al., 2021b). The S2S prediction
sub-system provides real-time S2S prediction products of tem-
perature, precipitation and circulation to CMME-S2S. Regard-
ing the seasonal climate prediction sub-system, the prediction
sub-system uses the LAF method to generate two members
on each day, which are integrated for up to 12 months, and
the forecast frequency is once per day. The seasonal predic-
tion  products  have  participated  in  CMME-S2D,  which
includes monthly and seasonal-average prediction data. His-
torical hindcasts show that the FGOALS-f2-V1.3 prediction
system has reasonable prediction skills for ENSO (~0.83 at
a  6-month  lead  time),  the  IOD  (~0.56  at  a  5-month  lead
time) (the initial  time for  predicting ENSO and the IOD is
20 July during 1981–2017), and tropical cyclone frequency
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(~0.6  and ~0.61 in  the  western  Pacific  and North  Atlantic,
respectively) (Bao et al., 2019; Li et al., 2021b).

The  FGOALS-f2  ensemble  forecast  display  platform
covers the S2D timescales from weather to climate. The pre-
diction products include tropical cyclones, the MJO, ENSO,
Arctic sea ice, and global potential vorticity, as well as tem-
perature and precipitation from daily to decadal scales. The
prediction products cover global and regional areas, such as
the Tibetan Plateau, the Arctic, and “the Belt and Road” coun-
tries and regions. The platform provides forecasting services
for disaster risk reduction in countries and regions along the
Belt and Road. Compared with the traditional prediction sys-
tem, the FGOALS-f2 system not only provides effective pre-
diction  services  for  disaster  prevention  and  mitigation  in
China,  but  is  actively oriented to major  national  needs and
strategies such as national sustainable development, the Belt
and Road, and Arctic resource development.

 3.2.2.    Decadal prediction system

In 2012, CAS-IAP built the initial version of its decadal
prediction system based on FGOALS-gl (Wen et al., 2007)
and the IAU initialization scheme (Wu and Zhou, 2012; Wu
et al., 2015), which is one of the earliest decadal prediction
systems in China. In recent years, based on the IAU initializa-
tion scheme, CAS-IAP has developed the EnOI-IAU initial-
ization  scheme  (Wu et  al.,  2018a; Zhou  et  al.,  2020b)  and
established  its  Decadal  Prediction  System  (IAP-DecPreS;
Wu et al., 2018a) based on FGOALS-s2 (Bao et al., 2013).
The crucial part of IAP-DecPreS is an initialization scheme
for the oceanic component of a coupled general circulation
model. EnOI-IAU can initialize the coupled model via assimi-
lating  raw  observational  oceanic  temperature  profiles,
which is of great help in improving the timeliness of predic-
tion. IAP-DecPreS is currently the only system in China to
share prediction results with the Decadal Forecast Exchange
platform, which is organized by the Met Office with the par-
ticipation  of  multiple  countries.  Historical  hindcasts  show
that IAP-DecPreS has good prediction skills for SST anoma-
lies related to the PDO and AMO (Wu et al., 2018a; Zhou et
al., 2020b).

Recently,  the  decadal  prediction  sub-system  of  the
FGOALS-f2-V1.3  S2D  system  was  developed  and  run  at
LASG,  CAS-IAP.  The  decadal  hindcast  experiments  with
eight ensemble members were conducted starting every year
over the period 1981–2015. The model was integrated from
1976 with an initial condition taken from the 40-year Global
Reanalysis (Li et al., 2021a) datasets, which assimilated the
air temperature at each pressure layer, the zonal and merid-
ional  winds,  specific  humidity,  and  surface  pressure,  and
SST was assimilated as well. The external boundary condi-
tions were consistent with the CMIP6 historical simulations.
Given  the  need  to  serve  the  forecasting  demands  during
China’s rainy season, every decadal experiment was initial-
ized from 20 March and integrated for 129 months. The hind-
cast dataset not only provides the climate state of the model,
but supports real-time forecasts based on relevant skill evalua-
tion. In 2022, the decadal prediction sub-system carried out

real-time  forecasts  for  the  next  10  years,  and  the  forecast
results  were  adopted  by  the  NCC  to  serve  the  operational
work of the disaster risk reduction of the near-term climate
prediction. The model outputs contain multiple and sufficient
monthly mean atmospheric and oceanic variables.

