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7 ABSTRACT

8 The scarcity of in-situ ocean observations poses a challenge for real-time information 

9 acquisition in the ocean. Among the crucial hydroacoustic environment parameters, ocean 

10 sound velocity exhibits significant spatial and temporal variability and it is highly relevant to 

11 ocean research. In this study, we propose a new data-driven approach, leveraging deep learning 

12 techniques, for the prediction of sound velocity fields (SVFs). Our novel spatiotemporal 

13 prediction model, ST-LSTM-SA, combines Spatiotemporal Long Short-Term Memory (ST-

14 LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs. 

15 To circumvent the limited amount of observation data, we employ transfer learning by firstly 

16 training the model using reanalysis datasets, followed by fine-tuning with the in-situ analysis 

17 data to obtain the final prediction model. By utilizing the historical 12-months SVFs as input, 

18 our model predicts the SVFs for the subsequent 3-months. We compare the performance of 

19 five models: Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), 

20 Convolutional LSTM (ConvLSTM), ST-LSTM, and our proposed ST-LSTM-SA model in the 

21 test experiment spanning from 2019 to 2022. Our results demonstrate that the ST-LSTM-SA 

22 model significantly improves the prediction accuracy and stability of sound velocity in both 
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23 temporal and spatial dimensions. The ST-LSTM-SA model not only predicts the ocean sound 

24 velocity field (SVF) accurately, but also provides valuable insights for spatiotemporal 

25 prediction of other oceanic environmental variables.
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28 Article Highlights:

29  A prediction model for 3D ocean sound velocity fields was developed based on deep 

30 learning.

31  Employing transfer learning, the ST-LSTM-SA is initially trained on reanalysis data and 

32 further refined on in-situ analysis data.

33  ST-LSTM-SA shows promising prediction ability by effectively capturing the spatial and 

34 temporal variability of sound speed.

35
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38 1. Introduction

39 Sound waves are the main medium of underwater information transmission and have 
40 various applications in marine engineering, ocean navigation positioning and underwater 
41 communication (Akyildiz et al., 2005; Stojanovic and Preisig, 2009). In order to study these 
42 applications, it is essential to obtain accurate marine sound environmental parameters. Among 
43 them, sound velocity in seawater is one of the parameters that determines the sound propagation 
44 characteristics (Kinsler et al., 2000; Heidemann et al., 2012). Sound velocity in seawater is a 
45 function of seawater temperature, salinity and pressure, among which the temperature change 
46 has the most significant effect on the sound velocity (Chen and Millero, 1977; Mackenzie, 
47 1981). Therefore, sound velocity varies with the ocean dynamic environment in both the time 
48 and spatial domains. Due to the vertical stratification of the ocean environment, which in turn 
49 makes the sound velocity exhibit a vertically layered structure (Kinsler et al., 2000). In 
50 addition, short-term and long-term physical processes in the ocean, such as waves, internal 
51 waves, currents and seasonal changes, can alter the marine environment. The superposition of 
52 these different periodic physical processes results in complex temporal and spatial variations 
53 in sound velocity (Storto et al., 2020). 
54 In current marine research, real-time sound velocity information is predominantly derived 
55 from in-situ measurements of sound velocity profiles (SVPs), which capture the variation of 
56 sound velocity from the water surface to the seabed (Liu et al., 2023). However, the ocean SVF 
57 offers a more comprehensive description of sound velocity distribution in three-dimensional 
58 space, which provides a refined representation of the spatial variations of sound velocity. The 
59 construction of real-time SVFs is often challenging due to limited observational methods (Dai 
60 et al., 2019; Wang et al., 2020). Traditional offshore measurements provide only sparse point-
61 by-point SVPs, which are costly and inefficient to collect frequently. With the development of 
62 multiple technology, methods that rely on raw data to predict and invert the sound velocity 
63 have been widely studied in recent decades.
64 Ocean acoustic tomography, systematically introduced by Munk and Wunsch (1979), 
65 plays a vital role in marine research, which has paved the way for the development of various 
66 SVP inversion methods, including matched acoustic peak arrivals (Skarsoulis et al., 1996) and 
67 matched field inversion methods (Tolstoy et al., 1991; Goncharov et al., 1993). Kalman 
68 filtering is an optimization algorithm for state estimation and it has been shown to be impactful 
69 in ocean forecasting problems (Candy and Sullivan, 1993; Carrière et al., 2009). Compressive 
70 sensing (CS) in acoustics has garnered significant attention as an emerging technology in the 
71 past decade (Gerstoft et al., 2018). Unlike conventional SVP inversion methods, the CS 
72 inversion method effectively estimates fine-scale SVPs through sparse representation using a 
73 limited number of SVPs (Bianco and Gerstoft, 2016; Choo and Seong, 2018). Furthermore, 
74 machine learning has emerged as an effective way to tackle challenges in marine science, 
75 providing fresh avenues for employing data-driven methodologies to make predictions about 
76 marine environment (Park and Kennedy, 1996; Jain and Ali, 2006; Chen et al., 2016; Huang et 
77 al., 2021). Specifically, a Convolutional Long Short-Term Memory (ConvLSTM) model based 
78 on deep learning has been applied into SVP prediction over a three-dimensional sea area, with 
79 an average prediction error of less than 1.7 m s-1 (Li and Zhai, 2022).
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80 Over the past four decades, researchers have extensively investigated various methods for 
81 ocean sound velocity inversion and prediction. Due to the intricate nature of the ocean 
82 environment, accurately predicting the ocean SVFs still poses a significant challenge. 
83 Traditionally, approaches for spatiotemporal prediction of marine environmental variables rely 
84 on ocean numerical simulations, which suffer from significant computational demands, leading 
85 to inefficiency in prediction. In fact, the time series of observed ocean data already contains 
86 valuable information regarding the internal dynamics and external drivers of the ocean 
87 (Espeholt et al., 2022; Shao et al., 2021). Deep learning models, which have the capability to 
88 learn from large datasets, can effectively extract the intrinsic characteristics and physical laws 
89 inherent in the data (LeCun et al., 2015). As a highly popular and influential technique, deep 
90 learning has been successfully applied in various marine prediction researches (Shao et al., 
91 2021; Xiao et al., 2019; Ham et al., 2019; Andersson et al., 2021).
92 In this research, we propose a new spatiotemporal prediction model (ST-LSTM-SA) for 
93 ocean SVFs from a data-driven perspective. Our model combines deep artificial neural 
94 networks, including convolutional operations, recurrent neural networks, and self-attention 
95 mechanisms, to effectively capture the spatiotemporal variability of sound velocity and enable 
96 end-to-end prediction. The model employs an encoding-forecasting network structure that 
97 directly outputs future SVFs based on historical observation sequences. During model training, 
98 we employ transfer learning by firstly training the model using reanalysis datasets, followed 
99 by fine-tuning with the in-situ analysis data to obtain the final prediction model. In terms of 

