高级检索
王云宇, 沈润平, 黄安奇, 等. 2023. 我国东南地区Noah-MP模式地表温度模拟参数化方案寻优研究[J]. 气候与环境研究, 28(6): 615−629. doi: 10.3878/j.issn.1006-9585.2022.22090
引用本文: 王云宇, 沈润平, 黄安奇, 等. 2023. 我国东南地区Noah-MP模式地表温度模拟参数化方案寻优研究[J]. 气候与环境研究, 28(6): 615−629. doi: 10.3878/j.issn.1006-9585.2022.22090
WANG Yunyu, SHEN Runping, HUANG Anqi, et al. 2023. Optimization of Parameterization Schemes for Surface Temperature Simulation in Southeast China Using the Noah-MP Land Surface Model [J]. Climatic and Environmental Research (in Chinese), 28 (6): 615−629. doi: 10.3878/j.issn.1006-9585.2022.22090
Citation: WANG Yunyu, SHEN Runping, HUANG Anqi, et al. 2023. Optimization of Parameterization Schemes for Surface Temperature Simulation in Southeast China Using the Noah-MP Land Surface Model [J]. Climatic and Environmental Research (in Chinese), 28 (6): 615−629. doi: 10.3878/j.issn.1006-9585.2022.22090

我国东南地区Noah-MP模式地表温度模拟参数化方案寻优研究

Optimization of Parameterization Schemes for Surface Temperature Simulation in Southeast China Using the Noah-MP Land Surface Model

  • 摘要: 陆面模式Noah-MP(Noah land surface model with Multi-Parameterizations)为陆面物理过程提供了大量复杂的参数化方案,往往受限于计算量和计算能力,使得利用全组合方案实验,来确定适用的参数化方案难以实现,从而给模式模拟带来不确定性。为科学减少实验次数,本文引入正交试验法,选择了影响地表温度模拟较大的5个主要过程,包括动态植被、气孔阻抗过程、控制气孔阻抗的土壤湿度参数过程和表面热交换系数过程以及辐射传输过程等,设计了9次正交试验,利用CLDAS-V2.0(中国气象局陆面数据同化系统)驱动Noah-MP陆面模式对我国东南地区地表温度进行模拟,对参数化方案寻优,以确定其适用的参数化方案组合。结果表明,参数化方案的选择对林地区域的模拟,以及在7月和8月的模拟影响较大。物理过程的敏感性和最优参数化方案同时受到下垫面和季节的影响,多数情况中,动态植被与冠层气孔阻抗过程对模拟影响显著,是较敏感的物理过程。通过对不同下垫面不同季节的最优参数化方案组合的时空尺度分析,经模拟验证,东南地区地表温度模拟的较优方案组合为开启动态植被,Ball-Berry的冠层气孔阻抗方案,Noah的土壤湿度参数方案,M-O的地表热交换系数方案和GAPFVEG的辐射传输方案。

     

    Abstract: The Noah-MP (Noah land surface model with Multi-Parameterizations) provides numerous complex parameterization schemes for land surface physical processes. However, a Noah-MP LSM (Land Surface Mode) simulation is often limited by a large calculational requirement and an insufficient computational ability. Therefore, determining an applicable parameterization scheme through full combination scheme experiment is difficult. To scientifically reduce the number of experiments, an orthogonal test method was introduced in this study, and five primary factors affecting surface temperature simulations were selected—dynamic vegetation, canopy stomatal resistance, soil moisture factor for stomatal resistance, surface layer drag coefficient, and radiative transfer. To determine an applicable combination of parameterization schemes for studying parametric scheme optimization, nine experiments were designed using the CLDAS-V2.0 (China Meteorological Administration Land Surface Data Assimilation System) to drive the Noah-MP LSM for surface temperature simulation in Southeast China. Results show that the choice of a parameterization scheme had a substantial impact on the simulation of a woodland area as well as the simulation in July and August. The sensitivity of the land surface physical process and the optimal parameterization scheme were simultaneously affected by the underlying surface and season. In most cases, dynamic vegetation and canopy stomatal resistance substantially affected the simulation and were relatively sensitive physical factors. Through a spatiotemporal analysis of the optimal combinations of parameterization schemes for different underlying surfaces in different seasons, a simulation verification showed that the optimal combination for surface temperature simulation in southeast China was the following: Dynamic vegetation, Ball–Berry-type canopy stomatal resistance, Noah-type soil moisture factor, M-O-type surface heat exchange coefficient, and GAPFVEG type radiative transfer schemes.

     

/

返回文章
返回