 3.3.    Prediction systems of other institutes in China

In recent years, several Chinese universities and scien-
tific institutes have also developed their own climate predic-
tion systems, such as the First Institute of Oceanography-Cli-
mate Prediction System (FIO-CPS; Song et al., 2021), the Chi-
nese Academy of Meteorological  Sciences Climate System
Model (CAMS-CSM, Rong et al., 2018; Liu et al., 2021a) cli-
mate prediction system, and the Climate Forecast System of
Nanjing University of Information Science and Technology
(NUIST-CFS; He et al., 2020a; Ying et al., 2022). These pre-
diction  systems  participated  in  CMME-S2D  and  CMME-
ENSO, as well as a national climate trend prediction confer-
ence for summer and winter–spring.

Two versions  of  climate  prediction systems have been
established by the First Institute of Oceanography (FIO) for
operational use. The first version (FIO-CPS v1.0) was devel-
oped based on the First Institute of Oceanography-Earth Sys-
tem Model version 1.0 (FIO-ESM v1.0, Qiao et  al.,  2013),
which is an Earth System model characterized by a coupled
wave  model.  FIO-ESM  v1.0  participated  in  CMIP5  and
showed good simulation performance for the basic patterns
and  variability  of  the  atmosphere  and  ocean,  including
ENSO (Qiao et al., 2013, Song et al., 2014). FIO-CPS v1.0
uses  the  ensemble  adjustment  Kalman  filter  initialization
method  to  assimilate  the  daily  SST  and  SLA  and  uses  the
three-dimensional  ocean  temperature  perturbation  method
to  generate  10  members,  which  are  integrated  for  up  to  6
months  (Chen  et  al.,  2016).  The  hindcast  results  of  FIO-
CPS v1.0 show that it has high SST prediction skill over the
North  Pacific  for  two  seasons  in  advance,  which  transfers
fairly  well  to  precipitation  prediction  (Zhao  et  al.,  2019;
Song  et  al.,  2020).  The  new  version  (FIO-CPS  v2.0)  was
developed  based  on  the  First  Institute  of  Oceanography-
Earth System Model version 2.0 (FIO-ESM v2.0; Bao et al.,
2020b), which participated in CMIP6. There are some signifi-
cant scientific and technical improvements in the physical pro-
cess parameterizations and model resolutions of every compo-
nent in FIO-ESM v2.0. This latest version can simulate the
climatological  states  of  the  atmosphere  and  ocean  fairly
well.  The  patterns  of  temperature,  precipitation,  and  SST
are  greatly  improved  compared  to  those  of  FIO-ESM v1.0
(Bao et al., 2020b). FIO-CPS v2.0 adopts the nudging initial-
ization method to assimilate the upper-ocean temperature in
the  mixed  layer.  Similar  to  FIO-CPS  v1.0,  FIO-CPS  v2.0
uses  the  three-dimensional  ocean  temperature  perturbation
method mentioned above to generate 10 members, but their
prediction  time  extends  to  13  months  (Song  et  al.,  2021).
Compared with FIO-CPS v1.0, FIO-CPS v2.0 has higher pre-
diction skill for SST anomalies, especially over the equatorial
Pacific  (Song  et  al.,  2022).  The  ACC  score  for  ENSO  is
around 0.78 at a 6-month lead time in FIO-CPS v2.0 (Song
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et al., 2021).
CAMS-CSM was  developed  by  the  Chinese  Academy