100 accuracy, our model outperforms ANN, LSTM, ConvLSTM and ST-LSTM models, 
101 demonstrating superior performance across multiple evaluation metrics, and exhibits enhanced 
102 stability in predicting both temporal and spatial dimensions.

103 2. Data and Data Preprocessing

104 2.1. Data

105 The reanalysis dataset is a continuously integrated dataset created by merging 
106 observational data with advanced numerical modeling and assimilation techniques (Cummings 
107 and Smedstad, 2013). The reanalysis dataset used in this study is the Simple Ocean Data 
108 Assimilation System version 2.24, SODA2.24 (Giese and Ray, 2011). This dataset covers the 
109 assimilation period of 1871-2008, with a spatial range spanning 0.25°E to 0.25°W and 75.25°S 
110 to 89.25°N. It has a horizontal resolution of 0.5°×0.5° and a monthly temporal resolution. The 
111 vertical resolution varies from 10 m in the surface layer to 250 m in the bottom layer, divided 
112 into a total of 40 unequally spaced vertical layers, available at 
113 https://www2.atmos.umd.edu/~ocean/.

114 The Array for Real-time Geostrophic Oceanography (Argo) program has significantly 
115 enhanced oceanic observations, has yielded over 2.5 million ocean profiles to date (Johnson et 
116 al., 2022). Starting with these raw observations, researchers have produced numerous in-situ 
117 analysis datasets through the application of statistical analyses, optimal interpolation processes, 
118 and quality control techniques. (Zhang et al., 2022; Good et al., 2013; Gaillard et al., 2016). In 
119 this study, we utilize the Global Gridded Argo Dataset Based on Gradient-Dependent Optimal 
120 Interpolation (GDCSM_Argo) (Zhang et al., 2022), covering so far the time range from January 
121 2004 to September 2022 with a monthly temporal resolution. The dataset encompasses the 
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122 entire global ocean with a horizontal resolution of 1°×1° and consists of 58 unequally spaced 
123 vertical layers. The vertical resolution ranges from 5m in the surface layer to 100m in the 
124 bottom layer, available at ftp://data.argo.org.cn/pub/ARGO/GDCSM/.

