高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2022年  第46卷  第5期

封面
2022-05期封面+目录+封底
2022, 46(5).
摘要:
论文
2020年长江中下游地区梅汛期强降水特征及其与对流层上层斜压Rossby波的关系
孙思远, 管兆勇
2022, 46(5): 1041-1054. doi: 10.3878/j.issn.1006-9895.2106.21006
摘要(592) HTML (105) PDF (10955KB)(239)
摘要:
2020年梅汛期(6~7月)长江中下游地区发生了严峻的汛情。2020年梅雨期长度和强度均远超历史平均水平。本文利用逐日NCEP/NCAR再分析资料和全球降水量网格数据集,研究了本次梅汛期降水特征及其与对流层上层斜压波动活动的联系。结果表明:本次梅汛期,长江中下游地区的总降水量和降水异常大值区位于安徽南部,共有7次连续的降水过程发生。长江中下游地区在对流层中低层辐合、高层辐散,且该地区上空有强的异常上升运动,有利于异常强降水的发生发展。同时,水汽自孟加拉湾和中国南海地区输送至长江中下游地区,为强降水的发生提供了充足水汽。利用小波分析研究该地区的逐日降水标准化时间序列时,发现其存在2~4天和6~14天的显著周期。高频(2~14天)扰动所显示的Rossby波动在对流层上层表现出向下游频散的特征,波动源于贝加尔湖附近。波扰动能量和通量所显示的波动向下游的传播过程与波包的传播过程较为一致,分别源于地中海和贝加尔湖附近的波扰能向东或向东南频散至长江中下游地区,有利于该地区扰动加强并进而有利于强降水的发生和维持。以上结果加深了人们对2020年超长“暴力梅”成因的认识并可为有效预测类似事件提供线索。
中国南方大范围持续性低温、雨雪和冰冻组合性灾害事件:客观识别方法及关键特征
宗海锋, 布和朝鲁, 彭京备, 林大伟
2022, 46(5): 1055-1070. doi: 10.3878/j.issn.1006-9895.2108.21052
摘要(450) HTML (89) PDF (8957KB)(229)
摘要:
组合性灾害事件是指同时出现的若干个天气灾害的组合,它的发生会明显加重致灾程度。本文利用1961~2013年冬季我国南方区域206个台站的日平均温度、日降水量及雨凇资料,建立了冬季大范围持续性低温、雨雪和冰冻组合性灾害事件的客观识别方法,并揭示了三类组合性灾害事件的关键特征。首先,基于低温、雨雪、冰冻天气的强度和面积阈值以及持续天数建立了大范围持续性低温事件、雨雪事件以及冰冻事件各自的客观判识方法。在此基础上界定出了三类常见组合性灾害事件,即低温—雨雪灾害事件(C-RS)、低温—冰冻灾害事件(C-F)以及低温—雨雪—冰冻灾害事件(C-RS-F)。三类组合性灾害事件常见于1月上旬至2月中旬。尽管三类组合性灾害事件在低温和降水等方面有相似之处,但其形成条件却明显不同。充沛的水汽供应和大范围强烈的水汽辐合是低温—雨雪灾害事件和低温—雨雪—冰冻灾害事件发生的关键条件,而逆温层和冷垫则是低温—冰冻灾害事件和低温—雨雪—冰冻灾害事件发生的必要条件。亚洲中高纬大型斜脊系统是低温—冰冻灾害事件和低温—雨雪—冰冻灾害事件的关键环流特征,为强冷空气活动提供了有利环流条件。低温—雨雪灾害事件期间亚洲中高纬则盛行波状环流,有利于适度冷空气活动。在水汽供应和逆温层形成方面,三类组合性灾害事件受控于不同的副热带异常环流系统。孟加拉湾南支槽和南海上空异常反气旋分别是低温—雨雪灾害事件和低温—冰冻灾害事件形成的副热带关键环流系统,而孟加拉湾南支槽和西北太平洋异常反气旋相结合为低温—雨雪—冰冻灾害事件形成的副热带关键环流系统。
