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ABSTRACT

Artificial  intelligence  (AI)  models  have  significantly  impacted  various  areas  of  the  atmospheric  sciences,  reshaping
our approach to climate-related challenges. Amid this AI-driven transformation, the foundational role of physics in climate
science  has  occasionally  been  overlooked.  Our  perspective  suggests  that  the  future  of  climate  modeling  involves  a
synergistic  partnership  between  AI  and  physics,  rather  than  an “either/or” scenario.  Scrutinizing  controversies  around
current  physical  inconsistencies  in  large  AI  models,  we  stress  the  critical  need  for  detailed  dynamic  diagnostics  and
physical  constraints.  Furthermore,  we  provide  illustrative  examples  to  guide  future  assessments  and  constraints  for  AI
models. Regarding AI integration with numerical models, we argue that offline AI parameterization schemes may fall short
of achieving global optimality, emphasizing the importance of constructing online schemes. Additionally, we highlight the
significance of fostering a community culture and propose the OCR (Open, Comparable, Reproducible) principles. Through
a better community culture and a deep integration of physics and AI, we contend that developing a learnable climate model,
balancing AI and physics, is an achievable goal.
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1.    Artificial  intelligence’s  ascent  in  climate
science

We are in a revolutionary era where article intelligence
(AI),  especially  large  AI  models  (Table  1),  is  redefining
how we understand and address climate-related challenges.
AI models have swept through most areas of the atmospheric
sciences,  including  but  not  limited  to  weather  forecasting
(Table  1; Pathak  et al.,  2022; Bi  et al.,  2023; Chen  et al.,
2023a; Chen  et al.,  2023b; Lam  et al.,  2023),  subseasonal
and seasonal predictions (Ham et al., 2019, 2021; Pan et al.,
2020; Kim et al., 2021; Mu et al., 2021; Ravuri et al., 2021;
Ling et al., 2022; Fan et al., 2023; Hess et al., 2022; Zhang

et al., 2023; Zhou and Zhang, 2023), extreme weather and cli-
mate  prediction  (e.g., Li  et al.,  2023),  parameterization
schemes (Rasp et al.,  2018; Han et al.,  2020), correction of
model simulations (e.g., Pan et al., 2020), and climate detec-
tion and attribution (Labe and Barnes,  2021, 2022; Diffen-
baugh  and  Barnes,  2023; Ham  et al.,  2023; Labe  et al.,
2023). With  its  ability  to  integrate  and  comprehend  data
from diverse sources such as satellites, weather stations, and
ocean buoys,  AI  has  delivered breakthrough advancements
in numerous areas. Its strengths lie in enhancing the overall
understanding of atmospheric systems, handling the complex-
ity and nonlinearity of  atmospheric dynamics,  and offering
rapid computational speeds.

While  AI  blazes  forward,  the  role  of  physics,  often
described as the bedrock of climate science, has sometimes
been overshadowed. Physical laws and climate theories pro-
vide the fundamental principles underpinning our understand-
ing of climate systems. They form the basis of dynamical cli-
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mate models, offering a comprehensible framework for cli-
mate predictions and climate simulations. These models are
interpretable,  and  they  have  proved  their  mettle  for  nearly
one hundred years (Bauer et al., 2015). However, in the AI
era,  interpretability  often  takes  a  back  seat.  AI  models  are
often  recognized  as “black  boxes”,  which  generate  predic-
tions and simulations without transparently explaining their
involved  physical  processes.  This  opaqueness  poses  huge
challenges when it comes to validating AI models and build-
ing trust in their generated results. Additionally, AI models
lacking  physical  constraints  often  face  issues  such  as  poor
generalization capabilities.  This  can lead to  results  that  are
inconsistent with physical properties and highly unstable, par-
ticularly in the context of extreme events.

So, where do we go from here? The answer lies in the
symbiotic  relationship  between  AI  and  physics.  AI  brings
unparalleled computational power and the ability to recognize
complex  patterns,  while  physics  offers  transparency,  inter-
pretability, and a solid foundation for scientific understand-
ing. The future of climate modeling is not an “either/or” sce-
nario, and is a partnership between these two realms, leverag-
ing  AI’s  computational  prowess  and  the  laws  of  physics’
grounding to create a learnable climate model with good inter-
pretability. 

