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ABSTRACT

The rapidly changing Antarctic sea ice has garnered significant interest. To enhance the prediction skill for sea ice and
respond to the Sea Ice Prediction Network-South’s latest call, this study presents the reforecast results of Antarctic sea-ice
area and extent from December to June of the coming year with a Convolutional Long Short-Term Memory (ConvLSTM)
Network. The reforecast experiments demonstrate that ConvLSTM captures the interannual and interseasonal variability of
Antarctic sea ice successfully, and performs better than the European Centre for Medium-Range Weather Forecasts. Based
on this,  we present the prediction from December 2023 to June 2024, indicating that  the Antarctic sea ice will  remain at
lows, but may not create a new record low. This research highlights the promising application of deep learning in Antarctic
sea-ice prediction.
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1.    Employing deep learning in Antarctic sea-ice prediction in a rapid decline scenario

The Antarctic sea-ice extent set a new record minimum (1.788 million km2) on 21 February 2023, being 36.7% lower
than its climatology since the late 1970s (Liu et al., 2023). More importantly, this is the third record-breaking year in seven
years, following 2017 and 2022 (Parkinson, 2019; Wang et al., 2022), demonstrating that the Antarctic sea ice is likely to
reach a new state (Purich and Doddridge, 2023). It also raises concerns that, associated with anomalously low Antarctic summer
sea ice, the atmosphere and ocean would be warmer in the context of the ice-albedo feedback (Goosse et al., 2018; Shokr
and Ye, 2023), favoring warm water intrusion into the ice shelves and decreasing their stability (Cai et al., 2023). Addition-
ally,  the  extremely low summer ice  extent  would have a  profound influence on ice-associated organisms (Fretwell  et al.,
2023).  Therefore,  advanced predictions of  Antarctic  summer sea-ice extent  are increasingly in demand (Massonnet  et al.,
2023), not only for climate research, but also for the practical needs of exploring the Antarctic (Chen and Yuan, 2004).

However, the prediction of Antarctic sea ice on the seasonal timescale has been a long-standing challenge (Jung et al.,
2016).  Currently,  coupled dynamical  models are the primary tool  used for  sea-ice forecasting in polar  regions.  However,
state-of-the-art dynamical models exhibit low skill in predicting the Antarctic sea ice seasonally (especially in austral sum-
mer),  possibly  because  of  constraining  factors  such  as  the  initializations,  parameterizations,  and  incomplete  observations
employed (Bushuk et al., 2021; Libera et al., 2022; Payne et al., 2023). Recently, deep learning (DL) models have been devel-
oping  rapidly  as  a  powerful  technique  to  capture  the  highly  nonlinear  relationship  between  features  (i.e.,  predictors)  and
labels (i.e., predictands) using deep neural networks (Schmidhuber, 2015). The DL method has been successfully applied to
sea-ice predictions in both the Arctic and Antarctic (Andersson et al., 2021; Liu et al., 2021; Ren et al., 2022; Ren and Li, 
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2023; Wang et al., 2023). For instance, Andersson et al. (2021) employed U-Nets to predict the Arctic sea ice over a six-
month lead time, with results outperforming the European Centre for Medium-Range Weather Forecasts (ECMWF). How-
ever, there is not yet any precedent of using DL methods for seasonal-scale Antarctic sea-ice prediction.

Therefore, the motivation behind this study was to make an initial attempt at seasonal predictions of Antarctic sea ice
using the DL approach, and to compare them with dynamical seasonal forecast systems. Notably, this study also responds
to  the  latest  call  made  by  the  Sea  Ice  Prediction  Network-South  (SIPN-South; Massonnet  et al.,  2023),  which  requires
monthly Antarctic mean sea-ice area (SIA) forecasts extending at least six months into the subsequent year. Accordingly,
the prediction results spanning from December 2023 to June 2024 are presented.
 

2.    Antarctic sea-ice prediction with a Convolutional Long Short-Term Memory Network

The DL method used here is  the Convolutional  Long Short-Term Memory (ConvLSTM) Network (Shi  et al.,  2015),
which is a neural network that combines the advantages of a Convolutional Neural Network (Lecun et al., 1998) and Long
Short-Term Memory (LSTM) network (Hochreiter and Schmidhuber, 1997). By integrating convolutional cells into LSTM
cells,  ConvLSTM can effectively extract  both spatial  and temporal  information.  The spatiotemporal  correlation modeling
enables  ConvLSTM  to  better  utilize  the  temporal  and  spatial  information  in  the  data,  generalize  more  easily  on  small
datasets, and have the capability to reduce overfitting. This makes it a powerful tool for solving complex 3D spatiotemporal
sequence prediction problems (Shi et al., 2015; Xiong et al., 2021).

The Antarctic sea-ice concentration (SIC) observations are NSIDC-0051 (DiGirolamo et al.,  2022) and NSIDC-0081
(Meier et al., 2021), covering the period from 1 January 1979 to 30 November 2023. Six variables were selected as predic-
tors,  including  (1)  SIC,  (2)  climatological  SIC,  (3)  standard  deviation  of  SIC,  (4)  sine  and  (5)  cosine  of  the  yearly  time
index, and (6) a gridded land mask (0 for land, 1 for ocean), and the predicted SIC was set as the predictand. The model
aims to capture the spatiotemporal relationship based on a 12-month features to 12-month labels sequence, where the labels
lag behind the features by one month and have an 11-month overlap. To validate the model, we conducted eight-year reforecast
experiments from December–June 2015/16 to 2022/23. We trained the ConvLSTM model over eight rounds that targeted
each reforecast, using the observational data before the corresponding start point, from the perspective of operational fore-
casts. In the application of prediction, the 12-month data before the start month were utilized to initialize the model and itera-
tively obtain predicted data up to June in the subsequent year. Among the reforecasts of eight years, we specifically selected
three  years  (2017,  2022,  2023)  when  the  February  SIE  reached  record  lows  for  further  comparison  (last  three  rows  of
Fig.  1).  Additionally,  we  have  included  the  results  of  the  ensemble  mean  of  the  ECMWF  from  the  Copernicus  Climate
Change Service (C3S) Prediction project (Thepaut et al., 2018). ECMWF shows the best sea-ice prediction skill in subsea-
sonal-to-seasonal prediction among the dynamical models (Zampieri et al., 2019). Therefore, we acknowledge its potential
for seasonal prediction, even though a rigorous evaluation is yet to be conducted.

