
Southern Hemisphere Volcanism Triggered Multi-year La Nias during the Last Millennium

Shangrong ZHOU, Fei LIU

Citation: Zhang, S.  R.,  and F. Liu 2024: Southern Hemisphere Volcanism Triggered Multi-year La Nias during the Last
Millennium, Adv. Atmos. Sci., 41, 587-592. doi: 10.1007/s00376-023-3254-8.

View online: https://doi.org/10.1007/s00376-023-3254-8

Related articles that may interest you

Roles of Wind Stress and Subsurface Cold Water in the Second-Year Cooling of the 2017/18 La Nia Event

Advances in Atmospheric Sciences. 2020, 37(8), 847   https://doi.org/10.1007/s00376-020-0028-4

Interannual Climate Variability Change during the Medieval Climate Anomaly and Little Ice Age in PMIP3 Last Millennium
Simulations

Advances in Atmospheric Sciences. 2017, 34(4), 497   https://doi.org/10.1007/s00376-016-6075-1

Influence of Intraseasonal Oscillation on the Asymmetric Decays of El Nio and La Nia

Advances in Atmospheric Sciences. 2019(8), 779   https://doi.org/10.1007/s00376-019-9029-6

Decadal Variation of the Impact of La Nia on the Winter Arctic Stratosphere

Advances in Atmospheric Sciences. 2017, 34(5), 679   https://doi.org/10.1007/s00376-016-6184-x

A 38-Year Climatology of Explosive Cyclones over the Northern Hemisphere

Advances in Atmospheric Sciences. 2020, 37(2), 143   https://doi.org/10.1007/s00376-019-9106-x

Influence of the Preceding Austral Summer Southern Hemisphere Annular Mode on the Amplitude of ENSO Decay

Advances in Atmospheric Sciences. 2017, 34(11), 1358   https://doi.org/10.1007/s00376-017-6339-4

Follow AAS public account for more information

http://www.iapjournals.ac.cn/aas/
http://www.iapjournals.ac.cn/aas/en/article/doi/10.1007/s00376-023-3254-8
http://www.iapjournals.ac.cn/aas/en/article/doi/10.1007/s00376-023-3254-8
http://chinageology.cgs.cn/article/shaid/52e058853db07e7cb95099f1bfed07561715bf39b9fc87fdae2c759241173bae
http://www.iapjournals.ac.cn/aas/en/article/doi/10.1007/s00376-020-0028-4
http://www.iapjournals.ac.cn/aas/en/article/doi/10.1007/s00376-016-6075-1
http://www.iapjournals.ac.cn/aas/en/article/doi/10.1007/s00376-016-6075-1
http://www.iapjournals.ac.cn/aas/en/article/doi/10.1007/s00376-016-6075-1
http://www.iapjournals.ac.cn/aas/en/article/doi/10.1007/s00376-019-9029-6
http://www.iapjournals.ac.cn/aas/en/article/doi/10.1007/s00376-019-9029-6
http://www.iapjournals.ac.cn/aas/en/article/doi/10.1007/s00376-016-6184-x
http://www.iapjournals.ac.cn/aas/en/article/doi/10.1007/s00376-016-6184-x
http://chinageology.cgs.cn/article/shaid/8f4df1225331bed19407d518122439a4a488e890b5bad362576e87dac116002a
http://www.iapjournals.ac.cn/aas/en/article/doi/10.1007/s00376-019-9106-x
http://www.iapjournals.ac.cn/aas/en/article/doi/10.1007/s00376-017-6339-4
http://www.iapjournals.ac.cn/aas/en/article/doi/10.1007/s00376-017-6339-4


 
 

Southern Hemisphere Volcanism Triggered Multi-year
La Niñas during the Last Millennium

Shangrong ZHOU1,2 and Fei LIU*1,2

1School of Atmospheric Sciences Sun Yat-Sen University, Key Laboratory of Tropical Atmosphere-Ocean System Ministry

of Education, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
2Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing

University of Information Science and Technology, Nanjing 210044, China

(Received 10 October 2023; revised 12 November 2023; accepted 17 November 2023)

ABSTRACT

To  explain  the  recent  three-year  La  Niña  event  from  2020  to  2022,  which  has  caused  catastrophic  weather  events
worldwide, Fasullo et al. (2023) demonstrated that the increase in biomass aerosol resulting from the 2019–20 Australian
wildfire  season could  have  triggered  this  multi-year  La  Niña.  Here,  we present  compelling  evidence  from paleo-proxies,
utilizing a substantial sample size of 26 volcanic eruptions in the Southern Hemisphere (SH), to support the hypothesis that
ocean cooling in the SH can lead to a multi-year La Niña event. This research highlights the importance of focusing on the
Southern  Ocean,  as  current  climate  models  struggle  to  accurately  simulate  the  Pacific  response  driven  by  the  Southern
Ocean.
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1.    Introduction

