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ABSTRACT

This study assesses the suitability of convolutional  neural  networks (CNNs) for downscaling precipitation over East
Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that compare different CNN
configurations  and  deployed  the  best-performing  architecture  to  downscale  one-month  lead  seasonal  forecasts  of
June–July–August–September  (JJAS)  precipitation  from  the  Nanjing  University  of  Information  Science  and  Technology
Climate Forecast System version 1.0 (NUIST-CFS1.0) for 1982–2020. We also perform hyper-parameter optimization and
introduce predictors over a larger area to include information about the main large-scale circulations that drive precipitation
over the East Africa region, which improves the downscaling results. Finally, we validate the raw model and downscaled
forecasts  in  terms  of  both  deterministic  and  probabilistic  verification  metrics,  as  well  as  their  ability  to  reproduce  the
observed precipitation extreme and spell indicator indices. The results show that the CNN-based downscaling consistently
improves the raw model  forecasts,  with lower bias  and more accurate  representations of  the observed mean and extreme
precipitation spatial patterns. Besides, CNN-based downscaling yields a much more accurate forecast of extreme and spell
indicators and reduces the significant relative biases exhibited by the raw model predictions.  Moreover,  our results  show
that CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of East Africa. The
results  demonstrate  the  potential  usefulness  of  CNN  in  downscaling  seasonal  precipitation  predictions  over  East  Africa,
particularly in providing improved forecast products which are essential for end users.
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(CNNs)
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Article Highlights:

•  CNN-based downscaling consistently reduces the systematic error of the NUIST-CFS1.0 seasonal precipitation forecasts
in East Africa.
•  CNN-based downscaling reduces the significant relative biases of extreme and spell indicators exhibited by the NUIST-
CFS1.0 outputs.
•   CNN-based  downscaling  improves  the  skills  of  NUIST-CFS1.0  seasonal  precipitation  forecasts  in  most  parts  of  East
Africa.

 

 
 

 1.    Introduction

Many potential applications of seasonal climate predic-
tion, including agricultural decision-making, crop yield pre-
diction, and tropical disease prediction, require seasonal cli-
mate inputs at much finer spatial resolutions compared with
current  general  circulation  models  (GCMs;  e.g., Harrison

et al., 2007; Meza et al., 2008; Hansen et al., 2011; Ordoñez
et al., 2022). Furthermore, due to their coarse spatial resolu-
tion,  GCMs  have  limitations  in  reproducing  realistic
regional climate features required for the applications men-
tioned  above  (e.g., Doblas-Reyes  and  Goodess,  2005;
Gutowski et al., 2020). To date, various statistical and dynami-
cal downscaling methods have been developed to bridge the
gap  between  the  coarse-scale  information  provided  by
GCMs and the local information required by end-users (e.g.,
Tang  et al.,  2016; Manzanas  et al.,  2018a; Vandal  et al.,
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2019; Bedia et al., 2020).
As one commonly used approach, dynamical downscal-

ing  is  based  on  high-resolution  Regional  Climate  Models
(RCMs), driven by boundary conditions from coarse-resolu-
tion  GCMs.  Dynamical  downscaling  is  particularly  useful
for  better  simulating  convective  and  extreme  precipitation
events  due  to  its  improved  resolution  and  finer-scale
physics  representations  (e.g., Giorgi  and  Gutowski,  2015;
Sun and Lan, 2021), which are often underestimated in statisti-
cal  downscaling  (e.g., Bürger  et al.,  2012).  However,  this
method  is  limited  by  a  lack  of  intensive  computational
resources, possible errors from the RCMs, and sensitivity to
boundary conditions (e.g., Vandal et al.,  2019; Wang et al.,
2021).

As another commonly used approach, statistical down-
scaling  methods  establish  a  statistical  relationship  between
coarse-scale atmospheric variables and high-resolution local
observations,  and  those  statistical  relationships  are  subse-
quently  applied  to  the  coarse-scale  data  to  obtain  the  local
variables over a different period or location. Statistical down-
scaling has  an advantage over  its  dynamical  counterpart  in
terms  of  computational  efficiency  while  producing  equally
robust results in simulating the present climate as dynamical
models (e.g., Tang et al., 2016; Vaittinada Ayar et al., 2016;
Sun and Lan, 2021). Depending on the nature of the predictors
chosen during the model calibration, statistical downscaling
approaches can be classified either as model output statistics
(MOS)  or  perfect  prognosis  (PP)  approaches  (see Maraun
et al., 2010 for a review). In MOS, the calibration links predic-
tors  from  a  model  to  observed  predictands,  the  calibrated
model  is  then  used  to  post-process  model  output  (Maraun
and  Widmann,  2018).  In  contrast,  the  PP  downscaling
approach uses observational data for both predictors and pre-
dictands  in  the  training  stage  and  then  uses  the  climate
model’s forecast data as predictors in the downscaling stage
(e.g., Gutiérrez  et al.,  2013; Tian  et al.,  2014; Manzanas
et al.,  2018b).  The  large-scale  observations  are  often
replaced by reanalysis  products,  which assimilate  available
day-by-day  observations  into  the  model  space  (e.g., Wilby
et al., 2004).

Several previous studies have compared dynamical and
statistical  downscaling  for  seasonal  precipitation  forecasts
in different regions of the world (e.g., Díez et al., 2005; Gut-
mann et al., 2012; Robertson et al., 2012; Yoon et al., 2012).
For  instance, Díez  et al. (2005)  found  that  both  dynamical
and statistical (standard analog technique) downscaling meth-
ods  improve  seasonal  precipitation  forecasts  in  Spain,  but
their  comparative  results  from the  two  methods  during  the
four seasons in Spain are not conclusive. They also reported
that, in some of their case studies, the use of dynamical and
statistical downscaling methods in combination provides bet-
ter skill scores than using one of the two methods as an alter-
native. Yoon  et al. (2012)  also  assessed  the  potential  of  a
dynamical and two statistical downscaling methods (BCSD
and  Bayesian)  to  improve  seasonal  forecasts  in  the  United
States. They found that dynamical downscaling adds values

in seasonal prediction applications, that depend on location,
forecast lead time, and skill metrics used. Furthermore, they
suggested  that  applying  statistical  bias  correction  to  the
dynamical  downscaling outputs  improves  seasonal  forecast
skills.