125 The SODA2.2.4 dataset utilizes a simpler assimilation method and has limited early ocean 
126 observation data. In contrast, the GDCSM_Argo dataset is derived from Argo buoy 
127 observations, providing an objective representation of the ocean interior. To effectively 
128 leverage both datasets, we conducted vertical interpolation on the SODA2.2.4 dataset using 
129 cubic spline interpolation, aligning it with the 58 layers of the GDCSM_Argo dataset. 
130 Afterward, the pre-training is conducted using the reanalysis dataset, delineated into training, 
131 validation, and test sets covering the time spans of 1871-1980, 1981-1994, and 1995-2008, 
132 respectively. Subsequent to this, the model undergoes additional training utilizing the 
133 GDCSM_Argo dataset. The training set encompasses the time frame from 2004 to 2018, while 
134 the test set covers the period of 2019-2022. During this phase, it is noteworthy that there are 
135 no alterations made to the hyperparameters of the model (Ham et al., 2019; Pan and Yang, 
136 2010).

137 2.2. Data preprocessing

138 1. Data clipping. The dataset is initially cropped to extract the data within the study area 
139 range, which spans from 15°S to 15°N and 150°W to 180°W. The study area is shown in Fig. 
140 1 based on ETOPO1 bathymetric model (Amante and Eakins, 2009). This area is situated in 
141 the central region of the Pacific Ocean, known for its dynamic climate change and ocean 
142 environment. 

143 2. Calculate sound velocity. Reanalysis and in-situ analysis data commonly include 
144 variables such as seawater temperature and salinity, which allow for the calculation of sound 
145 velocity using empirical equations. To determine sound velocity at each location, the water 
146 depth values in the vertical direction were converted from pressure using the pressure-to-depth 
147 conversion method proposed by Saunders (1981). Subsequently, the Del Grosso empirical 
148 equation (Del Grosso, 1974) for sound velocity was used to calculate the sound velocity 
149 information.

150 3. Data normalization. It involves linearly transforming input data to ensure they are 
151 distributed within a specific range. This process helps balance the weights between different 
152 features and enhances both the training effectiveness and generalization capability of the 
153 model. In our study, we employed the maximum-minimum normalization operation, which 
154 scaled all training data to the range of [0, 1]. The calculation procedure for this normalization 
155 is as follows:

* min

max min

x xx
x x




 (1)

156 where denotes the sample data, and are the maximum and minimum values of the x maxx minx
157 sample data, represents the normalized sample data.*x

158 4. Slide sampling. We performed slide sampling on the normalized SVF data using a 
159 window size of 15 and a step size of 1. Each sample consists of a sequence of 15 consecutive 
160 monthly SVFs. Since the SVFs represent monthly averaged data, we utilize a 12-months input 
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161 series with an annual cycle to predict the SVFs for the subsequent 3-months, thereby achieving 
162 seasonal forecasting.

163
164 Fig. 1. The bathymetric conditions obtained from ETOPO1 in the central Pacific Ocean, and 
165 the study area (150°W-180°W, 15°S-15°N) is delineated by the red box.

166 3. Methodology

167 3.1. Problem Definition

168 In terms of spatial representation, the ocean SVF comprises three dimensions. A three-
169 dimensional grid can be used to represent the spatial location of the sea, wherein each grid cell 
170 contains time-dependent sound velocity information. By converting this grid into a tensor, we 
171 can express the ocean SVF at a certain time as a three-dimensional tensor , with M

t
N DR  X

172 , and denoting longitude, latitude, and water depth, respectively.M N D
173 Under the action of complex ocean dynamics processes, the ocean SVFs has obvious time 
174 evolution characteristics. Therefore, the prediction problem of SVFs can be regarded as a 
175 nonlinear time series prediction problem (Li and Zhai, 2022). Specifically, by leveraging 
176 previously observed SVFs series within a given ocean area, we can forecast SVFs for future 
177 time intervals with prediction models. Consequently, the temporal prediction problem for the 
178 ocean SVFs is defined as follows: constructing a time series based on 1 2, ,...,t n t n t   X X X n

179 consecutive past SVFs observations to predict the most probable SVFs for the  1
ˆ ˆ,...,t t k X X

180 future time range as expressed by the following equation: 1,...,t t k 

 1 1 1 2
ˆ ˆ,..., ,..., , ,...,t t k t t k t n t n tf       X X X X X X X∣ (2)

181 where denotes the spatiotemporal prediction model and denotes the parameter that is f 
182 gradually optimized during the training process.

183 3.2. Basic Deep Learning Models

184 Long Short-Term Memory (LSTM) is a unique recurrent neural network used for time 
185 series problems. It excels at solving long-term dependencies between time series and is 
186 applicable to the sound velocity time series prediction problem (Bengio et al., 1994; Hochreiter 
187 and Schmidhuber, 1997). However, when it comes to spatiotemporal prediction, the fully 
188 connected LSTM networks often struggle to capture spatial features effectively. To overcome 
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189 this limitation, Shi et al. (2015) introduces the ConvLSTM neural network, which combines 
190 convolutional operations with LSTM and has shown success in precipitation nowcasting. The 
191 ConvLSTM network incorporates convolutional operations in both input-to-state and state-to-
192 state transitions, allowing for the extraction of spatial features while capturing the dynamic 
193 changes of the sequence. In a pioneering study by Li and Zhai (2022), ConvLSTM was applied 
194 for the first time to predict SVPs. The experimental results revealed that ConvLSTM 
195 outperformed LSTM, providing prediction results that closely aligned with the actual data.