The worldwide catastrophic weather events caused by the recent three-year La Niña from 2020 to 2022 have garnered
significant attention (Jones, 2022). Compared to a single-year La Niña, a multi-year La Niña is more likely to cause severe
droughts, heatwaves, and wildfires in the southwestern United States (Cole et al., 2002; Williams et al., 2020). It also leads
to floods in  Australia  and Southeast  Asia  and deadly hurricanes over  the North Atlantic  (Raj  Deepak et al.,  2019; Jones,
2022), primarily due to its stronger cumulative impact (Wang et al., 2023).

The occurrence of multi-year La Niña events was previously attributed to several factors, including significant upper-
ocean heat discharge induced by a preceding extreme El Niño (Wu et al.,  2019; Iwakiri  and Watanabe, 2021), influences
from higher latitudes of the North Pacific that cause meridionally broad easterly wind anomalies slowing the heat recharge
of the equatorial Pacific (Park et al., 2021; Geng et al., 2023; Zhang, 2023), the negative phase of the North Pacific Meridional
mode (Kim et al., 2023), and tropical inter-basin interactions involving the Indian Ocean Dipole and/or Atlantic Niño (Okumura
et al., 2011; McPhaden, 2023). A recent study has also indicated that the prevailing multi-year La Niña events since 1970
have primarily been triggered by rapid onsets following extreme or central-Pacific El Niños (Wang et al., 2023).

Since 1920, there have been ten instances of multi-year La Niña events, with eight of them occurring after 1970 (Wang
et al., 2023). The frequent occurrence of multi-year La Niñas after 1970 is likely associated with a faster warming of the western
Pacific,  particularly  a  strengthened  sea  surface  temperature  (SST)  gradient  towards  the  west.  This  warming  contrast
between  the  western  and  eastern  equatorial  Pacific  enhances  the  zonal  advective  feedback  for  central-Pacific  El  Niño  to
multi-year  La  Niña  events  and  the  thermocline  feedback  for  super  El  Niño  to  multi-year  La  Niña  events.  Whether  this
strengthened SST gradient towards the west is a result of internal variability or a response to external forcing remains an
open question (Power et al., 2021; Hartmann, 2022; Lee et al., 2022; Heede and Fedorov, 2023).

In the future, anthropogenic forcing–induced global warming will intensify the maximum warming in the subtropical
northeastern Pacific, enhancing the regional thermodynamic response to perturbations. As a result, anomalous easterlies of 
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the first-year La Niña will be generated further northward compared with the present-day climate, leading to a slower heat
recharge of the equatorial Pacific and therefore an increased frequency of multi-year La Niña events. Under a low-emission
scenario, the projected frequency is expected to range from 19%±11%, while under a high-emission scenario, it is expected
to range from 33%±13% Geng et al. (2023).

These studies have primarily focused on investigating the internal variability of air–sea interaction and its potential influ-
ences from climate change. However, an intriguing question to explore is whether external forcing can directly impact the
occurrence of multi-year La Niña events, rather than solely altering the mean state. Investigating this aspect can provide valu-
able insights into the dynamics of multi-year La Niña events.
 

2.    Southern Ocean cooling-induced multi-year La Niñas

In  a  recent  study by Fasullo  et al. (2023),  it  was simulated that  following the largest  2019 Indian Ocean Dipole,  the
increase in biomass aerosol from the 2019–20 Australian wildfire season could lead to an increase in cloud albedo and cooling
of the southeastern subtropical Pacific Ocean. This cooling tendency resulted in a northward shift of the intertropical conver-
gence zone, which favored the occurrence of strong La Niña events from 2020 to 2022. This work suggests that the sudden
cooling in the Southern Hemisphere (SH) caused by biomass aerosol can trigger multi-year La Niña events. On longer time
scales, a cooling trend in the eastern tropical Pacific was also simulated due to cooler temperatures over the Southern Ocean
near Antarctica (Kang et al., 2023a, b, c). One of the factors contributing to this cooling trend was the onset of the Antarctic
ozone hole since about 1980 (Hartmann, 2022).

All these simulations have demonstrated that a cold SH can lead to a drying of the boundary in the SH Pacific and a
decrease in moist static energy. Consequently, this leads to a northward shift of the intertropical convergence zone and triggers
a multi-year La Niña event or a La Niña-like trend (Fasullo et al., 2023; Kang et al., 2023a, b, c). However, it is worth noting
that this mechanism currently lacks support from observations due to the limited number of available samples from wildfires
or ozone holes. Therefore, it is important to seek evidence from paleo-proxies, which can provide valuable insights into past
climate conditions.
 