2.    Physics  for  AI  modeling:  limitations  and
solutions

Recently emerged large AI weather models have begun
to rival or surpass traditional numerical weather predictions.
This naturally raises the question of whether these AI models

adhere to the principles of meteorological and climate theo-
ries.  Climate  theories  derived  from  various  mathematical
physics equations,  like quasi-geostrophic theory and quasi-
steady Rossby waves, serve as the foundational structure for
climate  research  (Hoskins  and  Karoly,  1981; Held  et al.,
2002; Held, 2019). Some might envisage a scenario where,
if an AI model is complex enough, with multiple layers and
variables, it might closely replicate observational data, learn-
ing and following the implied conservation laws and climate
theories  present  in  the  observations.  (Hakim and Masanam
(2023)  conducted  a  crucial  analysis  on  this  issue,  applying
perturbations to Pangu-Weather, and observed that introduc-
ing a tropical heat source in the model reproduces the Matsuno
–Gill  response  (Matsuno,  1966; Gill,  1980)  in  the  tropics
and the associated extratropical Rossby wave train. This quali-
tative  finding suggests  that  AI  models  seem to  possess  the
capability  to  learn  fundamental  physical  laws  and  atmo-
spheric dynamics. However, the actual situation is more intri-
cate.  Quantitative  analyses  indicate  persistent  challenges,
such as issues in geostrophic wind balance and the rotational
and  divergent  wind  components,  despite  the  abundance  of
data and high complexity in models like Pangu and Graphcast
Weather (Bonavita, 2023; Kochkov et al., 2024).

These assessment conclusions may appear contradictory
but are, in fact, reflective of different degrees of evaluation
perspectives. Hakim and Masanam (2023) indicated that AI
models  can  qualitatively  reproduce  certain  dynamic  modes
based  on  climatic  dynamics.  Considering  that  these
responses  are  inherently  embedded  in  the  data  at  the
weather and climate scale, learning and qualitatively reproduc-
ing such modes are reasonable. On the other hand, quantita-

 

Table 1. Details of large AI weather models.

Model
Forecast
Duration Spatial Resolution

Accuracy
(Z500

ACC>0.6) Forecast Variables
Computational
Requirements Train. Data Algorithm Institutions

Initial
Release Date

Journal
Publication
Date and

Name
Number of
Parameters

GraphCast 10 days 0.25°×0.25°, 6h 9~10 days 5 surface variables
(including

precipitation) + 6
atmospheric

variables

21 days; 32
TPU v4

ERA5
39yr

GNN Google
DeepMind

2022.12.24,
arXiv

2023.11.14,
Science

36.7Million

Pangu-
Weather

1 hour-7days 0.25°×0.25°, 1h 7 days 4 surface variables
(excluding

precipitation) + 5
atmospheric

variables

16 days; 192
V100 GPUs

ERA5
39yr

Transformer Huawei
Cloud

2022.11.3,
arXiv

2023.7.5,
Nature

256 Million

FourCastNet 3 days 0.25°×0.25°, 6h ~7 days 5 surface variables
(including

precipitation) + 4
atmospheric

variables

4 A100 GPUs ERA5
40yr

Adaptive
Fourier
Neural

Operators

Nvidia 2022.2.22,
arXiv

N/A N/A

FuXi 15 days 0.25°×0.25°, 6h 10~11 days 5 surface variables
(including

precipitation) + 5
atmospheric

variables

~30 hours(pre-
training)+2

days(fine-tune); 8
A100 GPUs

ERA5
39yr

U-
Transformer

Fudan
University

2023.6.22,
arXiv

2023.11.16,
npj Climate

and
Atmospheric

Science

4.5Billion

FengWu 10.75 days 0.25°×0.25°, 6h 10~11 days 4 surface variables
(excluding

precipitation) + 5
atmospheric

variables

17 days; 32 A100
GPUs

ERA5
39yr

Transformer Shanghai
Artificial

Intelligence
Lab

2023.4.6,
arXiv

N/A N/A

SwinVRNN 5 days 5.625°×5.625°, 6h N/A 4 surface variables
(including

precipitation) + 5
atmospheric

variables

8 Tesla V100
GPUs

ERA5
40yr

Swin
Transformer

Alibaba
Group

2022.5.26,
arXiv

N/A N/A
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tive  evaluations  by Bonavita (2023)  and Kochkov  et al.
(2024)  revealed  significant  disparities  in  aspects  like
geostrophic wind and divergent wind compared to traditional
models. The absence of these factors in the inputs and outputs
of the AI model, coupled with the relatively small magnitude
of the divergent winds,  makes it  relatively natural  for such
errors to occur.