of Meteorological Sciences (CAMS), which is an ocean–atmo-
sphere–land–ice fully coupled climate system model (Rong
et al.,  2018).  CAMS-CSM participated in CMIP6 (Rong et
al.,  2019, 2021)  and  showed  good  simulation  performance
for climatological mean states and seasonal cycles including
temperature,  precipitation,  SST,  and  sea  ice  (Rong  et  al.,
2018, 2021; Wei et al., 2018). The major climate variability
modes  are  also  reasonably  captured  by  CAMS-CSM,  such
as the MJO, BSISO, ENSO, AO, PDO, East Asian summer
monsoon,  and  Northern  and  Southern  Hemisphere  annular
modes (Rong et al., 2018, 2021; Wei et al., 2018; Hua et al.,
2019; Lu and Ren,  2019; Nan et  al.,  2019; Qi et  al.,  2019;
Ren et al.,  2019d). The climate prediction system based on
CAMS-CSM adopts a nudging initialization scheme to assimi-
late  reanalysis  data  of  the  atmosphere  and  ocean,  which
include  the  55-year  Japanese  Reanalysis  Project  reanalysis
data (Kobayashi et al., 2015) and NCEP Global Ocean Data
Assimilation  System  reanalysis  data  (Behringer  and  Xue,
2004). The prediction system uses the LAF method to gener-
ate  eight  members,  which  are  integrated  for  up  to  six
months. Liu et al. (2021a) evaluated the seasonal prediction
skills  of  the  CAMS-CSM  climate  prediction  system  and
stated that the system has good prediction skills for ENSO,
IOD,  temperature,  and  precipitation  anomalies.  The  ACC
score for ENSO is around 0.75 at a 6-month lead time, and
for the IOD it is around 0.51 at a 2-month lead time.

NUIST-CFS1.0 was developed based on the SINTEX-
F model, which is an ocean–atmosphere fully coupled climate
model (Luo et al., 2005a). It has been confirmed that the SIN-
TEX-F  model  has  good  simulation  and  prediction  perfor-
mance for both ENSO and the IOD (Luo et al., 2005b, 2007,
2008a, b).  NUIST-CFS1.0  adopts  a  nudging  initialization
scheme  to  assimilate  the  observed  weekly  average  OISST
(Optimum Interpolation Sea Surface Temperature) values to
generate realistic and atmosphere–ocean well-balanced initial
conditions. NUIST-CFS1.0 is separately perturbed by three
different  coupled  physics  schemes  and  initialization
schemes to constitute an ensemble of nine members (He et
al.,  2020a; Asfaw and  Luo,  2022).  They  are  integrated  for
up  to  24  months  and  their  forecast  frequency  is  once  per
month (on the first day of each month). The hindcast results
of NUIST-CFS1.0 show that it has high prediction skills for
tropical SST anomalies. In particular, ENSO is skillfully pre-
dicted up to 1.5–2 years in advance, and the IOD can be pre-
dicted one to two seasons in advance (He et al., 2020a; Ying
et al., 2022). In addition, NUIST-CFS1.0 has reasonable pre-
diction performance for the climatological mean states of sum-
mer  temperature  and  precipitation  in  China  (He  et  al.,
2020a).

 4.    Summary and future prospects

Over  the  past  three  decades,  Chinese  researchers  have
conducted a lot  of research on weather and climate predic-

tion. Figure 1 summarizes the main progress of seamless pre-
diction methods  and systems in  China  in  the  past  30 years
and  shows  potential  development  directions  in  future
research. Among them, there are many landmark or unique
methods and systems for weather forecasting or climate pre-
diction.  For  example,  the  operational  application  of  the
4DVar assimilation system demonstrates that the operational
NWP assimilation technology in China has reached the fore-
front  of  the  international  NWP field.  GRAPES-GFS is  the
first global weather forecast system with independent develop-
ment,  stable  operation,  and  good  forecast  results  in  China.
CMME filled the gap in the field of operational MME predic-
tion  in  China.  The  ACE  method  has  been  recognized  and
had a profound impact on the subsequent analogue-based pre-
diction method. BCC-S2Sv1 was the first model in China to
participate in the S2S Prediction Project, and IAP-DecPreS
is  currently  the  only  model  in  China  to  share  prediction
results with the Decadal Forecast Exchange platform. Since
the concept of seamless prediction was proposed in 2005, Chi-
nese  meteorological  operational  departments  and  scientific
institutes have developed two weather–climate integrated pre-
diction  systems—namely,  CMA-CPSv3  (developed  by  the
CMA)  and  FGOALS-f2-V1.3  (developed  by  CAS-IAP).
The operational implementation of these two systems signi-
fies that China has taken a significant step towards seamless
prediction.