Assessment of the potential improvement using downscal-
ing global  forecasts  over  East  Africa  is  also presented in  a
few  studies  (Diro  et al.,  2012; Buontempo  and  Hewitt,
2018; Nikulin  et al.,  2018; Tucker  et al.,  2018; Mori  et al.,
2021).  According to Nikulin et al. (2018) and Tucker et al.
(2018), there is no clear improvement offered by dynamical
downscaling in terms of seasonal forecast skills. Diro et al.
(2012)  concluded  that  the  added  values  using  dynamical
downscaling in Ethiopia depend on the type of observational
data  and  evaluation  metrics  used.  Their  results  suggested
that  the  Regional  Climate  Model  (RCM)  can  improve  the
probabilistic  skill  of  the  global  model  forecasts,  but  only
when using rain gauges for validation. However, their deter-
ministic assessment showed the RCM’s inability to improve
seasonal  forecast  skills. Diro  et al. (2012)  and Mori  et al.
(2021)  further  reported  that  dynamical  downscaling  also
causes  a  sizable  systematic  error  in  the  precipitation  over
some  parts  of  East  Africa  and  significantly  underestimates
the number of wet days during the start of the season. Kipko-
gei et al. (2017) suggested that their statistically downscaled
forecasts demonstrated positive long-term skill in estimating
seasonal  rainfall  amounts,  similar  to  or  better  than the  raw
GCM forecasts. Furthermore, based on one case study of pre-
cipitation in October-November-December 2015 they found
that, although downscaling tends to overestimate rainfall in
some parts of the region, it adds realistic spatial details relative
to the raw GCM output.

During the past few decades, various statistical downscal-
ing  methods  have  been  developed.  These  methods  range
from standard statistical methods, such as analogs (Lorenz,
1969),  generalized linear  models  (Nelder  and Wedderburn,
1972),  and weather  typing (Hewitson and Crane,  1996),  to
more  recent  and  sophisticated  machine-learning  methods
such as artificial neural networks (Wilby et al., 1998), support
vector machines (Tripathi  et al.,  2006),  random forests (He
et al., 2016; Pour et al., 2016), super-resolution deep residual
networks (Wang et al., 2021), and so on.

Recent  studies  demonstrated  that  convolutional  neural
networks (CNN) have a similar  or  better  performance than
the classical statistical downscaling methods in downscaling
precipitation  (e.g., Pan  et al.,  2019; Baño-Medina  et al.,
2020; Sha  et al.,  2020; Weyn  et al.,  2020; Wang  et al.,
2021; Hess and Boers,  2022; Vaughan et al.,  2022).  CNNs
also  have  the  ability  to  extract  the  most  relevant  features,
which is a difficult task to accomplish in the standard statisti-
cal downscaling approaches (e.g., Baño-Medina et al., 2020,
2021).  Nevertheless,  CNN-based  downscaling  has  not  yet
been conducted in East Africa;

Therefore,  this  study  employs  a  CNN  model,  for  the
first time for East Africa, to examine its potential in downscal-
ing the  seasonal  forecasts  of  June–July–August–September
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(JJAS) precipitation from the Nanjing University of Informa-
tion Science and Technology Climate Forecast System ver-
sion  1.0  (NUIST-CFS1.0).  NUIST-CFS1.0  demonstrated
exemplary performance in predicting seasonal precipitation
and  reproducing  large-scale  dynamics  over  East  Africa
(Asfaw and Luo, 2022). The study also evaluates the potential
added value of CNN-based downscaling in terms of adding
spatial  details,  correcting  systematic  biases,  and  improving
prediction  skills  (e.g., Di  Luca  et al.,  2015; Rockel,  2015;
Nikulin  et al.,  2018)  of  NUIST-CFS1.0  seasonal  forecasts
of JJAS precipitation over East Africa.

The  results  and  findings  of  the  present  study  can  be
applied  to  support  operational  seasonal  forecasting  over
East Africa in providing high-resolution local-scale seasonal
climate forecasts that satisfy the requirements of impact mod-
elers and farm-level decision-makers. The remainder of this
paper  is  organized  as  follows.  Section  2  provides  the  data
and  methods  used  in  this  study  and  section  3  presents  the
results. Finally, the summary and discussion are given in sec-
tion 4.

 2.    Data and methods

 2.1.    Downscaling domain

The domain of interest for this work is the East Africa
region (Fig. 1a). To assess the effect of including large area
predictors over the downscaling results, we consider two pre-
dictor areas (see subsection 2.4.1 for the details): predictors
over only the downscaling target region and predictors over
a large area (Fig. 1b). This large area is particularly suitable

to  take  account  of  the  large-scale  meteorological  features
that drive the East African JJAS season, including the inter-
tropical  convergence  zone  (ITCZ; Nicholson,  2017;
Seregina et al., 2019, 2021), formation of thermal low over
North Africa, strengthening of the St. Helena and Mascarene
highs,  formation  and  frequency  of  upper-level  and  lower-
level  jet  features,  and  cross-equatorial  flows  (Camberlin,
1997; Korecha  and  Barnston,  2007; Nicholson,  2017),  and
the nearby oceans which are the primary moisture sources dur-
ing  the  JJAS  season  (Camberlin,  1997; Riddle  and  Cook,
2008; Viste and Sorteberg, 2013a, b; Nicholson, 2017).

 2.2.    Data

In this study, daily predictors listed in Table 1 from the
fifth-generation  European  Centre  for  Medium-Range
Weather  Forecasts  (ECMWF)  reanalysis  (ERA5; Hersbach
et al.,  2020)  were  used  as  predictors  to  build  CNN models
in  the  training  phase.  Then,  the  constructed  CNN  models
were  applied  to  the  corresponding  predictors  from each  of
the nine ensemble members of the NUIST-CFS1.0 forecasts
in the prediction phase to obtain the downscaled predictions
of  seasonal  precipitation.  This  idea was inspired by the PP
method, which was introduced in section 1.

