Electronic Supplementary Material to: Simulating Aerosol Optical Depth and Direct Radiative Effects over the Tibetan Plateau with a High-Resolution CAS FGOALS-f3 Model*

Min $\mathrm{ZHAO}^{1,2,3}$, Tie DAI 1,2, Hao WANG ${ }^{4}$, Qing BAO^{1}, Yimin LIU^{1}, Hua ZHANG^{5}, and Guangyu $\mathrm{SHI}^{1,2,3}$
${ }^{1}$ State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
${ }^{2}$ Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,
Nanjing University of Information Science and Technology, Nanjing 210044, China
${ }^{3}$ University of Chinese Academy of Sciences, Beijing 100049, China
${ }^{4}$ International Center for Climate and Environment Science, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
${ }^{5}$ State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China

ESM to: Zhao, M., T. Dai, H. Wang, Q. Bao, Y. M. Liu, H. Zhang, and G. Y. Shi, 2022: Simulating aerosol optical depth and direct radiative effects over the Tibetan Plateau with a high-resolution CAS FGOALS-f3 Model. Adv. Atmos. Sci., 39(12), 2137-2155, https://doi.org/10.1007/s00376-022-1424-8.

Fig. S1. The seasonal mean differences between the modeled AODs from HRM and LRM and satellite-retrieved AODs from MODIS and MISR. March-April-May: MAM, June-July-August: JJA, September-October-November: SON, and December-January-February: DJF. The seasonal mean over the TP is shown at the top right of each subplot.

[^0]

Fig. S2. Scatterplots comparing RH among models (HRM (a) and LRM (b)) and observations.

Fig. S3. Comparisons of the vertical structure of the liquid water content $\left(\mathrm{g} \mathrm{m}^{-3}\right)$ over the Tibetan Plateau between the HRM and LRM.

[^0]: * The online version of this article can be found at https://doi.org/10.1007/s00376-022-1424-8.