196 ConvLSTM shares a similar internal structure with LSTM, featuring three gates within 
197 each cell: the input gate , forgetting gate , and output gate . The forgetting gate determines ti tf to
198 the extent to which the previous memory state is forgotten, while the input gate controls the 1tC
199 degree to which the current memory state is updated. The output gate regulates the influence tC
200 of the current memory state on the output hidden state . Figure 2 provides a visual tC tH
201 representation of the internal structure of the ConvLSTM cell. The key equations for 
202 ConvLSTM are as follows: 

 1 1* *t xi t hi t ci t i     ei W X W H W C b (3)

 1 1* *t xf t hf t cf t f     ef W X W H W C b (4)

 1 1tanh * *t t t t xc t hc t c    e eC f C i W X W H b (5)

 1* *t xo t ho t co t o    eo W X W H W C b (6)

 tanht t t eH o C (7)

203 Where represents the input at the current time step, and are the weight and bias tX W b
204 coefficients that are continuously updated during model training. The symbol denotes the *
205 convolution operation, represents the Hadamard (element-wise) operation and is the e 
206 sigmoid activation function.

207

σ σ σtanh

  




tanh

1tC 

1tH 

tH

tH

tX

tf ti tg to

:Element-Wise Product  :Element-Wise Addition

tC

208 Fig. 2. A demonstration of ConvLSTM cell structure.

209 The ConvLSTM network is a significant advancement in spatiotemporal prediction 
210 research, considering the spatial correlation and temporal variation of data. It forms the basis 
211 for further studies in this field. An enhanced variant of ConvLSTM, known as the PredRNN 
212 network (Wang et al., 2017, 2022), further improves the internal structure to enhance 
213 spatiotemporal prediction capabilities. PredRNN introduces a new spatiotemporal LSTM (ST-
214 LSTM) cell, which consists of two memory states: temporal memory state and l

tC
215 spatiotemporal memory state . In the ST-LSTM cell, is transmitted within adjacent time l

tM l
tC
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216 steps on the same layer, while is initially transmitted within the same time step, reaching l
tM

217 the top layer at the same moment after passing through the bottom layer at the next moment. 
218 This transmission process is illustrated in Fig. 3. This unique method of memory state transfer 
219 enables the memory state at the bottom level to depend on both the temporal memory state of 
220 the previous moment at same layer and the spatiotemporal memory state from higher layer at 
221 historical moments. Consequently, it enhances the interrelation of memory states across 
222 different spatial levels. The specific equations of ST-LSTM cells are outlined below:

 1tanh * * l
t xg t hg t g  g W X W H b (8)

 1* * l
t xi t hi t i   i W X W H b (9)

 1* * l
t xf t hf t f   f W X W H b (10)

1
l l
t t t t t C f C i ge e (11)

 1tanh * * l
t xg t mg t g
  

  g W X W M b (12)

 1* * l
t xi t mi t i  

  i W X W M b (13)

 1* * l
t xf t mf t f  

  f W X W M b (14)
1l l

t t t t t
    e eM f M i g (15)

 1* * *l l
t xo t ho t mo t o    o W X W H W M b (16)

 1 1tanh * ,l l l
t t t t    eH o W C M (17)

223 The memory state in the ST-LSTM unit follows the gate structures from the l
tC

224 ConvLSTM unit, which include the input gate and the forgetting gate . Additionally, a new ti tf

225 set of input gate and forgetting gate are introduced to control the information flow across t
i t

f
226 the memory state . The output gate is shared by the two memory units to facilitate memory l

tM to
227 fusion for the storage state . The input modulation gates and are involved in the l

tH tg t
g

228 computation of memory states. The coefficients and represent the weight and bias terms in W b
229 the model.

230

4 4
1 1,l l

t tC H 
 ST-LSTM

Unit
ST-LSTM

Unit
ST-LSTM

Unit

ST-LSTM
Unit

ST-LSTM
Unit

ST-LSTM
Unit

ST-LSTM
Unit

ST-LSTM
Unit

ST-LSTM
Unit

ST-LSTM
Unit

ST-LSTM
Unit

ST-LSTM
Unit

ˆ
tX 1

ˆ
tX  2

ˆ
tX 

1tX  tX 1tX 

1l
tM 

2l
tM 

3l
tM 

4l
tM 4

1
l
tM 


1l
tH 

2l
tH 

3l
tH 

1l
tH 

2l
tH 

3l
tH 

3l
tC 

2l
tC 

1l
tC 

4 4,l l
t tC H 

1
1

l
tC 


2
1

l
tC 


3
1

l
tC 


1
1

l
tH 


2
1

l
tH 


3
1

l
tH 


in 
pre

ss



Running Head: PREDICTION OF SOUND VELOCITY FIELD

231 Fig. 3. The memory flow architecture of ST-LSTM, the orange arrows indicate that the 
232 spatiotemporal memory state is propagated in a zigzag pattern throughout the network, and l