ERA5 assimilates observations across the globe with an
atmospheric  model  to  provide  a  complete  and  consistent
dataset from 1940 to the present with a 0.25° × 0.25° horizon-
tal resolution and an hourly temporal resolution. The ERA5
data were retrieved from the Copernicus Climate Change Ser-
vice  (C3S; https://cds.climate.copernicus.eu/)  for  1981–
2020 and were re-gridded to the NUIST-CFS1.0 grid using
the nearest neighbor interpolation.

 

1 m s−1

 

Fig. 1. (a) Map of the study area, with elevation (m) and (b) JJAS composite of two typical large-scale predictors,
namely the 850-hPa wind (m s–1, vectors) and geopotential height (m, shaded), based on wet years.

 

Table 1. Predictor variables used in this study.

Variable
Mean sea level

pressure
Geopotential

height Temperature
Zonal component

of wind
Meridional component

of wind
Relative
humidity

Code SLP Z T U V RH
Levels (hPa) 500, 700, 850 500, 700, 850 500, 700, 850 500, 700, 850 500, 700, 850

Units Pa m K m s–1 m s–1 %
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For downscaling, we use predictors from the nine ensem-
ble members of  NUIST-CFS1.0 1-month lead forecasts  for
JJAS, during 1982–2020. Daily gridded rainfall observations
from  the  Climate  Hazards  Group  InfraRed  Precipitation
with Station (CHIRPSv2; Funk et al., 2015), at a 0.25° resolu-
tion, were used as predictand to train the CNN models and
as validation reference data.

We  implement  the  two-sample  Kolmogorov–Smirnov
(KS)  test  to  estimate  the  distributional  similarity  between
large-scale variables from the ERA5 reanalysis and NUIST-
CFS1.0 forecasts (not shown here) for the predictors’ selec-
tion  (e.g., Gutiérrez  et al.,  2013; Manzanas  et al.,  2018b;
Baño-Medina et al., 2021). To harmonize the ERA5 reanaly-
sis and the NUIST-CFS1.0 forecast data that are used respec-
tively  in  the  training  and  prediction  phases  of  the  PP
approach,  NUIST-CFS1.0  monthly  mean  forecasts  are
adjusted towards the corresponding climatological reanalysis
values as in Maraun (2012) and Bruyère et al. (2014).

 2.3.    Cross-validation scheme and evaluation metrics

To avoid artificial skill (e.g., Maraun et al., 2015; San-
Martín et al., 2017; Gutiérrez et al., 2019), a five-fold cross-
validation  approach  was  applied.  First,  the  CNN  models
were trained using four of these blocks and then used to pre-
dict  the  remaining  block.  In  this  approach,  the  period
(1981–2020) was divided into five non-overlapping blocks,
each  containing  32  years  for  training  and  7  or  8  years
(1982–88,  1989–96,  1997–2004,  2005–12,  and  2013–20)
for  prediction.  The  five  downscaled  series  were  then
stitched  into  a  single  series  for  validation  during  1982–
2020.

We  considered  several  deterministic  and  probabilistic
evaluation  metrics  to  assess  and  compare  the  skills  of  the
raw NUIST-CFS1.0 and the corresponding CNN-based down-
scaled seasonal predictions of JJAS precipitation. The evalua-
tion  metrics  are  the  same  as  those  employed  in  the  recent
NUIST-CFS1.0  skill  assessment  study  (Asfaw  and  Luo,
2022).

In  addition  to  JJAS  seasonal  mean  precipitation,  we
also evaluated the performance of the raw/downscaled daily
precipitation forecasts to reproduce the observed precipitation
extreme and spell  indicator indices,  which are of particular
interest  for  many practical  applications.  Three  widely  used
indices,  including  the  simple  daily  intensity  index  (SDII),
the relative frequency of wet days (R01), and the 98-th per-
centile  of  daily  precipitation  (P98Wet),  are  considered
(Table 2, see also Maraun et al., 2015; Nikulin et al., 2018;
Gutiérrez et al.,  2019; Vaughan et al.,  2022). These indices
have been computed based on daily precipitation time series
of the raw and downscaled forecasts and expressed as relative
differences with respect to the observed values.

 2.4.    Convolutional Neural Networks (CNNs)

The CNN architecture is based on the CNN model (e.g.,
Baño-Medina et al., 2020, 2021), which has shown good per-
formance  in  downscaling  daily  precipitation  over  Europe.
Based on a series of experiments, we modify the architecture

by adding maximum pooling layers, following each convolu-
tional layer, and a dropout layer. We make further changes
to the model hyper-parameters by tuning the number of filters
in the convolutional layers, kernel size of the convolutional
layers,  dropout  rate,  and  the  number  of  hidden  units  in
dense layers (see subsection 2.4.1 for details).

Finally, we deploy a CNN-model architecture, which con-
sists of three convolutional layers with 3 × 3 kernels of 32,
24, and 16 filter maps, each followed by max-pooling (MP)
layers,  a  dropout  layer,  two  fully-connected  (dense)  layers
with 98 neurons each, and three output layers which estimate
the  mixed  binomial–log-normal  distribution  parameters  of
the precipitation model (see Fig. 2 for the schematic illustra-
tion).

 2.4.1.    CNN  configuration  experiments  and  hyper-
parameter optimization

The  CNN configuration  experiment  compares  existing
CNN model configurations and tests the effect of the predic-
tor’s extent, the training season, and the final two layers that
link  the  last  hidden  layer  with  the  output  layers,  including
additional max pooling and dropout layers. The CNN configu-
rations were trained during 1982–2010, and their forecast per-
formance was validated and compared during the evaluation
period of 2011–20 based on the observational datasets. Fol-
lowing the approach proposed by previous downscaling stud-
ies  (e.g., Cannon,  2008; Baño-Medina  et al.,  2020, 2021;
Vaughan  et al.,  2022),  all  CNN  models  in  this  study  are
trained  to  optimize  the  negative  log-likelihood  of  a
Bernoulli-Gamma distribution.  The  rainfall  on  a  given  day
is then inferred from a gamma distribution's shape and scale
parameters.