While these evaluations pertain to weather models, con-
sidering the lower complexity,  data volume, and parameter
quantity in climate models compared to weather models, simi-
lar issues need to be addressed in the evaluation and optimiza-
tion  processes  of  AI  climate  models.  This  emphasizes  the
importance  of  dynamic  diagnostic  and  physical  constraints
to AI climate models. First and foremost, a meticulous exami-
nation of climate dynamics is essential for analyzing and com-
prehending the performance of AI models. Current evaluation
methods primarily focus on first-order and second-order statis-
tics, but good performance in these statistics does not mean
a model is good at reproducing the crucial features of targeted
dynamical  climate  variability,  such  as  ENSO’s  seasonal
phase-locking  and  asymmetry  (Jin,  1996; Wallace  et al.,
1998; McPhaden  et al.,  2006).  Consequently,  there  is  an
imperative need to reevaluate AI simulations, giving promi-
nence not only to fundamental statistics but also to dynamic
modes  and  physical  processes.  A  case  in  point  is  the
research  conducted  by Wang  et al. (2024),  who  revealed
that  generative  models  can  rectify  not  only  climatological
sea surface temperature (SST) biases but also markedly miti-
gate  the  prevalent  excessive  westward  bias  in  ENSO  SST
anomalies, which is a common issue in climate models and
has a considerable impact on the ENSO decay and the East
Asian  climate  (Li  and  Xie,  2012, 2014; Tao  et al.,  2018,
2019; Jiang et al., 2021). Due to the complexity of the climate
system, evaluating climate simulations could be a challenging
task.  Numerical  climate  model  evaluations  have  largely
relied  on  the  Coupled  Model  Intercomparison  Project
(CMIP),  allowing scientists  from various research domains
to  thoroughly  assess  these  models  based  on  their  climate
physics knowledge. To enhance the evaluation of AI simula-
tions,  it  is  imperative  to  establish  a  similar  comparative
project, such as the AI Model Intercomparison Project (AI-
MIP).  This  initiative  should  construct  and  release  unified
dynamic diagnostic tools of varying complexities and bench-
marks to facilitate comprehensive assessments. AI-MIP man-
dates  the  construction of  AI  models  on a  unified  and open
dataset, and the evaluation and comparison of these models
based on standardized metrics. Through AI-MIP, we expect
to  significantly  reduce  the  costs  of  data  acquisition,  model
comparison, and learning. Individuals will be able to easily
compare their models with state-of-the-art models, accelerat-
ing progress in the field.

Furthermore,  it  is  imperative  to  apply  physical  con-
straints informed by climate dynamics to refine AI models.
Basic physical  knowledge plays a  crucial  role  in providing
physical constraints to AI models (Mohan et al., 2019; Beu-
cler  et al.,  2020).  PINNs  (Physics-Informed  Neural  Net-

works) are a groundbreaking approach where deep-learning
(DL) models are informed by physical laws, integrating differ-
ential  equations  directly  into  the  learning  process  (Raissi
et al., 2019). Besides, conservation laws such as energy con-
servation, mass conservation, and momentum conservation,
have always been essential for model development and cli-
mate diagnostics.