tM
233 the black arrows denote the temporal memory state transition paths of .l

tC

234 3.3. New ST-LSTM-SA Model

235 Numerous studies have demonstrated that ST-LSTM is well-suited for addressing 
236 spatiotemporal prediction problems. Building upon this, we propose a novel ST-LSTM-SA 
237 prediction model for SVFs prediction. The architecture of our model follows the encoding-
238 forecasting structure commonly used in earlier studies (Shi et al., 2015, 2017). In our model, 
239 we incorporate a self-attention mechanism (Vaswani et al., 2017) between the encoding module 
240 and the forecasting module to address temporal dependence issues in the prediction process. 
241 This self-attention mechanism dynamically adjusts the weights of the encoding module's 
242 outputs at different time steps, enabling us to obtain optimal inputs for the forecasting module 
243 at each time step. Figure 4 illustrates the structure of our proposed ST-LSTM-SA model.

244

245 Fig. 4. Structure of the ST-LSTM-SA network. The red block represents the encoding 
246 module. The green block presents the attention mechanism module, which demonstrates the 
247 operation principle of the self-attention mechanism. The blue block represents the forecasting 
248 module.

249 For the definition of the SVFs prediction problem in Section 3.1, at the current time 
250 step , the model is able to predict the SVFs for the next time steps based on historical t k j
251 observations. In the encoding module, highlighted in the red boxed area in the Fig. 4, the input 
252 SVF sequence  is encoded by layers ST-LSTM cells to output 1 2, ,...,t j t j t   X X X n j

253 hidden states . The attention mechanism module corresponds to the green  1 2, ,...,t j t j t   H H H

254 boxed area in the Fig. 4, and this part first superimposes the results of the encoding module on 
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255 the channels to obtain . Then, the query , the key and the value are obtained by H HQ HK HV
256 mapping to different feature spaces through convolution operations, and   , ,q k vW W W

257 represent the weight parameters of the 1×1 convolution operation. The output after Ĥ
258 attention weight assignment can be obtained by Eq. (18-19):

 softmax T
H Hα Q K (18)

ˆ
HH αV (19)

259 where denotes the transpose of , is the nonlinear activation function, andT
HQ HQ softmax α

260 denotes the attention weight distribution located between [0,1]. The forecasting module, 
261 depicted within the blue boxed area in the Fig. 4, consists of layers of ST-LSTM units with n
262 the same structure as the encoding module. The output of the attention mechanism module 
263 serves as the input for the forecasting module. At the last layer, the forecasting module 
264 generates the prediction results for the next time steps.k

265 3.4. Implementation Details

266 The experiment was conducted on a server with the following configuration: Windows 
267 operating system, 5.10 GHz CPU, 16 GB RAM, and an RTX 3060Ti GPU. The experiment 
268 utilized Python 3.8 and the PyTorch 1.11 machine learning framework with CUDA version 
269 11.3 for efficient GPU acceleration. Four neural network models, namely ANN, LSTM, 
270 ConvLSTM, and ST-LSTM, were selected and compared with the proposed ST-LSTM-SA 
271 model. The purpose of this comparison was to validate the superior performance of the ST-
272 LSTM-SA algorithm.

273 During the training process, we employed the Adam optimizer (Kingma and Ba, 2014) 
274 to optimize the models. Each iteration utilized a batch size of 4, and the initial learning rate 
275 was set to 0.001. The learning rate decayed as the number of training sessions increased. To 
276 prevent overfitting, regularization was applied to effectively regularize the models. This 
277 regularization technique helped enhance the generalization ability of the models and avoid 
278 excessive fitting to the training data. Table 1 presents the implementation details for each model. 
279 The ANN model was constructed using three fully connected layers and employed the MSE 
280 loss function. Due to its limitation in handling only one-dimensional data, the historical SVF 
281 sequence needs to be transformed into a one-dimensional tensor for input. The LSTM model 
282 followed the encoding-forecasting structure and consisted of four layers of LSTM units with a 
283 loss function of MSE. Unlike the ANN model, the LSTM model preserves the time dimension, 
284 and the shape of the input tensor is . The ConvLSTM, ST-LSTM, and ST-( , , )B T M N D 
285 LSTM-SA models all adopted the encoding-forecasting structure. Each module in these models 
286 consisted of two corresponding layers with a uniform hidden state and memory state of 256 
287 channels. The convolutional kernel size was set to . The loss function employed for these 3 3
288 models was MSE loss. The initial input tensor shape for these three models is . ( , , , , )B T M N D
289 Considering the vertical stratification of ocean sound speed, we sequentially arrange the sound 
290 speed values of the nine consecutive bathymetry layers in a 3×3 order, filling insufficient 
291 spaces with 0 values. This process results in the input tensor shape of
292 .( , , 3, 3, / 9 )B T M N D    

293

294
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295 Table 1. Implementation details of models.