登陆台风影响下离地300 m高度内的强风特征
常蕊, 朱蓉, 赵大军
2022, 46(5): 1071-1086. doi: 10.3878/j.issn.1006-9895.2108.21071
摘要(534) HTML (121) PDF (5981KB)(138)
摘要:
利用台风山竹(1822)和利奇马(1909)登陆期间固定式风廓线雷达、WindCubeV2激光雷达和测风塔的梯度观测数据,结合台风山竹(1822)登陆前后精细化风场模拟资料,分析了登陆台风不同影响象限内,离地300 m高度内的强风参数及其随距离、海拔高度及下垫面的变化特征。结果表明:(1)距离台风中心200 km水平范围内,最大风速所在高度及风切变指数沿台风半径向外增加,且陆地强风切变指数普遍高于0.12,而海洋下垫面拖曳作用弱,风切变较小,仅在岛屿群附近存在超出国标设计阈值的高切变区域。(2)台风移动方向的右前象限内强风切变指数稳定维持在0.17左右,且对海拔高度不敏感,左后象限存在类似于急流的风廓线,而左前象限内强风的垂直变化在空间上具有较强的非线性特征,边界层低层强风结构较复杂。(3)阵风因子和湍流强度随平均风速增大、离地高度升高呈现减小趋势。(4)过程最大风向变差角沿台风半径向外减小,且在空间上具有显著的非对称性,其中右后象限的风向变差角最大,半小时风向变化超过30°,且大多发生在台风登陆前或登陆时。研究成果可为我国近海及沿海风电场的微尺度风场模拟及台风风险防御提供帮助。
北京和邢台新粒子生成的差别及其对CCN活性的影响
高颖, 王玉莹, 李占清, 金筱艾, 王靖凌, 胡嵘, 曾思琪, 张睿, 陈曦, 许嘉璐
2022, 46(5): 1087-1097. doi: 10.3878/j.issn.1006-9895.2107.21013
摘要(440) HTML (68) PDF (3753KB)(103)
摘要:
基于2016年冬季和2017年夏季在北京、2016年夏季在邢台的三次气溶胶外场观测实验,选取三次观测期间典型的新粒子生成事件,分析其对气溶胶吸湿和云凝结核(CCN)活化特性的影响。两地分别位于华北平原北部超大城市区域和中南部工业化区域,两地不同季节新粒子形成机制不同,对应的凝结汇、生长速率以及气溶胶化学组分也不同。北京站点新粒子生成事件的发生以有机物的生成主导,而邢台站点新粒子生成事件的发生则以硫酸盐和有机物的生成共同主导。邢台站点新粒子生成过程中气溶胶吸湿性及云凝结核活化能力明显强于北京站点,此特点在核模态尺度粒子中表现尤为明显。以上结果表明,在估算新粒子生成对CCN数浓度的影响时,应充分考虑气溶胶吸湿和活化特性的差异。
FGOALS-g3模拟的南亚夏季风:气候态和年际变率
何林强, 周天军, 李立娟, 林鹏飞, 陈晓龙, 邹立维
2022, 46(5): 1098-1112. doi: 10.3878/j.issn.1006-9895.2105.21042
摘要(433) HTML (110) PDF (7719KB)(114)
摘要:
南亚夏季风的变化决定着印度半岛的旱涝状况,气候系统模式则是研究南亚夏季风变化规律的重要工具。本文基于观测和JRA55再分析资料,系统评估了FGOALS-g3模式模拟的南亚夏季风气候态和年际变率,并重点关注FGOALS-g3与FGOALS-g2以及是否考虑海气相互作用的模拟差异。结果表明,由于局地海温模拟的变化,相比于FGOALS-g2,FGOALS-g3模拟的南亚夏季风在气候态热带印度洋信风和El Niño期间沃克环流下沉支上有明显改进。同时,由于对流层系统性冷偏差持续存在并且中心位于副热带300 hPa附近,造成气候态上经向温度梯度减弱,使季风环流减弱,导致FGOALS-g3中陆地季风槽的水汽辐散偏差和降水干偏差仍然存在;在年际变率上,FGOALS-g3模拟的El Niño期间赤道西太平洋海温冷异常偏弱,印度洋偶极子偏强,导致印度半岛下沉运动减弱,FGOALS-g3中ENSO—印度降水负相关关系也依然偏弱。研究表明,耦合过程导致的气候态海温偏差通过改变环流和水汽输送,有效补偿了大气模式中印度半岛中部和中南半岛的降水湿偏差;在年际变率上,耦合模式由于考虑了海温—降水—云短波辐射的负反馈过程,能够减小大气模式模拟偏差的强度,但印太暖池区海温模拟偏差导致沃克环流下沉支偏西,使得印度半岛的降水响应出现更大的湿偏差。
基于飞机观测的美国落基山地区冬季混合相态层状云与夏季对流云的微物理特征
范雯露, 景晓琴, 杨璟, 周思雨
2022, 46(5): 1113-1131. doi: 10.3878/j.issn.1006-9895.2107.21046
摘要(422) HTML (114) PDF (4984KB)(143)
摘要:
混合相态层状云与对流云的微物理特征有很大的差异性,但现阶段数值模式中并没有充分考虑两者的区别,这是导致云降水的模拟有较大不确定性的原因之一。为了加深对层状云与对流云的微物理特征差异的理解,并为模式的验证和参数化开发提供支撑,本文基于在中落基山地区进行的Ice in Clouds Experiment—Layer Clouds(ICE-L)项目和High Plain Cumulus(HiCu)项目的飞机观测资料,定量对比分析了该地区大陆性混合相态冬季较浅薄的层状云与较弱及中等强度的夏季对流云的微物理特征。其中,粒子图像和粒子谱通过2D-Cloud和2D-Precipitation探头得到,液态水含量通过热线式King探头测量得到,冰水含量基于粒子谱计算得到。主要结论有:(1)在−30°C~0°C的温度层范围内,夏季对流云内的液态水含量比冬季层状云高一个数量级,冰水含量高一到两个数量级,并且在对流云云顶附近观测到更多的过冷水。此外,夏季对流云中液态水含量在−20°C~0°C上随温度降低而升高,而冬季层状云则相反。夏季对流云中更活跃的冰晶生成和生长过程使得云内液态水质量分数小于层状云。(2)冬季层状云与夏季对流云内相态空间分布极不均匀。随着温度从0°C降低到−30°C,在冬季层状云中冰晶发生贝吉龙过程,云中的过冷水为主的区域向混合相态和冰相转化。而夏季对流云中相态结构更为复杂,体现了对流云中复杂的冰水相互作用。(3)在−30°C~0°C的温度范围内,夏季对流云的粒子谱宽度大于冬季层状云。随着温度的降低,冬季层状云与夏季对流云均存在粒子谱增宽的现象。(4)冬季层状云中,温度低于−20°C时冰晶主要为无规则状,在−20°C~−10°C观测到了辐枝状和无规则状冰晶,在−10°C以上观测到了柱状和无规则状冰晶,说明冰晶的生长主要为凝华增长和碰并增长。而夏季对流云以冻滴、霰粒子与不规则冰晶为主,说明主要为液滴冻结、淞附增长和碰并增长为主。(5)在夏季对流云较强的上升气流中存在较高的液态水含量,但垂直速度与云内冰水含量没有明显的相关性。
中国地基GNSS/MET水汽产品质量控制及与再分析产品的对比评估
远芳, 廖捷, 周自江
2022, 46(5): 1132-1146. doi: 10.3878/j.issn.1006-9895.2110.21139
摘要:
本文研究并提出中国地基全球导航卫星系统(GNSS)水汽产品的综合质量控制(CQC)算法。CQC算法由质量检查和综合决策两个环节组成。质量检查环节主要对待检观测数据与其参考数据的差异进行分析,包括界限值检查、考察时间一致性的临近点检查和低通滤波检查,考察空间一致性的邻近站检查、距平值检查和峰谷值检查,以及基于背景场的粗大误差检查等7个模块。每个检查标记出超过阈值的观测数据,随后利用综合决策算法对数据的标记情况进行综合评分,最终给出数据的质量控制码。基于质量控制后的数据,评估了中国第一代全球大气再分析产品(CRA)、ERA-Interim和ERA5等五套再分析数据在中国地区的水汽模拟效果。结果表明几套再分析资料模拟的大气可降水量(PWV)在冬季整体略高于观测,夏季则明显低于观测。在空间上,中国南方地区和西部地区模拟的PWV低于观测,这种情况在夏半年更加明显。相对于观测,CRA的平均偏差(O−B)为0.633 mm,均方根误差为3.650 mm。CRA相对于观测的误差略高于ERA5,但略低于ERA-Interim,明显优于JRA55和NCEP2结果。
“极端降水”专题
“21.7”河南暴雨暖湿季风输送带加强及关键天气流型的准地转位涡反演
谢作威, 布和朝鲁, 诸葛安然, 连汝续, 廖振杨, 阎洁, 林大伟
2022, 46(5): 1147-1166. doi: 10.3878/j.issn.1006-9895.2205.22039
摘要(446) HTML (111) PDF (5972KB)(204)
摘要:
本文使用站点降水资料和欧洲中期天气预报中心第五代再分析数据,利用准地转位涡分部反演,重点分析了2021年7月18~21日(简称“21.7”)河南极端暴雨中暖湿季风输送带加强的机理及其关键环流特征。结果表明:副热带高压持续西伸至中国东部地区,其西南部宽广的东南风将暖湿气流和河南地区高位涡输送至西北地区;同时,西北地区阿拉善高原热低压受感热加热而加强,在近地面层及其东侧的河套地区对流层中低层(750~650 hPa)产生正位涡异常,与河南地区低压环流形成大范围高位涡异常,从而与副热带高压形成较大范围的对峙。准地转位涡反演结果表明,对流层中低层这一天气流型导致河南南部南风的加强,有效地将暖湿输送带中高温高湿的气块输送至河南地区,成为7月20日极端暴雨发生的关键因子之一。对于7月20日河南地区的南风,主要来自于副热带高压的贡献,其次是河套地区对流层中低层高位涡异常,而河南局地低压环流的贡献略小。
近40年北京地区夏季降水日变化及不同持续时间降水事件的特征
赵玮, 郝翠, 曹洁, 周璇, 卢俐
2022, 46(5): 1167-1176. doi: 10.3878/j.issn.1006-9895.2204.22028
摘要(414) HTML (129) PDF (2788KB)(207)
摘要:
利用北京地区20个国家站1980~2020年的长期逐时降水资料,分析了北京夏季降水的基本气候特征和日变化时空分布特征。结果表明:(1)北京地区夏季40年平均降水量分布具有西北山区小,平原大,山区向平原过渡区的迎风坡最大的特点;降水频率则相反,平原降水频率整体小于山区;降水强度整体表现为西北弱,东部强,城区与南部居中的特点。北京夏季降水的强度和极端性较强,致灾风险高。(2)北京夏季平均降水量日变化主体呈单峰型,降水频次为双峰型,降水强度为多峰型,三者同时在22时(北京时,下同)达到最大,在12时最小。(3)降水的峰值时间随月份依次后推,6月最早,7月次之,8月最晚;峰值雨量7月最大,8月次之,6月最小。(4)降水量、降水频率和降水强度的日峰值空间分布具有较强的一致性,西北山区四站出现在20时以前,其余16站出现在20时及以后。使用K均值聚类算法将20站划分为两个区域,结果显示两个区域的降水量、降水频率和强度的日变化具有完全不同的分布特点。(5)近40年北京地区的降水结构在不断调整,短持续时间降水主导期和长持续时间降水主导期交替出现。2000年以前以小于6小时的短持续性降水为主,近15年大于6小时的长持续性降水明显增多。