These constraints can be categorized as soft constraints
and  hard  constraints.  Soft  constraints  do  not  explicitly
impose specific network changes but provide some representa-
tions of physical linkages, and physical equations or mathe-
matical  constraints.  They  may  encompass  connections
between different regions, such as teleconnections, or interac-
tions between different variables. One popular soft constraint
uses existing physical equations to constrain the loss function
(Beucler  et al.,  2021).  Moreover, Mu  et al. (2021)  offered
an  example  where  a  graph  neural  network  (GNN)  was
designed to predict ENSO. They employed a graph structure
to represent various physical variables, particularly the cou-
pling  relationships  between  SST  and  clouds.  This  method
can be understood as a feature fusion, improving the nonlinear
combination of different variables/features to better identify
critical  processes  influencing ENSO development.  Another
example  comes  from Chen  et al. (2024)  who  designed  a
GNN for precipitation prediction considering the constraints
of the omega equation and moisture equation. By using this
physics-constrained network, the prediction of heavy rainfall
was significantly improved, and the whole prediction results
were also better than those of the other DL models without
constraints.  Meanwhile,  a  hard  constraint  usually  modifies
the  neural  network,  ensuring an expected constraint  during
learning and inference (González-Abad et al., 2023; Harder
et al., 2024). For instance, when downscaling Tmin (minimum
temperature)  and Tmean (mean  temperature)  in González-
Abad et al. (2023), the activation function for Tmin was config-
ured  as  ReLU,  whereas  the  activation  function  for
Tmean/Tmin was set as (1 + ReLU). This specific configuration
guarantees that the results consistently adhere to the a priori
relationship where Tmean is greater than Tmin. Besides, there
are also studies  that  have extended convolutional  networks
to accommodate a wider variety of symmetries, such as rota-
tions, reflections, and more extensive gauge symmetry trans-
formations (Bronstein et al., 2017; Cohen et al., 2019). This
enhancement enables convolutional networks to more effec-
tively  recognize  and  process  data  patterns  exhibiting  these
symmetries, helping models more accurately capture complex
patterns  and  dynamics  in  atmospheric  phenomena,  thereby
improving the precision and reliability of weather forecasting
and climate modeling.
 

3.    AI for numerical modeling: limitations and
solutions

In the previous discussion, we emphasize the importance
of dynamic diagnostics  and physical  constraints  for  AI cli-
mate models. It is essential to understand how AI can affect
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the  field  of  numerical  climate  models.  AI  applications
within numerical models are already underway, with a promi-
nent example being the use of AI to construct parameteriza-
tion schemes, enhancing the performance of numerical mod-
els  (e.g., Rasp  et al.,  2018; Han  et al.,  2020; Zhu  et al.,
2022; Wang  and  Tan,  2023).  The  Fortran  Torch  Adaptor
(Mu  et al.,  2023)  is  an  adapter  designed  to  bridge  Fortran
and Torch, enabling researchers to load Torch model parame-
ters and perform forward propagation within a Fortran envi-
ronment,  which  facilitates  the  coupling  of  AI  models  with
numerical models.

However, challenges persist in current AI parameteriza-
tion schemes. Firstly, most AI parameterization schemes are
currently  offline.  These  offline  parameterization  schemes,
when  coupled  with  models  for  long-term  integration,  may
lead to instability, resulting in model crashes, and potentially
give rise to various issues such as climate drift. Secondly, a
DL  optimization  of  a  specific  parameter  in  isolation  for  a
given parameterization scheme aims to achieve the optimum
value  for  that  parameter.  In  reality,  climate  models  have
numerous  parameters,  and  optimizing  one  parameter  may
only represent a local optimum for the entire model.

A  potential  solution  to  address  these  issues  could
involve  the  development  of  online  parameterization
schemes. Such a system could potentially compute losses by
comparing numerical model output to observations and opti-
mizing  AI  weights  that  are  coupled  to  numerical  models
using  back-propagation.  Is  it  possible  to  develop  this  AI-
driven parameterization scheme that is updated online to cor-
rect the results of the numerical model (Chen et al., 2023c)?
A similar approach has been adopted in the field of hydrol-
ogy,  known  as “differentiable  models”,  which  couple  DL
parameterization schemes with hydrological models, optimiz-
ing DL parameterizations based on hydrological model out-
puts  (Shen  et al.,  2023).  Even  though  attempts  have  been
made to determine a few model parameters to reduce the dif-
ference between the observed and simulated results through
the online parameter estimation (Han et al., 2014; Wu et al.,
2016), implementing such an approach, especially within com-
plex climate or coupled models, is still considered challeng-
ing. Recently, a groundbreaking development occurred with
Google’s  neural  general  circulation  model  (NGCM;
Kochkov  et al.,  2024).  It  represents  an  online  AI–physics
hybrid GCM, exhibiting superior performance compared to
current mainstream models and demonstrating excellent adher-
ence  to  physical  conservation  laws.  This  pioneering  work
has  the  potential  to  catalyze  the  application  of  similar
paradigms  in  climate  modeling.  Despite  this  advancement,
constructing  comparable  climate  models  remains  challeng-
ing.  While  the NGCM employs an embedding approach to
create  AMIP-like  experiments,  there  are  substantial  differ-
ences from climate simulations. In contrast to weather mod-
els, finding corresponding observations for climate model sim-
ulations is challenging due to the presence of internal variabil-
ity,  making it  difficult  to  calculate  errors  for  iterative opti-
mization as demonstrated by the NGCM.
 