Models Implementation details Input shape

ANN Layers=4, hidden_dim=1024 ( , )B T M N D  

LSTM
Encoder: layers=2, hidden_dim=1024

Decoder: layers=2, hidden_dim=1024
( , , )B T M N D 

ConvLSTM

Encoder: layers=2, kernel size = (3,3),

channels = [256,256]

Decoder: layers=2, kernel size = (3,3),

channels = [256,56]

( , , 3, 3, / 9 )B T M N D    

ST-LSTM Same as ConvLSTM ( , , 3, 3, / 9 )B T M N D    

ST-LSTM-SA Same as ConvLSTM ( , , 3, 3, / 9 )B T M N D    

296 3.5. Evaluation methods

297 To evaluate the performance of the different prediction models, we employed several 
298 evaluation metrics: root mean square error (RMSE), mean absolute error (MAE), mean 
299 absolute percentage error (MAPE), and coefficient of determination ( ). RMSE, MAE, and 2R
300 MAPE provide insights into the magnitude of the errors between the predicted and true values, 
301 with smaller values indicating better model performance. measures the strength of 2R
302 correlation between the predicted and true values, with a value ranging from 0 to 1. A value 
303 closer to 1 indicates a stronger correlation and better model performance. These metrics are 
304 calculated as follows, where and are the true value and the predicted value, represents ŷ y n
305 the number of values.
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306 4. Results and Discussion

307 4.1. Overall accuracy evaluation

308 To assess the effectiveness of the proposed algorithm for SVFs prediction, we 
309 conducted an analysis and evaluation of the experimental results obtained from the new ST-
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310 LSTM-SA model and four other models. Table 2 presents an overview of the prediction results 
311 from different models. The spatiotemporal prediction models (ConvLSTM, ST-LSTM and ST-
312 LSTM-SA), which incorporate convolutional operations, consistently outperform the 
313 traditional ANN and LSTM models. The improved performance across all evaluation metrics 
314 suggests that the effective extraction of spatial features enhances the accuracy of predicting the 
315 three-dimensional structure of the ocean SVFs.

316 Among the three spatiotemporal prediction models examined in this study, the ST-
317 LSTM model slightly outperforms the ConvLSTM model. This outcome indicates that the 
318 introduction of spatiotemporal memory units, which facilitate information exchange across 
319 different layers, is crucial for achieving favorable performance. Furthermore, the ST-LSTM-
320 SA model demonstrates further improvement compared to the ST-LSTM model. This finding 
321 indicates that the attention mechanism module effectively enhances the quality of information 
322 transfer between the encoding module and the forecasting module. By assigning weights to the 
323 historical SVF sequences in the encoding module, the attention mechanism module contributes 
324 to more realistic predictions from the forecasting module.

325 Table 2. Overall evaluation indicators for the five models prediction results.

Models RMSE MAE MAPE R2

ANN 1.784 1.001 0.066 0.993
LSTM 1.806 1.030 0.068 0.993

ConvLSTM 1.507 0.825 0.055 0.995
ST-LSTM 1.454 0.793 0.052 0.995

ST-LSTM-SA 1.315 0.728 0.048 0.996

326 Table 3 displays the RMSE and MAPE values for each model's prediction results across 
327 different time steps. It is evident that, except for the ANN model, the prediction performance 
328 of all models deteriorates over time. This decline can be attributed to the accumulation of errors 
329 in the recurrent neural networks used by the other models, whereas the multiple time steps 
330 prediction of the ANN model is independent. Notably, the ST-LSTM-SA model consistently 
331 outperforms the other models in terms of prediction accuracy. It achieves the lowest prediction 
332 errors for the next three months, with reduced increases in prediction errors between adjacent 
333 months. Figure 5 presents a statistical histogram of the prediction RMSE for sound velocity. 
334 The ST-LSTM-SA model exhibits the smallest error statistics, with approximately 80% of the 
335 predicted sound velocity values having the RMSE of less than 1m s-1. This indicates the model's 
336 strong spatial and temporal prediction capability, which consistently produces stable and 
337 accurate predictions.

338

339

340

341

342

343
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344 Table 3. Statistical of sound velocity prediction error for all test samples in future 3 months.