南疆西部干旱区两次极端暴雨过程对比分析
胡素琴, 希热娜依·铁里瓦尔地, 李娜, 冉令坤, 常友治
2022, 46(5): 1177-1197. doi: 10.3878/j.issn.1006-9895.2204.22001
摘要(307) HTML (163) PDF (14038KB)(166)
摘要:
利用常规气象观测资料、NCEP再分析资料、ERA5分析场数据等资料,对南疆西部两次极端暴雨过程的环境条件和形成机理进行对比分析,以更深入理解南疆极端降水特征和产生机制。两次过程分别发生在春季和夏季,高层环流存在显著差异,南亚高压分别呈东部型和双体型,但配合中层的“阶梯槽”形势,均为极端降水提供了特殊有利的环流背景。低空700~850 hPa偏东急流是南疆西部极端降水发生的重要天气系统,其不但是暴雨发生地主要水汽通道,还与地形形成强烈辐合,是极端降水重要的触发和水汽集中机制。引入二阶湿位涡对两次暴雨过程的非均匀特征及可能产生机制进行了对比分析。结果表明,二阶湿位涡高值区与降水的发展演变呈现较高一致性,二阶湿位涡主分量包含对流稳定度与绝对涡度垂直梯度的耦合,体现极端降水大气的主要动热力结构特点:发生在2021年6月15~16日的夏季过程,极端降水区主要位于昆仑山沿线,与塔里木盆地南侧强烈的低层气旋性旋转有关,旋转促进水汽快速集中,垂直方向表现为中层负涡度叠加于正涡度之上,垂直涡度梯度显著,同时水汽抬升凝结,中层大气加湿加热,对流稳定度在垂直方向非均匀性增强,两种垂直梯度结构均有助于垂直运动增强,促进极端降水形成;发生在2020年4月17~24日的春季过程,降水主要位于南疆西部喇叭口地形区,“阶梯槽”形势造成的越山干冷气流和塔里木盆地的偏东暖湿气流辐合,形成中层正涡度带,激发上升运动,是极端降水的主要成因。
“青藏高原气象学”专题
青藏高原深对流及其在对流层—平流层物质输送中作用的研究进展
陈权亮, 高国路, 李扬
2022, 46(5): 1198-1208. doi: 10.3878/j.issn.1006-9895.2201.21118
摘要:
深对流能够向上对流层—下平流层(UTLS)输送大量水汽和污染物,对对流层顶的辐射平衡、平流层的臭氧恢复以及全球气候变化都有着重要的影响。近年来,一系列重要的观测事实发现,青藏高原和亚洲季风区是对流层向平流层物质输送(TST)的重要窗口。本文介绍了近年来取得的一些主要进展和成果,包括:(1)通过卫星观测在青藏高原—亚洲季风区上空发现水汽、气溶胶的极大值区和臭氧的极小值区;(2)深对流活动的主要观测途径和通过卫星观测识别深对流的方法;(3)青藏高原深对流向平流层物质输送的物理过程;(4)青藏高原深对流与亚洲季风区、热带海洋地区深对流的结构差异以及不同环境场对深对流物质输送过程的影响。
青藏高原和落基山脉对ENSO影响的比较研究
温琴, 何国瑞, 杨海军
2022, 46(5): 1209-1224. doi: 10.3878/j.issn.1006-9895.2101.21109
摘要:
本文利用耦合气候模式研究了“有/无”青藏高原和落基山脉对厄尔尼诺—南方涛动(ENSO)的影响,并从温度变率方程的角度详细分析了ENSO变化的成因,结果表明:移除青藏高原或落基山脉均会造成ENSO变率增强;ENSO变率在无青藏高原试验中增强的幅度比在无落基山脉试验中更大。ENSO变率在地形敏感性试验中的变化与热带太平洋平均气候态的改变密切相关。移除青藏高原后热带太平洋信风减弱,大气对流中心东移,混合层变浅,温跃层变平,呈现出El Niño型海温分布,这些平均态的变化使海表风应力敏感性,Ekman抽吸敏感性以及温跃层敏感性幅度增强,最终导致ENSO振幅增大60%。然而,在移除落基山脉的情景下,热带太平洋信风变化更加复杂,大气对流中心稍有东移,混合层加深,温跃层变平,呈现出类La Niña型海温分布。这些变化增强了风应力敏感性和温跃层敏感性,最终导致ENSO振幅仅增大15%左右。本文研究表明,在地质时间尺度上青藏高原和落基山脉的抬升均抑制了ENSO变率。
CMIP6全球气候模式对青藏高原中东部地表感热通量模拟能力评估
王美蓉, 周顺武, 孙阳, 王军, 马淑俊, 余忠水
2022, 46(5): 1225-1238. doi: 10.3878/j.issn.1006-9895.2204.21169
摘要(352) HTML (74) PDF (5855KB)(107)
摘要:
利用青藏高原(以下简称高原)气象台站常规观测资料、国家青藏高原科学数据中心的青藏高原地气相互作用过程高分辨率(逐小时)综合观测数据集(2005~2016)、国际耦合模式比较计划第六阶段(CMIP6)的历史模拟试验数据和卫星辐射资料,定量评估了12个全球气候模式对1979~2014年高原中东部地表感热通量的模拟能力,并对其模拟偏差进行了成因分析。结果表明,CMIP6模式可较好地重现高原地表感热通量的年循环和季节平均的空间分布型,但数值较计算感热通量偏低,主要表现为对感热通量大值区严重低估。区域平均而言,12个模式模拟的春季高原中东部感热通量的时间演变序列整体较计算感热通量偏低,其中偏差最大的模式为MIROC6,其多年均值仅为计算值的1/3左右。进一步分析发现多模式模拟的春季高原10 m高度处风速和地气温差分别偏强和偏弱,说明CMIP6模拟的春季高原感热通量偏低可主要归因于地气温差的模拟冷偏差。地气温差的模拟冷偏差在高原中东部地区普遍存在,且地表温度和空气温度均存在明显冷偏差,尤其地表温度偏差更大,这很大程度上可能与CMIP6多模式模拟的春季高原降水偏强有关。
青藏高原东南部墨脱地区弱降水微物理特征的Ka波段云雷达观测研究
张静怡, 王改利, 郑佳锋, 刘黎平, 周任然
2022, 46(5): 1239-1252. doi: 10.3878/j.issn.1006-9895.2205.21185
摘要:
藏东南地区的墨脱县位于雅鲁藏布江下游的河谷区域,是印度洋水汽进入高原的最主要水汽通道。墨脱作为西藏年平均降水量最多的地区,是青藏高原云降水系统的重要组成部分。本文以2020年墨脱地区的Ka波段云雷达观测数据为基础,首先对云雷达功率谱数据进行预处理,并采用降水现象仪对云雷达观测进行验证。在此基础上,选取了2020年3月6日和8月24日具有层状云降水特性的两次弱降水过程,利用云雷达功率谱数据反演了雨滴谱,探究墨脱地区旱季和雨季弱降水的微物理特征。结果表明:云雷达观测与降水现象仪雨滴谱数据计算的Ka波段云雷达回波强度理论值存在大约12 dB的系统误差,订正之后二者随时间变化一致性较好,云雷达反演的近地面雨滴谱特征与降水现象仪观测接近。墨脱地区零度层高度随季节变化明显,旱季零度层高度较低(例如地面上1.5 km左右),而雨季零度层高度较高(例如地面上4 km左右)。墨脱层状云雨滴谱的宽度较窄,降水粒子直径不超过3 mm。在零度层以上,根据谱偏度和峰度的垂直变化可以推测冰晶粒子直径随高度下降缓慢增长, 但旱季冰晶粒子增长比雨季更为明显。经过零度层后,冰晶粒子转化为雨滴,雨滴在下落过程中由于碰并及蒸发作用造成浓度减小,直径越小的粒子浓度减小越快。在近地面,由于蒸发作用的加强导致随高度降低雨滴浓度明显减小。