3.    SH volcanic eruption-triggered multi-year La Niñas

Volcanic eruptions, as natural external forcings, have the potential to alter our climate on various time scales, ranging
from subseasonal (Xing and Liu, 2023), interannual (Adams et al., 2003), multidecadal (Mann et al., 2021), and centennial
(Miller  et  al.,  2012)  time  scales.  This  is  achieved  through  the  injection  of  sulfur  dioxide  into  the  stratosphere  (Robock,
2000).  The  formation  of  volcanic  sulfate  aerosols  occurs  through  the  reaction  between  sulfur  dioxide  and  hydroxide  or
water vapor, and these aerosols persist in the stratosphere for approximately one to two years (Timmreck, 2012). They have
a significant impact on global climate by scattering incoming solar radiation, ultimately resulting in global surface cooling
and monsoon changes (Iles and Hegerl, 2014; Paik et al., 2020; Singh et al., 2020; Liu et al., 2022b). Frequently erupting vol-
canoes offer us an opportunity to study the response of multi-year La Niñas to the Southern Ocean cooling. In comparison
to the extensively researched El Niño response to tropical volcanic eruptions caused by the suppression of the African monsoon
and the resultant tropical westerly anomaly (Khodri et al., 2017; Liu et al., 2022a; Pausata et al., 2023), the El Niño–Southern
Oscillation (ENSO) response to high-latitude volcanic eruptions has received less attention.

To investigate the response of ENSO to volcanic eruptions in the tropics, Northern Hemisphere, and SH, our previous
work conducted a reconstruction analysis covering the period from 900 to 2000 AD (Liu et al., 2018b). In this analysis, the
focus was on the SH eruptions that  could cool  the SH rather than the tropics and Northern Hemisphere (Haywood et al.,
2013; Pausata et al., 2015; Colose et al., 2016; Stevenson et al., 2016; Liu et al., 2018b; Erez and Adam, 2021), and multiproxy
data were used. Specifically, tree ring records in southwestern North America were utilized as reliable indicators of ENSO
variability,  due to  the  stable  Pacific–North  American teleconnection over  the  last  millennium (Li  et al.,  2011; Han et al.,
2023).

During the period 900–2000 AD, for which ENSO reconstructions were available (Fig. 1a), a total of 26 SH volcanic
eruptions were recorded in the newest volcanic reconstruction (Sigl et al., 2015). The two most recent eruptions for which reli-
able observations were available occurred in 1931 and 1979 (Fig. 1a). By conducting a superposed epoch analysis (SEA; Hau-
rwitz and Brier, 1981) on all available reconstructions for these 26 eruptions, a three-year negative anomaly in the boreal-winter
Niño-3 index was observed (Fig. 1b). Notably, a significant anomaly (at the 90% confidence level) was observed during the
eruption winter and the third winter following the eruptions.

High-latitude  volcanic  eruptions,  which are  known for  their  significant  cooling effect  in  the  hemisphere  of  eruption,
can  induce  a  migration  of  the  intertropical  convergence  zone  towards  the  comparatively  warmer  hemisphere  (Haywood
et al.,  2013; Pausata  et al.,  2015; Liu et  al.,  2016; Colose et al.,  2016; Stevenson et al.,  2016; Liu et al.,  2018b; Erez and
Adam, 2021).  This migration is primarily driven by the atmospheric energy balance (Schneider et al.,  2014).  Simulations
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have shown that volcanic eruptions in the SH can cause a northward shift in the intertropical convergence zone (Haywood
et al., 2013; Liu et al., 2016; Stevenson et al., 2016). As a result, this northward migration of the intertropical convergence
zone leads to the occurrence of a multi-year La Niña event, as simulated by Fasullo et al. (2023).

The analysis of paleo-reconstructions provides evidence that volcanic eruptions in the SH can induce a multi-year La
Niña event through the ocean cooling effects. However, it is crucial to note that, for a specific event, the ENSO anomaly
can be influenced by both internal variability and external forcing (Liu et al., 2018a; Zanchettin et al., 2019). For instance,
after the eruption in the SH in 1931, a cooling signal persisted for three years, whereas no discernible signal was observed
during  the  winter  of  1979  eruption  (Fig.  1a).  The  most  powerful  SH  volcanic  eruption  in  recent  decades,  known  as  the
Hunga Tonga-Hunga Ha'apai eruption on 15 January 2022, had a volcanic explosivity index of five, comparable to the Krakatoa
eruption  in  1883 (Carn  et al.,  2022).  However,  this  eruption  only  released  0.5–1.5  Tg of  SO2 into  the  stratosphere,  even
though it injected 146 Tg or approximately 10% of the total stratospheric water vapor prior to the eruption (Millán et al.,
2022). As a result, the decrease in SH SST was relatively small (Zuo et al., 2022; Schoeberl et al., 2023).