RMSE MAPE 
Mdels

1st month 2nd month 3rd month 1st month 2nd month 3rd month
ANN 1.788 1.789 1.775 0.066 0.066 0.066
LSTM 1.609 1.662 1.758 0.066 0.067 0.068
ConvLSTM 1.432 1.514 1.571 0.053 0.055 0.056
ST-LSTM 1.279 1.478 1.588 0.048 0.053 0.056
ST-LSTM-
SA

1.211 1.329 1.399 0.045 0.048 0.051

345

346

(a) (b) (c)

347 Fig. 5. Frequency distribution of prediction RMSE for all test samples in future 3 months: (a) 
348 the first month; (b) the second month; (c) the third month.

349 In Fig. 6, we present the RMSE of the prediction results at different time steps. For the 
350 prediction of the SVFs over the next 31 months, the error curves of the ANN and LSTM models 
351 exhibit more pronounced fluctuations. Conversely, the RMSE curves of the three 
352 spatiotemporal prediction models demonstrate consistent periodic patterns. Moreover, we 
353 observe smoother transitions between adjacent months, leading to a notable reduction in 
354 prediction errors. Notably, due to their similar network structures, the error curves of the ST-
355 LSTM and ST-LSTM-SA models closely align with each other. However, in most cases, the 
356 ST-LSTM-SA model exhibits further improvement in prediction accuracy compared to ST-
357 LSTM. This finding indicates that the network structure designed in this paper is more suitable 
358 for predicting the sound velocity field.

359

360
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361

(a)

(b)

(c)

362 Fig. 6. The RMSE of different models versus the test dataset across different months: (a) the 
363 first month; (b) the second month; (c) the third month.

364 4.2. Spatial predictive accuracy assessment

365 4.2.1. Horizontal direction analysis

366 To analyze the predictive accuracy of the models at various spatial locations, we delved 
367 into their prediction results along two dimensions: the horizontal direction and the water depth 
368 direction. Initially, we computed the RMSE of all water layers at each latitude and longitude 
369 grid point for every model. Figure 7 presents a visual representation of the obtained analysis 
370 outcomes.

371 The spatial distribution of errors reveals that the ANN and LSTM models exhibit 
372 significant prediction biases across most locations. Interestingly, the spatial distribution of 
373 prediction errors remains relatively consistent for the upcoming three months. However, the 
374 spatiotemporal prediction models demonstrate noticeable improvements. This improvement 
375 can be attributed to the fact that the ANN and LSTM models convert the three-dimensional 
376 structure of the SVFs into a one-dimensional representation during training, resulting in a 
377 considerable reduction in spatial correlation within the input data. Consequently, these models 
378 tend to focus on individual locations rather than the entire SVF during the prediction process.
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379

380 Fig. 7. Statistical predictions in horizontal direction for all test samples in 3 months 
381 prediction. Each grid point represents the RMSE of all water layers at one location. 

382 Examining the prediction results of the spatiotemporal prediction models for the 
383 subsequent three months, we observe that the prediction error gradually expands over time. All 
384 spatiotemporal models exhibit better performance during the first month of the forecast. 
385 However, both the ConvLSTM and ST-LSTM models hardly maintain stable prediction 
386 capabilities in the following second and third months. In contrast, the prediction results of the 
387 ST-LSTM-SA model consistently maintain a balanced spatial distribution, with minimal 
388 increases in error between adjacent months. This demonstrates the effectiveness of the ST-
389 LSTM-SA model in capturing both spatial and temporal variations in sound velocity. Moreover, 
390 each module within the model plays a distinct role, making it well-suited for predicting the 
391 marine sound velocity field.

392 4.2.2. Depth direction analysis

393 In order to gain further insights into the models' prediction capabilities at different water 
394 depths, we computed the RMSE of the prediction results for each water layer, as illustrated in 
395 Fig. 8. It is evident that the prediction errors of all models exhibit a pattern of initially 
396 increasing and then decreasing with increasing depth. In other words, the models perform 
397 consistently and maintain stable prediction abilities in the surface layer and deep isothermal 
398 layer, with the spatiotemporal prediction models achieving a prediction accuracy within 1m s-

399 1. However, in the thermocline layer, the models' prediction accuracy fluctuates significantly. 
400 Both the ANN and LSTM models reach maximum RMSE exceeding 4m s-1, while the 
401 spatiotemporal prediction model surpasses 3m s-1. This indicates that the ocean environment 
402 undergoes more pronounced changes in the thermocline layer. The prediction models struggle 
403 to effectively capture the underlying patterns and mechanisms of these changes, as the marine 
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404 variables such as seawater temperature and salinity are influenced by light and complex 
405 physical processes, leading to considerable uncertainties. 

406
407 Fig. 8. Statistical predictions on depth direction for all test samples in 3 months prediction: 
408 (a) the first month; (b) the second month; (c) the third month.