青藏高原与周边地区近四十年区域夏季地表气温变化趋势的异同及归因分析
吴玉婷, 杨崧, 胡晓明, 王子谦, 鲁萌萌, 肖子牛
2022, 46(5): 1253-1266. doi: 10.3878/j.issn.1006-9895.2205.21197
摘要(249) HTML (104) PDF (3901KB)(114)
摘要:
欧亚大陆夏季地表气温在近四十年有显著的升温趋势,本文基于ERA5再分析数据研究了1979~2019年间欧亚大陆不同区域的夏季地表气温的变化特征,并利用气候反馈响应分析方法揭示了各区域变暖原因的异同。作为全球海拔最高的大地形,青藏高原在过去四十年经历了显著的增温过程。青藏高原周边相对低海拔的地区(如北非—南欧地区、蒙古地区、东北亚地区)同样表现出明显的变暖特征,而高原南侧的南亚地区的地表气温却变化不明显。青藏高原夏季积雪融化引起的地表反照率减小使得更多短波辐射到达地表,放大高原地表增暖。北非—南欧地区增暖则主要源于大气气溶胶含量减少造成的入射短波辐射增加。同时,大气温度升高导致的向下长波辐射增强对北非—南欧地区以及蒙古地区的增暖都有显著贡献。此外,东北亚地区云的减少是造成其地表增暖最主要的过程,而南亚地区则是水汽增加和感热通量减少造成的增温与云和气溶胶增加造成的降温相抵消,因而温度变化幅度不大。
"高影响天气"专题
2018年2月琼州海峡持续性海雾过程的数值模拟分析
王慧, 林建, 马占山, 刘达, 吴晓京
2022, 46(5): 1267-1280. doi: 10.3878/j.issn.1006-9895.2203.21265
摘要(256) HTML (61) PDF (5416KB)(103)
摘要:
2018年2月春节期间琼州海峡发生持续性大雾天气,造成大量船舶停航。本文结合葵花8号卫星反演海雾产品、琼州海峡沿岸站点能见度观测数据及美国国家环境预报中心NCEP(National Centers for Environmental Prediction) 提供的FNL(Final Analysis)客观分析资料,对2018年2月18~20日的大雾过程进行了天气学成因分析,并进一步利用CMA-MESO(Global and Regional Assimilation and Prediction System)高分辨率数值模式从边界层方案、模式垂直分层以及海雾能见度算法三个方面进行敏感性试验,以找出模拟效果更好的模式设置方案。研究结果表明:大雾期间华南近海海温较常年平均偏低,受地面冷高压南下补充的弱冷空气影响,偏东暖湿气流流经冷海面并快速凝结。而数值模拟对比试验显示,采用YSU(Yonsei University)边界层方案、边界层垂直层次加密及美国国家海洋大气局预报系统实验室(FSL/NOAA)的海雾诊断方案(简称FSL)对改进能见度预报效果显著:YSU边界层方案比MRF(Medium Range Forecast Model)边界层方案对该次大雾过程的分布范围和最低能见度出现的时间模拟效果更优;模式低层分层加密可更好体现出低能见度的演变过程;通过能见度算法与实况对比,基于模式预报性能较好的湿度和温度预报而来的FSL算法,其能见度预报与站点实况最为接近。