4.    Infrastructure for the climate community

Earlier,  we  addressed  the  primary  challenges  faced  by
the integration of AI and climate studies, along with proposed
potential  solutions.  We  emphasize  the  crucial  role  of
detailed dynamic diagnostics and physical constraints for AI
models,  along  with  the  importance  of  developing  online
parameterization  schemes  for  climate  models.  However,
resolving  these  issues  heavily  relies  on  community  culture
and robust leadership. Currently, the climate-AI community
lacks unified benchmarks and baselines, resulting in signifi-
cant redundant efforts and making model comparisons excep-
tionally  challenging.  The  principles  of  unified  benchmarks
and baselines are crucial for the advancement of the climate
AI  community.  Wisdom  can  be  gleaned  from  distant
sources. Relevant experiences can be drawn from the com-
puter science community to inform our approach.

The rapid development of the AI era is propelled by the
explosion  of  computational  power  and  the  open  nature  of
DL communities. For the continued advancement of climate
models in the AI era, a similar condition is required, especially
within the climate community, that is an open and collabora-
tive infrastructure. It is essential to foster progress in the cli-
mate field, creating an environment where innovative models
and ideas can be shared and developed collectively. We can
summarize  this  requirement  as  the “Open,  Comparable,
Reproducible” (OCR) principle (Fig. 1).

● “Open” emphasizes  open-source  code  and  open
datasets of AI climate modeling.

● “Comparable” signifies the creation of unified evalua-
tion metrics. It involves integrating climate model evaluation
frameworks to conduct thorough assessments involving cli-
mate dynamic assessments and the establishment of uniform
datasets, task sets, and baselines.

● “Reproducible” denotes  that  the  results  published in
research papers should be reproducible.

The  OCR  principles  have  a  nuanced  interplay  and
mutual  influence. “Open” serves  as  the  foundational
bedrock for the subsequent principles to materialize. “Compa-
rable” and “Reproducible” complement each other symbioti-
cally. The “Reproducible” part of AI model results is crucial

 

Open

Comparable Reproducible

Fig. 1. The OCR principles.
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for  comparing  different  model  outputs.  This,  in  turn,
increases scientists’ awareness and emphasis on model repro-
ducibility, creating a harmonious framework that propels sci-
entific research toward more reliable and enduring progress.

The OCR principles hold significant potential for expedit-
ing the application of AI in climate science, particularly in cli-
mate prediction and modeling. Regarding the latter, the suc-
cess  of  CMIP  has  already  demonstrated  how an  open-data
comparison  project  can  substantially  advance  the  field.  In
accordance with the OCR principles, an AI-MIP can be estab-
lished,  which  would  greatly  facilitate  the  evaluation,  itera-
tion, and optimization of AI models. Simultaneously, this ini-
tiative would promote the development of numerical model-
ing and AI–physics hybrid modeling. 

5.    Toward  a  balanced  AI–physics  climate
model

Looking ahead, more comprehensive dynamic diagnos-
tics and physical constraints can further enhance the perfor-
mance of AI climate models. This progress will also stimulate
the development of AI parameterization schemes. Consider-
ing  the  development  of  AI  (especially  unsupervised  learn-
ing; physics-constrained AI) and numerical climate models,
there  is  optimism  that  the  challenge  of  discrepancies
between  climate  model  outputs  and  observations  could  be
addressed. A balance between AI and numerical climate mod-
eling  may  be  attainable.  This  balance  could  involve  using
numerical  methods  to  resolve  solvable  processes  while
employing online AI solutions to address critical parameteri-
zation  schemes.  As  this  hybrid  approach  advances,  it
becomes  increasingly  challenging  to  classify  a  model  as

purely numerical  or  AI-based.  Ultimately,  it  evolves into a
balanced  AI–physics  climate  model  (Fig.  2).  Through  the
incorporation of AI-based parameterization schemes, such a
model can be iteratively optimized, transforming into a learn-
able  climate  model.  Furthermore,  since  it  includes  explicit
computations of physical quantities and obeys physical equa-
tions, this model exhibits a high level of interpretability, guar-
anteeing direct climate diagnostic analyses.
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