409 Although the prediction accuracy of each model in the thermocline layer falls short of 
410 expectations, a comparison among the models reveals noteworthy findings. The errors of the 
411 spatiotemporal prediction models, unlike those of the ANN and LSTM models, exhibit 
412 convergence across different water depths. Notably, the ST-LSTM-SA model demonstrates 
413 significant improvement in prediction accuracy for both the surface layer and thermocline layer. 
414 This suggests that capturing the spatial characteristics of sound velocity is crucial in addressing 
415 the prediction challenges associated with the SVFs. Furthermore, incorporating the attention 
416 mechanism enhances not only the prediction accuracy but also the stability of the model across 
417 future prediction time.

418 Figure 9 illustrates the horizontal slices of the sound velocity RMSE for the ConvLSTM, 
419 ST-LSTM, and ST-LSTM-SA models at various depths: 50 m, 150 m, 300 m, 500 m, and 800 
420 m. In the surface layer (50 m), the ST-LSTM-SA model demonstrates enhanced prediction 
421 accuracy in the central region compared to the other two models. Moving deeper into the water 
422 layers at 150 m and 300 m, notable spatial variations in sound velocity prediction errors are 
423 observed. To showcase these differences, we select the 11th, 12th, 13th and 14th test months 
424 from Fig. 6, where error fluctuations are more pronounced, and present their respective sound 
425 velocity horizontal slices at 150 m and 300 m in Fig. 10. From the results, it becomes apparent 
426 that sound velocity exhibits significant variability across most of the area north of 5°S at 150 
427 m, while a smoother transition is observed in the southern area. At 300 m, a separation line in 
428 sound velocity is still present, but the variation between adjacent months is relatively smoother. 
429 Although we acknowledge the potential for doubting the accuracy of the dataset (Zhou et al., 
430 2023), it is important to note that the sharp fluctuations in sound speed primarily impact the 
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431 model's predictive ability for purely spatiotemporal prediction problems. These fluctuations 
432 are closely linked to complex changes in the oceanic environment. As we delve deeper into the 
433 water layers at 500 m and 800 m, seawater temperature gradually stabilizes, resulting in regular 
434 changes in sound velocity. Consequently, the prediction abilities of the different models 
435 become nearly indistinguishable.

436  (a) (b) (c)

437 Fig. 9. Horizontal slices of prediction RMSE for all test samples at 50m, 150m, 300m, 500m, 
438 and 800m in future 3 months: (a) the first month; (b) the second month; (c) the third month.

439

440 Fig. 10. Horizontal slices of the sound velocity value at 150m and 300m for the 11th, 12th, 
441 13th and 14th test months.
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442 5. Conclusions

443 Traditionally, numerical ocean simulations are predominantly employed for predicting 
444 physical phenomena and internal information within the ocean. This study introduces a novel 
445 approach to marine SVFs prediction using the ST-LSTM-SA model, which leverages deep 
446 learning techniques. By treating the prediction of SVFs as a nonlinear time series prediction 
447 problem and adopting a data-driven approach, this method significantly enhances 
448 computational efficiency and reduces resource consumption. The ST-LSTM-SA model is 
449 designed to effectively integrate convolutional operations, LSTM, and self-attention 
450 mechanisms, allowing for the consideration of both spatial and temporal correlations in the 
451 SVF. This enables end-to-end prediction of the SVFs. During model training, transfer learning 
452 techniques are employed to train the model weights on different datasets. The SODA2.2.4 
453 reanalysis dataset assists in capturing simple variations in sound velocity over an extended time 
454 period, while the GDCSM_Argo in-situ analysis data provides more realistic detailed 
455 characteristics of sound velocity, which further refines the model weights.

456 Through an analysis of the prediction results from January 2019 to September 2022, it 
457 is found that the ST-LSTM-SA model outperforms other models across all indicators, 
458 demonstrating better agreement with observed results. Temporally, the prediction results of the 
459 ST-LSTM-SA model exhibit stability over time, and the self-attention mechanism effectively 
460 handles long-term dependencies within the time series. Spatially, traditional ANN and LSTM 
461 models convert multi-dimensional data into one-dimensional data during input, disregarding 
462 the spatial and temporal correlations in the data, resulting in larger discrepancies in prediction 
463 accuracy across different locations. Conversely, the ST-LSTM-SA model demonstrates a more 
464 balanced spatial prediction capability, with prediction errors converging across different water 
465 depth layers.

466 Sound velocity in the ocean is influenced by a complex and dynamic environment, 
467 making it challenging to accurately describe and simulate its motion and underlying physical 
468 laws. In this study, we focus on investigating the spatiotemporal prediction of the sound 
469 velocity field. However, there is still room for further improvement in prediction accuracy. We 
470 plan to optimize the prediction model by refining its architecture and incorporating new feature 
471 data, which is expected to achieve better predictions of the sound velocity field in the future.
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