The first set of experiments considered the CNN configu-
rations from recent studies on applications of CNN in down-
scaling climate change projections (e.g., Baño-Medina et al.,
2020, 2021) and improving weather prediction (e.g., Weyn
et al., 2020; Hess and Boers, 2022).

The CNN configurations considered in this experiment
are:

(1)  CNN:  The  CNN  configurations  are  based  on  the
best-performing  topologies  developed  in  recent  studies  on
applications of CNN in downscaling climate change projec-
tions  (Baño-Medina  et al.,  2020, 2021).  Furthermore,  the
CNN model has been reported to outperform the standard sta-
tistical downscaling models from the VALUE intercompari-
son experiments (Gutiérrez et al., 2019).

(2) UNET: U-Net-based CNN (Hess and Boers, 2022).
This is a modified version of the original U-Net (Ronneberger

 

Table 2. Daily precipitation indices used in this study.

Index Description

R01 Frequency of wet (precip. ≥1 mm) days
SDII Simple daily intensity index (mean precipitation in wet

days)
P98Wet 98-th percentile of daily precipitation (only wet days

are considered)
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et al.,  2015; Weyn  et al.,  2020). Hess  and  Boers (2022)
reported the architecture’s success in improving the forecast
skill  of  relative  rainfall  frequencies  and  heavy  rainfall
events.

Results  from the  first  set  of  configurations  were  com-
pared using bias and ACC, and a robust result was found for
the CNN. After choosing the CNN over the U-Net, we next
attempt to improve the CNN model performance via a screen-
ing procedure by varying the extent of the predictors, the train-
ing season (JJAS vs the entire 12 calendar months), and the
final two layers that link the last hidden layer with the output
layers, including the additional max pooling and dropout lay-
ers.

(1) CNN-12-month: training the CNN model using the
entire 12-month dataset instead of the dataset from the JJAS
(June–September) season.

(2) CNN-Transpose: replacing the two dense layers that
follow the first block of convolutional layers with transposed
convolution layers (Zeiler et al., 2010; Dumoulin and Visin,
2018) to increase (up-sample) the spatial dimensions of inter-
mediate feature maps into the output spatial dimensions.

(3) CNN-LA: selecting predictors over a large area (the
entirety  of  Africa,  including  the  nearby  oceans)  instead  of
merely over the study area. This large area is particularly suit-
able to account for the large-scale drivers and primary mois-
ture  sources  of  the  precipitation  during  the  East  African
JJAS season.

(4) CNN-Max pool: applying max pooling (Riesenhuber
and  Poggio,  1999),  following  each  convolutional  layer,  to
reduce  the  dimensions  of  the  feature  maps  by  a  factor  of
two  in  both  horizontal  coordinates  while  preserving  the
most  important  information.  Applying  pooling  layers
reduces the number of learnable features in the network and
prevent  overfitting  problems.  Among  the  various  types  of
pooling  methods,  max  pooling  is  applied  here  as  it  selects

2×2the maximum element from each pooling window (  in
our  case),  and by doing so it  maintains  the majority  of  the
dominant features of the feature map while discarding less rel-
evant  information  (e.g., Pan  et al.,  2019; Alzubaidi  et al.,
2021; Cong and Zhou, 2023).

(5) CNN-Dropout: applying dropout, which is suggested
by Srivastava et al. (2014) to significantly reduce overfitting
and give major improvements over other regularization meth-
ods.

After  comparing  the  configurations  above,  we  select
the  best-performing  architecture  and  further  apply  hyper-
parameter tuning to optimize the number of filters in the con-
volutional  layers,  kernel  size  of  the  convolutional  layers,
dropout rate, and the number of hidden units in dense layers
via  the  random  search  optimization  strategy  (Bergstra  and
Bengio,  2012). Table  3 presents  the  search  space  of  those
model parameters and their optimal values.

 2.4.2.    Scalability experiments

Scalability experiments are used to evaluate the perfor-
mance of the proposed CNN model in downscaling precipita-
tion using high-resolution predictors from the newer genera-
tion of seasonal forecasting systems and reanalysis data sets,
which  have  a  typical  resolution  of  0.25º.  The  experiments
are  performed  in perfect  conditions (e.g., Maraun  et al.,
2019; Legasa et al., 2023), using predictors from ERA5 for
both  training  and  predicting.  Furthermore,  1981–2010  and
2011–20 are used as training and validation period, respec-
tively.

ERA5  large-scale  variables  at  their  original  resolution
(0.25º) are used to represent downscaling using fine-resolu-
tion predictors, and the corresponding variables are re-grid-
ded  to  a  NUIST-CFS1.0  grid  (about  1.1º)  to  obtain  the
coarse-resolution predictors. While the observed CHIRPS pre-
cipitation  is  available  at  0.05º  and  0.25º  horizontal  resolu-

 

 

Fig.  2. Sketch of the CNN architecture used in this  study.  The network consists  of one input layer (the predictor),
three  convolutional  layers  with  3  ×  3  kernels  of  32,  24,  and  16  filter  maps,  each  followed  by  max-pooling  (MP)
layers,  a  dropout  layer,  two  fully  connected  (dense)  layers  with  98  neurons  each,  and  three  output  layers  which
estimate  the  mixed  binomial–log-normal  distribution  parameters  of  the  precipitation  model.  The  variables  of  the
input layer correspond to 16 coarse (about 1.1°) large-scale standard predictors (see Table 1) in the area of 30°W–
90°E and 40°S–40°N.  East  African (CHIRPS 0.25°  × 0.25°  grid)  precipitation is  used as  a  variable  for  the  output
layer. For a more detailed explanation of a similar sketch, please refer to Baño-Medina et al. (2020).
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tions,  for  consistency,  the  0.05º  version is  upscaled  to  0.1º
(fine resolution) and 0.25º (coarse resolution) using the bilin-
ear interpolation method. The resultant precipitation at 0.1º
(around  12  km)  and  0.25º  (around  28  km)  resolutions  are
then  used  as  the  predictand  to  train  the  CNN  model  using
the fine-resolution and coarse-resolution predictors, respec-
tively.

