Advanced Search
HOU Meiting, ZHAO Haiyan, WANG Zheng, YAN Xiaodong. Vegetation Responses to Climate Change by Using the Satellite-Derived Normalized Difference Vegetation Index:A Review[J]. Climatic and Environmental Research, 2013, 18(3): 353-364. DOI: 10.3878/j.issn.1006-9585.2012.11137
Citation: HOU Meiting, ZHAO Haiyan, WANG Zheng, YAN Xiaodong. Vegetation Responses to Climate Change by Using the Satellite-Derived Normalized Difference Vegetation Index:A Review[J]. Climatic and Environmental Research, 2013, 18(3): 353-364. DOI: 10.3878/j.issn.1006-9585.2012.11137

Vegetation Responses to Climate Change by Using the Satellite-Derived Normalized Difference Vegetation Index:A Review

  • Climate is one of the most important environmental factors affecting spatial and temporal vegetation dynamics. The different responses of vegetation to global warming tend to change over different time and space scales. The rapid development of remote sensing has made it possible to examine vegetation changes at the regional and global scales. Two basic approaches to characterizing vegetation responses to changing climates are to use statistics and modeling. New statistical methods and improved vegetation models have recently been successfully applied to assessing the effects of climate change on vegetation dynamics. The data and analytical methods used and the discoveries made in previous studies of vegetation responses to climate are summarized in this paper, with a focus on vegetation responses to different climate parameters, including precipitation, temperature, and radiation. It is generally accepted that precipitation significantly affects the normalized difference vegetation index (NDVI) in arid and semiarid regions and in regions with distinct dry and wet seasons. The time lag in the response of vegetation to precipitation, and the way the time lag depends on local conditions. Temperature is the dominant climate parameter that affects the NDVI in temperate and boreal regions. The time lag in the vegetation response to temperature is somewhat less pronounced than the time lag in response to precipitation. Solar radiation is the predominant factor limiting vegetation growth in some low latitude areas and areas that have lots of cloud cover, and at certain times in high latitude regions. Future research should focus on 1) quantifying the human role in the response of vegetation to climate change, 2) remeasuring the vegetation responses to different climate parameter changes associated with global warming, and 3) considering the multi-scale assessment of climate change impacts on vegetation.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return