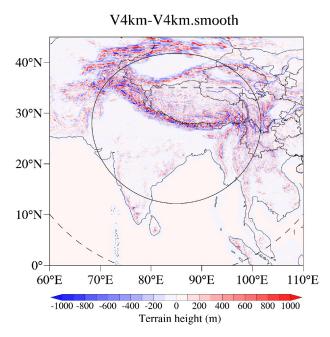
Electronic Supplementary Material to: Impacts of Topographic Complexity on Modeling Moisture Transport and Precipitation over the Tibetan Plateau in Summer*

Gudongze LI¹, Haoming CHEN¹, Mingyue XU¹, Chun ZHAO^{1,2,3}, Lei ZHONG¹, Rui LI¹, Yunfei FU¹, and Yanhong GAO⁴

¹School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

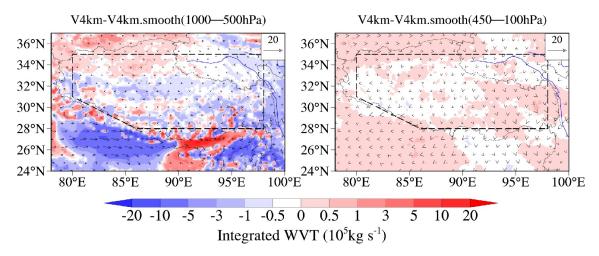
²CAS Center for Excellence in Comparative Planetology, University of Science and

Technology of China, Hefei 230026, China


³Frontiers Science Center for Planetary Exploration and Emerging Technologies,

University of Science and Technology of China, Hefei 230026, China

⁴Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences,


Fudan University, Shanghai 200433, China

ESM to: Li, G. D. Z., H. M. Chen, M. Y. Xu, C. Zhao, L. Zhong, R. Li, Y. F. Fu, and Y. H. Gao, 2022: Impacts of topographical complexity on modeling moisture transport and precipitation over the Tibetan Plateau in summer. *Adv. Atmos. Sci.*, **39**(7), 1151–1166, https://doi.org/10.1007/s00376-022-1409-7.

Fig. S1. Spatial distributions of the difference in terrain height between the simulations with the complex and smooth topography (V4km-V4km.smooth).

^{*}The online version of this article can be found at https://doi.org/10.1007/s00376-022-1409-7.

Fig. S2. Spatial distributions of the difference of the integrated water vapor transport above and below 500 hPa between the simulations with the complex and smooth topography averaged from 1 June to 31 August 2015.