The  CNN-based  downscaled  precipitation  amounts  at
the two spatial scales are compared based on the bias and an
anomaly correlation coefficient (ACC) after the precipitation
at  fine  resolution  (0.1º)  is  upscaled  to  coarse  resolution
(0.25º) using bilinear interpolation. Downscaling using fine-
resolution predictors achieves similar bias and a slightly better
ACC than that of using coarse-resolution predictors (Fig. S1
in the electronic supplementary materials, ESM), which indi-

cates that the proposed CNN model can be applied to down-
scale forecasts at higher resolutions.

 3.    Results

 3.1.    Comparison of CNN configurations

Comparisons of the aforementioned CNN models’ fore-
cast  skills  are  shown  in Fig.  3.  The  boxplots  represent  the
spread  of  the  biases  and ACC along the  entire  observation
grid (the blue lines inside the box indicate the median value,
whereas the boxes outline the lower and upper quartiles). In
general,  the  biases  from  the  neural  networks  are  smaller
(slightly underestimated) than the raw forecasts,  except  for
one  of  the  CNN models  that  is  trained  with  the  whole  12-

 

 

Fig. 3. Comparison of the CNN models’ forecasts with the raw NUIST-CFS1.0 forecasts. (a) Bias and (b) anomaly
correlation coefficients  (ACC) between the CNN model’s  ensemble mean precipitation and observation during the
test period of 2011–20. The box plots represent the spread of the precipitation forecasts over the observed grid (the
blue lines inside the box indicate the median value, whereas the boxes outline the lower and upper quartiles).

 

Table 3. Search space and optimal values of the model hyper-parameters obtained using optimization.

Hyper-parameters Search space Optimal value

Number of filters in the first convolutional layer [16, 24, 32, 48, 64, 96, 128, 256, 512] 32
Number of filters in the second convolutional layer [16, 24, 32, 48, 64, 96, 128, 256, 512] 24
Number of filters in the third convolutional layer [16, 24, 32, 48, 64, 96, 128, 256, 512] 16

Kernel size of each convolutional layer [3, 5] 3
Dropout rate of dropout layer [0–1], with a uniform step of 0.01 0.35

Hidden units of each dense layers [16, 24, 32, 48, 64, 96, 128, 256, 512] 96
L2 regularization β of each dense layers [10–1, 10–2, 10–3, 10–4, 10–5, 10–6, 0] 0

Notes: The square brackets represent the search space within which the hyperparameters are tuned.
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month dataset (instead of the JJAS seasonal dataset). While
using the whole 12-month dataset was expected to increase
the model's performance by providing more samples for train-
ing—which is usually needed by neural networks—in prac-
tice,  it  caused  the  model  to  perform  worse  than  the  other
CNN models  (underestimating  the  precipitation).  This  was
likely attributed to the dry climatology during the other sea-
sons than JJAS in East Africa. It appears that the increased
samples from the dry seasons do not well represent the rela-
tions between the predictors and precipitation in the rainy sea-
son  (i.e.,  JJAS)  and  thus  degrade  the  performance  of  the
CNN model.

In  addition,  despite  adding  complexity  to  the  CNN
model, which may benefit from learning from complex spatial
features, the U-net does not outperform the base CNN as the
U-net overfits quickly due to the limited data to train its com-
plex  topology.  Replacing  the  two  dense  layers  that  follow
the first block of convolutional layers with transposed convo-
lution  layers  reduces  the  bias.  However,  it  yields  lower
ACC, suggesting that adding the two dense layers increases
the nonlinearity of the model, which better represents the rela-
tionship between the predictors and the predictand.

Our  results  suggest  that  the  CNN  model  that  was
trained using large-area predictors (see Fig. 1b) delivers better
results with low biases and high ACC skills. This indicates
that  including  large-area  predictor  information  helps  the
CNN  to  represent  the  large-scale  meteorological  features
that drive local precipitation and enable the model to perform
better at predicting the precipitation anomalies, as indicated
by the higher ACC skills. Furthermore, the forecasts were fur-

ther improved by adding maximum pooling and dropout lay-
ers.  This  suggests  that  down-sampling  the  spatial  features
learned  with  the  convolution  layers  and  dropping  35%  of
training parameters does not result in a relevant loss of spatial
information  affecting  the  downscaling.  In  contrast,  it  helps
the  neural  networks  to  learn  more  robust  features  (with
emphasis  on important  features)  and reduce overfitting.  As
a  result,  the  CNN  model  with  maximum  pooling  and
dropout layer provides the highest ACC skills, being overall
the best model in predicting the interannual variations of the
JJAS precipitation in East Africa.

 3.2.    Deterministic forecast skill

Figure  4 shows  the  mean  and  98-th  percentile  (P98)
JJAS seasonal precipitation climatology. The left panel corre-
sponds to the raw NUIST-CFS1.0 outputs, the middle panel
displays the downscaled results using the best CNN model,
and the right panel shows the observations. The raw NUIST-
CFS1.0  forecast  exhibits  moderate  to  large  biases  of  both
the  mean  and  P98  precipitation  over  most  parts  of  East
Africa,  with  a  tendency  to  overestimate  precipitation  over
wet regions of central Ethiopian highlands and underestimate
precipitation over  dry  regions  of  East  Africa.  In  particular,
the  NUIST-CFS1.0  forecast  highly  underestimates  the  P98
over  the  central  and  northern  highlands  of  Ethiopia  and
South Sudan. In contrast, the CNN-downscaled results better
capture  the  fine  spatial  distributions  of  the  precipitation
over East Africa, particularly the observed precipitation maxi-
mums over the western and northern highlands of Ethiopia,
and  the  dry  conditions  over  northeastern  Ethiopia  and