However,  as  our  understanding  of  seamless  prediction
has deepened, more new issues and challenges have gradually
been exposed. There are still some systematic biases in predic-
tion  models  (Zhang  et  al.,  2020b; Wu  et  al.,  2021).  The
improvement  of  prediction  models  depends  heavily  on  our
understanding  of  physical  processes  and  mechanisms  and
how they work in the climate system. Therefore, more reason-
able  physics-based  parameterization  schemes  need  to  be
developed and improved in future work. Traditional NWP pri-
marily  uses  a  high-resolution  atmospheric  model  and  does
not consider the coupling with the ocean and sea ice. In con-
trast,  traditional  climate  prediction  uses  an  atmosphere–
ocean–land–ice coupled climate model, but the resolution is
lower  than  that  of  NWP  models.  Improving  the  resolution
of the prediction model  will  be of  great  significance to the
application of a seamless prediction system. The resolutions
of CMA-CPSv3 and FGOALS-f2-V1.3 are 45 km and 100
km,  respectively,  which cannot  meet  the  requirements  of  a
refined weather forecast. The next-generation high-resolution
Earth  System model  of  the  CMA is  currently  being  devel-
oped.  CAS FGOALS-f3-H (Bao  et  al.,  2020a)  participated
in  CMIP6  HighResMIP,  and  the  resolution  reached  C384
(approximately 25 km), which provided a solid model basis
for the future development of high-resolution refined seam-
less prediction.

Traditionally,  separated  data  assimilation  schemes  are
applied  to  the  uncoupled  models,  and  their  products  are
used to initialize the corresponding components in the cou-
pled  model  (Saha  et  al.,  2006; MacLachlan  et  al.,  2015;
Takaya et al., 2018). There are also some models that used
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reanalysis products from external sources to initialize individ-
ual model components (Liu et al., 2015; Xin et al., 2018). In
recent years, coupled data assimilation schemes were devel-
oped to reduce the possible inconsistency caused by uncou-
pled data assimilation. The coupled data assimilation sub-sys-
tem  of  CMA-CPSv3  assimilates  multisource  observations
of  ocean,  sea  ice,  and  atmosphere.  Some  other  important
observation data, such as sea-ice thickness, land surface tem-

perature, and soil moisture, need to be considered in future
studies (Liu et al., 2021b).

Ensemble  size  is  an  important  aspect  that  determines
prediction skills and reliability. In general, the more ensem-
ble  members,  the  higher  the  prediction  skill.  The  conse-
quences  of  computing  costs  need  to  be  considered  when
using  more  ensemble  members  (Meehl  et  al.,  2021).
Machine learning and big data techniques provide new possi-

 

 

Fig. 1. Schematic of the main progress in seamless prediction methods and systems in China in the past 30 years, as well as
development directions in future research.
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bilities to complement and improve seamless prediction sys-
tems (Ruti et al., 2020). The prediction skills of seamless pre-
diction systems will largely depend on the balance between
a high resolution, large ensemble size, advanced prediction
methods, and advanced data assimilation schemes.

The original use of the term “seamless” (Palmer et al.,
2008)  referred  to  predictions  across  the  range  of  weather
and  climate  time  scales.  Since  then,  the  definition  has
evolved toward the idea of predicting “the spatiotemporal con-
tinuum of the interactions among weather, climate, and the
Earth system” (Brunet et al., 2010). That means that the devel-
opment of seamless prediction will extend from the physical
climate system towards a comprehensive view of the Earth
system by including interactions with the biogeophysical com-
ponents  (Hazeleger  et  al.,  2012).  The “Science Summit  on
Seamless Research for Weather, Climate, Water, and Environ-
ment” was organized by the WMO in 2017 and emphasized
the importance of seamless earth system prediction (Ruti et
al., 2020). In recent years, the CMA and CAS-IAP have suc-
cessively  developed  earth  system  models—namely,  BCC-
ESM1  (Wu  et  al.,  2020c)  and  CAS-ESM  (Zhang  et  al.,
2020a)—which both participated in CMIP6. However, there
is  still  much  research  to  be  done  in  the  transition  from
“weather  and  climate”  to  “weather,  climate  and  Earth  sy-
stem” for  seamless  prediction,  both in  theory and practice.
For  example,  considering  land  use  and  anthropogenic
effects  in  seamless  earth  system prediction  will  effectively
improve  the  prediction  ability  of  extreme  weather  events
(Ruti et al., 2020), which is one of the focuses of S2S predic-
tion  in  recent  years.  In  summary,  Chinese  researchers
should persist with their efforts to develop and improve seam-
less prediction.
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