As illustrated in Figs. 1a and b, ConvLSTM successfully captures the interannual variability of sea ice. The predicted
results (solid lines) are in good agreement with observations (dashed lines) for most months, and capture the observed interan-
nual variability. Notably, during the three years with summer record SIE lows, the ConvLSTM predictions were considerably
lower compared to the other years (indicated by the red, cyan, and blue lines in Figs. 1a and b). Furthermore, the correlation
coefficients  between the  ConvLSTM predictions  and observations  of  SIA and SIE are  both statistically  significant  at  the
0.05 significance level (Figs. 1c and d). The correlation coefficients of ECMWF are comparable with ConvLSTM for SIA,
but  are  lower  than  ConvLSTM for  SIE.  The  correlation  coefficients  of  the  two methods  both  suggest  that  the  prediction
skill is relatively low in February, which could potentially be attributed to the predictability of Antarctic sea ice (Holland
et al., 2013).

ConvLSTM also successfully captures the interseasonal variability of sea ice in austral summer and autumn, evident by
comparing the three years with summer record SIE lows (Figs. 1e–j). The ConvLSTM-predicted phases of SIA and SIE corre-
spond with observations, reaching their minimums in February. By contrast, for the ECMWF predictions, most of the mini-
mums occur in March and have belated growth. Furthermore, the SIA and SIE results of the ECMWF predictions are signifi-
cantly  lower  than  observed  during  late  summer  and  early  autumn,  falling  outside  the  range  of  two  standard  deviations.
These results imply that there is still significant room for the development of dynamical models. In contrast, the prediction
results of ConvLSTM mostly fall within the range of one standard deviation of the observations, demonstrating its reliability
and robustness.

The predictions for SIA and SIE starting in December 2023 are shown in Fig. 2. According to the ConvLSTM model,
the predicted SIA and SIE for February 2024 are 1.441 ± 0.303 million km2 and 2.105 ± 0.453 million km2, respectively.
These values slightly exceed the observed values in 2023. Overall, the projected values for the summer and autumn of 2024
are significantly below the climatological average, by one to two standard deviations. Consequently, the sea ice is predicted
to remain low in 2024, but may not create a new record low.
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Fig. 1. Monthly Antarctic (a) SIA and (b) SIE anomaly (units: 106 km2) time series from NSIDC-0051/0081
(dash  lines)  and  predictions  of  ConvLSTM  (solid  lines)  from  December–June  2015/16  to  2022/23.  The
anomalies were calculated relative to the 1979–2022 climatology. (c, d) The correlation coefficients between
the eight-year observations and the predictions from ConvLSTM (red line) and ECMWF (blue line) of (c) SIA
and (d) SIE, with a significance level of 0.05 (black line). (e, f) The predictions of ConvLSTM (red solid line),
ensemble mean of ECMWF (blue dashed line), climatological benchmark (green dashed line) with a range of
one standard deviation (green shading),  and the observations  (black solid  line)  with  a  range of  one standard
deviation (error bars),  of (e) SIA and (f) SIE from December 2016 to June 2017. The errors in February are
marked in the figures with the corresponding colors (units: 106 km2).  Panels (g, h) and (i,  j)  are the same as
(e, f) but for December–June 2021/22 and 2022/23, respectively.
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3.    The prospect of DL in Antarctic sea-ice prediction

The Antarctic sea ice is changing rapidly with climate change. Our reforecast experiment results from December–June
2015/16 to 2022/23 indicate that the DL model is effective at predicting the SIE and SIA in February, demonstrating better
prediction skill compared to traditional dynamical models. The ConvLSTM model extracts information from the spatial pat-
terns of SIC and makes reliable predictions by iteration, which demonstrates its advantage in capturing information on sea-
ice spatiotemporal variability. The results here of an attempt at an eight-year Antarctic summer sea-ice reforecast using a
DL approach indicate that DL is promising for tackling this issue of seasonal prediction. In general, DL has shown promise
in Antarctic sea-ice prediction. By utilizing its powerful nonlinear data processing capabilities, it can help us establish more
accurate and efficient models for predicting sea-ice evolution. With the advancement of technology and the accumulation of
data, it is believed that DL will provide continually improving capability in the field of Antarctic sea-ice prediction, and con-
tribute more to climate research and forecasting in the Antarctic.

Meanwhile, DL methods still face challenges in predicting Antarctic sea ice. One primary obstacle is the limited number
of available training samples, which is a consequence of the relatively short history of satellite observations. Additionally,
the performance of DL relies strongly on the quality of training data available, which is constrained by the relatively high
uncertainty of the observations. We believe that DL will assume an increasingly important role in Antarctic sea-ice prediction
with the development of observational technology and satellite data retrieval accuracy. Furthermore, the record low extent
of Antarctic sea ice in winter 2023 denotes a potential shift towards a new state (Purich and Doddridge, 2023), which poses
an ongoing challenge for capturing unprecedented sea-ice events using DL models.
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