 

 

Fig. 4. (top panels) JJAS seasonal mean climatology of precipitation (mm d–1) and (bottom panels) the 98-th percentile (P98;
mm d–1) during 1982–2020. Left panels: the 9-member ensemble mean of raw NUIST-CFS1.0 forecast initiated from 1 May.
Middle panel:  downscaled results  from the CNN model,  and right  panel:  CHIRPS observational  precipitation used for  the
verification.
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Sudan. This may be due to the CNNs’ ability to extract the rel-
evant  spatial  features  that  determine  the  local  precipitation
and to model the nonlinear relationship between large-scale
meteorological  features  and local  precipitation  (e.g., Baño-
Medina et al., 2021). The improvement is much more notice-
able for the extreme precipitation (P98), which is particularly
important for impact estimations or when computing climate
indices depending on absolute values/thresholds (e.g., Katz
and  Brown,  1992; Manzanas  et al.,  2019; Vaughan  et al.,
2022).

The associated biases of the raw and downscaled JJAS
mean  and  P98  precipitation  are  presented  in Fig.  5.  The
CNN model effectively reduces the raw NUIST-CFS1.0 fore-
cast  biases,  leading to  mean errors  smaller  than  1  mm d–1.
Moreover,  CNN-based downscaling effectively reduces the
widely-extended P98 dry bias in the raw NUIST-CFS1.0 fore-
casts  over  the  central  highlands,  western  Ethiopia,  and
South Sudan and even produces slightly overestimated P98
values  there.  The  CNN's  significant  bias  reduction  in  the
mean  and  P98  climatology  is  to  be  expected  as  it  was
trained  directly  with  observations  (Baño-medina  et al.,
2022).

The  deterministic  forecast  skills  of  the  raw  NUIST-
CFS1.0 and CNN downscaled outputs for the seasonal fore-
casts  of  JJAS  precipitation  during  1982–2020  over  East
Africa  are  assessed  using  the  root-mean-square  error
(RMSE)  and  ACC (Fig.  6).  CNN downscaling  reduces  the

large errors in the raw model forecasts over Sudan, the eastern
part  of  South  Sudan,  and  northwestern  and  southeastern
Ethiopia.  Moreover,  improvement  is  observed  in  capturing
the  interannual  variations  of  precipitation,  measured  using
ACC (Figs. 6c, d). The improvement is particularly apparent
in  South  Sudan,  Sudan,  Eretria,  and  the  northeastern  and
northern parts of Ethiopia.

Figure 7 shows the biases of the precipitation extremes
and spell  indicators  obtained  from the  raw NUIST-CFS1.0
and  CNN  downscaled  forecasts.  The  results  are  expressed
as a percentage relative to the CHIRPS observed values. We
can see that the raw NUIST-CFS1.0 forecast has a large posi-
tive  relative  bias  of  R01  over  the  study  area.  Moreover,  it
has  large  negative  relative  biases  for  SDII  and  P98Wet,
except  over  the  coast  of  Somalia  and  northeast  Ethiopia.
The  underestimated  R01  and  overestimated  SDII  and
P98Wet  are  due  to  the  drizzling  problem  in  most  current
GCMs  (e.g., Dai,  2006; Sun  et al.,  2006; Chen  and  Dai,
2019), within which the simulated precipitation has the cor-
rect amount but falls as a drizzle over many days instead of
in distinct heavy precipitation events.

On  the  other  hand,  the  CNN  downscaled  predictions
show  a  clear  improvement  in  predicting  the  extreme  and
spell  indicators,  which  yield  substantially  lower  biases.
Remarkably,  CNN-based  downscaling  corrected  the  raw
model's  positive bias of R01 and the negative bias of SDII
and  P98Wet  over  most  parts  of  East  Africa.  However,  the

 

 

Fig.  5. Panels  (a)  and (b)  show the bias (mm d–1)  of  the JJAS seasonal  mean climatology of  precipitation,
while  (c)  and  (d)  show  the  bias  for  the  P98  (mm  d–1)  during  1982–2020.  The  results  are  based  on  the  9-
member ensemble mean forecasts of the raw NUIST-CFS1.0 (left panels) and the CNN model (right panels).
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CNN slightly  underestimates  R01  and  inherits  the  positive
bias  of  SDII  and  P98Wet  exhibited  by  the  raw  NUIST-
CFS1.0 forecasts over the dry areas of eastern Ethiopia and
Somalia,  which are  very dry regions  during JJAS and thus
are not the primary focus of seasonal forecasts (Mori et al.,
2021). Overall, the results indicate that the relative biases of

the CNN downscaled forecasted precipitation extremes and
spell indicators are consistently lower than the raw NUIST-
CFS1.0 forecasts. Therefore, applications sensitive to precipi-
tation  and  extreme  indices  may  benefit  from  CNN-based
downscaling  (Bhend  et al.,  2017; Nikulin  et al.,  2018;
Zhang et al., 2018).

 

 

Fig.  6. Panels  (a)  and  (b)  show  the  root-mean-square  error  (RMSE;  mm  d–1)  of  the  JJAS  seasonal  mean
climatology  of  precipitation,  while  (c)  and  (d)  show  the  anomaly  correlation  coefficient  (ACC)  of  JJAS
seasonal  mean  rainfall  anomalies  during  1982–2020,  based  on  the  ensemble  mean  forecast  from  NUIST-
CFS1.0 (left panels) and the CNN model (right panels).

 

 

Fig.  7. Relative  biases  of  precipitation  indices  (%)  based  on  (upper  panels)  the  raw  NUIST-CFS1.0  and  (bottom  panels)
CNN-based  downscaled  seasonal  forecasts  of  JJAS  precipitation  during  1982–2020.  The  relative  biases  are  computed
relative to the CHIRPS observations.
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 3.3.    Probabilistic forecast skill

The  probabilistic  forecast  skills  of  the  raw  NUIST-
CFS1.0  and  the  CNN-downscaled  categorical  forecasts  are
assessed  using  the  Relative  Operating  Curve  Skill  Score
(ROCSS) and the Ranked Probability Skill Score (RPSS).