Our results were primarily derived from ENSO reconstruction using tree rings in southwestern North America. How-
ever, it is important to note that different paleoclimate reconstructions can yield divergent responses. For example, ENSO
reconstructions based on coral records did not exhibit a significant multi-year La Niña response (not shown), similar to their
inability to capture an El Niño response following tropical volcanic eruptions (Dee et al., 2020), against other reconstructions
(Adams et al., 2003; Robock, 2020). This raises an interesting yet challenging issue of identifying which reconstructions are
more reliable, and further research in this area is warranted.

Although both wildfires (Fasullo et al., 2023) and SH volcanic eruptions (Fig. 1) can contribute to the occurrence of a
multi-year La Niña, they cool the Southern Ocean through different processes. For the Australian wildfires, tropospheric pro-
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Fig. 1. Three-year La Niña response to SH volcanic eruptions in paleo-proxies:  (a) Three sets of long-term ENSO
indices  reconstructed  based  on  tree  rings  from southwestern  North  America  covering  the  periods  1408–1978  AD,
1300–2000  AD,  and  900–2000  AD  (gray  lines),  as  well  as  instrumental  October–March  Niño-3  index  from
1920–2000 AD (red line). Blue triangles and dotted vertical lines denote cold seasons (defined by the beginning year
of  the  cold  season  of  the  NH)  following  26  SH  eruptions  back  to  900  AD.  In  the  inset,  the  1931  and  1979  SH
eruptions  are  also  marked.  (b)  Composite  response  of  three  Niño-3  reconstructions  to  26  SH  volcanic  eruptions.
Green and orange colors mark the pre- and post-eruption composites, respectively. “0” denotes the first cold season
following the eruptions. Confidence intervals (90%, 95%, 99%) are marked by horizontal dashed lines.
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cesses—specifically,  the  aerosol–cloud  feedback—was  identified  as  the  mechanism responsible  for  cooling  the  Southern
Ocean. On the other hand, for SH volcanic eruptions, the stratospheric aerosols play a role in cooling the Southern Ocean
through the reflection of solar radiation. The strong zonal winds in the stratosphere result in a uniform distribution of volcanic
aerosols, independent of the longitude of the eruption location. However, it is crucial to investigate the impact of the eruption
season  on  the  evolution  of  ENSO,  as  discussed  by Stevenson  et al. (2017).  Unfortunately,  the  Last-Millennium volcanic
reconstruction cannot provide information about the specific season of volcanic eruptions. 

4.    Conclusion

In this study, we present compelling evidence from paleo-proxies, utilizing a substantial sample size of 26 SH volcanic
eruptions,  to  support  the  hypothesis  that  ocean  cooling  in  the  SH can  lead  to  a  multi-year  La  Niña  event  (Fasullo  et al.,
2023). Moreover, these findings emphasize the importance of incorporating the biomass aerosol process as a crucial component
of the new ENSO cycle, in addition to the traditional air–sea interaction (Jin, 1997). Furthermore, this study highlights the
necessity  for  greater  focus  on  the  Southern  Ocean,  as  most  climate  models  currently  struggle  to  accurately  simulate  the
Pacific response driven by the Southern Ocean. This can primarily be attributed to excessively weak stratocumulus cloud
feedback in these models (Kang et al., 2023a). 

Data and methods

The long-term volcanic eruption reconstruction, covering the period from 500 BC to 2000 AD, was utilized to expand
the sample size for SH volcanic eruptions (Sigl  et al.,  2015).  Additionally,  ENSO indices reconstructed mainly from tree
rings  in  southwestern  North  America  were  used,  which  covered  the  periods  of  1408–1978  AD  (D'Arrigo  et al.,  2005),
1300–2006  AD  (Cook  et al.,  2008),  and  900–2002  AD  (Li  et al.,  2011),  respectively.  Instrumental  SST  data  from  the
HadISST1 dataset were also used as a reference (Rayner et al., 2003). These ENSO reconstructions primarily capture boreal-
winter Niño-3 SST changes and exhibit a high correlation with the instrumental Niño-3 index (Liu et al., 2018b).

In  order  to  assess  the  impact  of  volcanic  forcing,  SEA (Haurwitz  and  Brier (1981)  was  employed  to  composite  the
ENSO response  to  volcanic  eruptions.  For  the  composite  analysis,  an  11-year  window was  utilized,  including  five  years
before and five years after the eruptions. To determine the significance, we employed the bootstrapped resampling method.
The SEA was repeated 10 000 times using random draws from the studied period.
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