The  first  two  columns  of Fig.  8 show  the  ROCSS  for
the lower and upper tercile categories. The ROCSS measures
the  accuracy  of  the  raw/downscaled  probabilistic  forecasts
of  the three tercile  categories (below, near,  and above nor-
mal); scores above zero indicate a forecast better than the cli-
matological  forecast.  For  both  categories,  the  CNN  model
demonstrates  positive  skill  in  Kenya,  South  Sudan,  Soma-
liland, and most parts of Ethiopia. Besides, it shows improve-
ment over South Sudan, Sudan, Eritrea, and the northeastern
and northern tip of Ethiopia.

The RPSS of the raw and downscaled probabilistic fore-
casts are presented in Figs. 8c and f, respectively. The RPSS
measures the ability of the raw/downscaled probabilistic fore-
cast  to  capture  the  proximity  between  the  forecast  and  the
observed categories in probability space; scores above zero
indicate better skill relative to the climatological probabilistic
forecast.  The  RPSS  values  of  the  raw  NUIST-CFS1.0  and
downscaled  CNN  probabilistic  forecasts  are  positive  over
the south-central highlands of Ethiopia and the southeastern
portion  of  South  Sudan.  The  positive  RPSS  is  further
improved over Sudan, Eritrea, and northern Ethiopia by the
CNN-based downscaled outputs.

To summarize the results shown in Figs. 6 and 8 and to
better quantify the added values of the CNN-based downscal-
ing, Fig. 9 shows the spatial distribution of the skill improve-
ment  obtained from the CNN downscaling.  ACC improve-
ment is expressed as a positive difference between the down-
scaled  and  raw  NUIST-CFS1.0  forecast  ACCs,  whereas
ROCSS and RPSS are computed with respect to the raw fore-

(ROCCNN−ROCRaw)/(1−ROCRaw) ROCCNN

ROCRaw

1− (RPSCNN/RPSRaw)

casts  as  reference.  Particularly,  ROCSS  is  computed  as
,  where  is  the

ROC  obtained  from  the  downscaled  predictions  and
 is the one from the raw forecasts. Similarly, RPSS

is computed as . Thus, values above 0
indicate that the CNN downscaling improves the raw model
predictions.  The  results  show  that  CNN  downscaling
improves  the  raw  NUIST-CFS1.0  forecasts  on  most  grid
meshes  over  East  Africa.  The  improvement  is  notable  in
South  Sudan,  Sudan,  Eritrea,  and  parts  of  Ethiopia.  How-
ever, as the CNN downscaling relies on large-scale predictors
to  predict  local  precipitation,  the  skill  improvement  is
expected to be limited to some regions where the skill of the
NUIST-CFS1.0 is poor in predicting the local precipitation
compared  to  the  prediction  of  large-scale  variables  (e.g.,
Gutiérrez et al., 2013; Manzanas et al., 2018b). The result is
consistent  with  the  cluster-wise  composite  analysis  of
Asfaw  and  Luo (2022),  which  showed  that  NUST-CFS1.0
well captured the interannual variations of large-scale atmo-
spheric variables that affect precipitation over the northwest
part of East Africa.

Figure  10 shows  tercile  plots  (e.g., Díez  et al.,  2011;
Manzanas et al., 2014; Cofiño et al., 2018) based on the raw
NUIST-CFS1.0  and  the  CNN-downscaled  forecasts  over
East Africa. The tercile plots display probabilistic predictions
calculated  from  the  number  of  ensemble  members  falling
within  each  of  the  three  tercile  categories  (color  scale),
along with the observed tercile (white circles). Numbers on
the right indicate the ROCSS for each tercile. The significance
of the ROCSS is highlighted with an asterisk. Downscaling
significantly  improves  the  spatial  mean  ROCSS  for  the
three categories, with a higher skill of over 0.7 for both the
lower and upper terciles. The downscaling mainly improves
the  forecast  probability  in  the  cases  of  1984,  1993,  2002,

 

 

Fig. 8. Panels (a–b) and (d–e) indicate that the relative operating curve skill score (ROCSS) in predicting (a) and (d) lower
tercile category and (b) and (e) upper tercile category, respectively, of JJAS seasonal precipitation. Panels (c) and (f) show
the ranked probability skill score (RPSS) in predicting JJAS seasonal precipitation tercile categories. Only areas of positive
skill (i.e., ROCSS>0, RPSS>0) are shown in colors, and areas of no skill are masked in gray.
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and 2008 (below normal), and 1998, 2007, 2010, 2019, and
2020 (above normal) years.

In  contrast,  it  slightly  worsens  the  forecast  probability
in  the  cases  of  2015  (below  normal),  and  2011  and  2012
(above normal) years. The skill improvement is particularly

high for the normal category (with a higher forecast probabil-
ity than the raw NUIST-CFS1.0 during those normal years,
except 2000). This result indicates that, apart from reducing
the  systematic  model  biases,  the  CNN  model  can  modify
the temporal structure of the raw model forecasts. In particu-

 

 

Fig.  10. Tercile  plots  for  (a)  the  raw  NUIST-CFS1.0  and  (b)  the  CNN-based  downscaled  precipitation  forecasts  spatially
averaged  over  East  Africa.  The  tercile  plots  display  probabilistic  predictions  (color  scale)  for  the  three  tercile  categories
(below normal, normal, or above normal), along with the observed tercile (white circles). Numbers on the right indicate the
ROCSS for each tercile.

 

 

Fig.  9. Skill  improvement  obtained  from the  application  of  the  CNN downscaling,  based  on  the  ACC differences
between the  CNN downscaled and raw NUIST-CFS1.0 forecasts  (in  correlation units).  The differences  in  ROCSS
and RPSS are calculated using the raw forecasts as a reference.
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lar, it adds value and improves the skill of predicted probabili-
ties in most cases; however, there are a few cases in which
there was no improvement (or even a deterioration) in the pre-
dicted  probabilities  achieved  by  the  raw  NUIST-CFS1.0,
which is the case for PP statistical downscaling (Manzanas
et al., 2018b). Moreover, skill improvement may also suffer
from the large reanalysis uncertainty in the tropics (Brands
et al., 2012; Manzanas et al., 2015).

 4.    Summary and discussion

Recent studies in applying CNNs to downscale local cli-
mate have shown promising results. However, the potential
of CNNs in downscaling seasonal forecasts has not yet been
fully assessed. Nevertheless, a CNNs' ability to learn spatial
features from huge spatiotemporal datasets makes them advan-
tageous for the PP approach as it involves the selection of suit-
able large-scale predictors, which is a tedious task (e.g., Man-
zanas et al., 2019; Baño-Medina et al., 2020).

In this  study,  we have assessed the suitability of  CNN
for downscaling the NUIST-CFS1.0 seasonal predictions of
JJAS precipitation over East Africa. We have set experiments
to compare the performance of different CNN configurations
in downscaling the NUIST-CFS1.0 9-member seasonal fore-
casts of JJAS precipitation initiated from 1 May. The CNN
model with max pooling and dropout layer is chosen as the
best  CNN  architecture  since  it  outperforms  the  NUIST-
CFS1.0 and the other CNN configurations regarding the fore-
cast biases and ACC skills. We have also performed hyper-
parameter  optimization  and  introduced  predictors  over  a
larger area to include information about the main large-scale
circulations that drive precipitation over East Africa, further
improving the downscaling results.

The  climatological  and  P98  mean  precipitation  of  the
raw  and  downscaled  predictions  are  compared  with  the
observed climatology and the associated biases are presented
to determine the improvement of the downscaling in capturing
the fine spatial  features of  the observed seasonal  precipita-
tion.  Furthermore,  the  added  value  obtained  from  CNN-
based downscaling is evaluated using deterministic and proba-
bilistic forecast skill metrics.

The raw NUIST-CFS1.0 realistically predicts the spatial
patterns  of  the  observed  seasonal  mean  climatology,
whereas it performs poorly for seasonal mean p98 precipita-
tion. The CNN downscaling improves upon the mean p98 spa-
tial  pattern,  capturing the observed distribution,  albeit  with
a  wet  bias  across  South  Sudan.  The  CNN  downscaling
reduces  the  biases  and  RMSE in  the  seasonal  precipitation
forecasts to a great extent. In terms of extreme and spell indi-
cators,  the  downscaling  effectively  adjusts  the  significant
biases exhibited by the raw model predictions, which points
out the benefit of CNNs for the purpose of seasonal precipita-
tion downscaling. This is essential for end users, particularly
for  applications  sensitive  to  absolute  values/thresholds  and
impact estimations. For example, these indicators represent
the  seasonal  precipitation  distribution  which  significantly

impacts the growing season and vegetation apart  from sea-
sonal totals (Zhang et al., 2018). Despite spatial irregularity,
it is worth noting that the CNN downscaling also improves
the  deterministic  and  probabilistic  skills  over  most  grid
points of East Africa. Furthermore, CNN downscaling signifi-
cantly improves the spatial mean ROCSS of the probabilistic
forecasts  for  the  three  categories  and  improves  the  raw
NUIST-CFS1.0 forecast as evidenced by correctly predicting
the  1984,  1993,  2002,  and  2008  dry  years  as  well  as  the
1998,  2007,  2010,  2019,  and  2020  wet  years.  However,  it
worsens the forecast probability in a few cases; for instance,
it  wrongly modifies the raw forecast and fails to detect the
dry year of 2015.

The perfect conditions experiment at two spatial scales
demonstrated  that  the  proposed  downscaling  methodology
is scalable to higher spatial resolutions. Besides, downscaling
at higher spatial resolutions was found to have slightly better
skill  in  predicting  precipitation  anomalies,  which  is  to  be
expected as the fine-resolution predictors are more capable
of capturing the local climate conditions (Chen et al., 2014).

The proposed CNN model contains three sequences of
convolution-pooling layers. Each convolutional layer in the
network  extracts  relevant  features  of  the  previous  feature
map and  each  pooling  layer  reduces  the  dimensions  of  the
resultant  features  using a  spatial  down-sampling operation,
in  which  the  extracted  local  patterns  are  down-sampled  to
compose large-scale patterns (Lecun et al., 2015; Cong and
Zhou,  2023).  By  repeating  a  sequence  of  convolution  and
pooling operations three times, the network may extract the
most  prominent  synoptic  atmospheric  patterns  from  high
dimensional input data, which enables the network to learn
a  synoptic  atmospheric  pattern  that  promotes  precipitation
on higher layers of the network (Pan et al., 2019; Alzubaidi
et al., 2021; Sariturk et al., 2022). Hence, increasing the reso-
lution of the predictor variables is not expected to affect the
number of trainable model parameters as well  as its  ability
to extract important circulation features for local precipitation
downscaling.  However,  the parameters  in  the output  layers
significantly increase with increased downscaling target reso-
lution.  Thus,  downscaling  to  higher  target  resolutions  over
large domain sizes may increase the risk of overfitting. Here,
we assessed  the  scalability  of  the  proposed CNN model  to
downscale precipitation to 0.1º (around 12 km) target resolu-
tion  over  the  East  African  region.  A  more  comprehensive
assessment,  using  predictors  from higher  spatial  resolution
seasonal forecasting systems to downscale precipitation at dif-
ferent target spatial resolutions and domain sizes may be war-
ranted to better address this issue.

Our results  show that  CNN downscaling not only pro-
vides a more realistic spatial distribution of precipitation but
also reduces the systematic biases for the seasonal mean pre-
cipitation  and  the  extreme  indices  over  East  Africa.  The
results obtained in this study suggest the potential usefulness
of  CNNs  in  downscaling  seasonal  precipitation  prediction
over  East  Africa,  where  society  and  agriculture  are  much
more prone to the interannual variability of seasonal precipita-
tion.
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