高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合Ka和X波段双偏振雷达对北京一次锋面降雪过程雪带的观测分析

武静雅 毕永恒 孙强 吕达仁

武静雅, 毕永恒, 孙强, 等. 2021. 结合Ka和X波段双偏振雷达对北京一次锋面降雪过程雪带的观测分析[J]. 大气科学, 45(5): 931−942 doi: 10.3878/j.issn.1006-9895.2009.20103
引用本文: 武静雅, 毕永恒, 孙强, 等. 2021. 结合Ka和X波段双偏振雷达对北京一次锋面降雪过程雪带的观测分析[J]. 大气科学, 45(5): 931−942 doi: 10.3878/j.issn.1006-9895.2009.20103
WU Jingya, BI Yongheng, SUN Qiang, et al. 2021. Observation and Analysis of Snowband Structure in a Process of Cyclone Frontal Snowfall in Beijing with Ka-band and X-band Polarized Radars [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 931−942 doi: 10.3878/j.issn.1006-9895.2009.20103
Citation: WU Jingya, BI Yongheng, SUN Qiang, et al. 2021. Observation and Analysis of Snowband Structure in a Process of Cyclone Frontal Snowfall in Beijing with Ka-band and X-band Polarized Radars [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 931−942 doi: 10.3878/j.issn.1006-9895.2009.20103

结合Ka和X波段双偏振雷达对北京一次锋面降雪过程雪带的观测分析

doi: 10.3878/j.issn.1006-9895.2009.20103
基金项目: 青藏高原大气多要素垂直结构的高分辨率综合探测及对大气上下层相互作用的重要机制研究项目QYZDY-SSW-DQC027,临近空间科学实验系统项目——地基激光和微波雷达遥感观测XDA17000000
详细信息
    作者简介:

    武静雅,女,1989年出生,博士研究生,主要从事雷达气象学相关研究。E-mail: wujingya@mail.iap.ac.cn

    通讯作者:

    孙强,E-mail: franklin_sun@tom.com

  • 中图分类号: P407

Observation and Analysis of Snowband Structure in a Process of Cyclone Frontal Snowfall in Beijing with Ka-band and X-band Polarized Radars

Funds: High Resolution Comprehensive Detection of Multi-Element Vertical Structure in the Atmosphere of the Tibetan Plateau and Study on the Important Mechanism of Interaction between Upper and Lower Atmospheres (Grant QYZDY-SSW-DQC027), Ground-Based Laser and Microwave Radar Remote Sensing Observation, A Sub-project of the Adjacent Space Science Experimental System (Grant XDA17000000)
  • 摘要: 本文设计了中国科学院大气物理研究所位于同一观测站内的一部单发双收Ka波段双偏振雷达和一部双发双收X波段双偏振雷达高效结合观测的方法,并首次将Ka和X波段双偏振雷达结合应用在降雪过程的观测中,对2019年2月14日锋面气旋系统在北京地区降雪过程中雪带的形成、发展、消亡过程的宏微观结构进行了分析。结果表明,雪带的垂直结构符合以往对层状云垂直分层的物理认识,类似但不同于雨带由凝结增长层、丛集层、淞附层、融化层组成的四层结构,雪带只包含由上层“播种”至下层的冰晶形成的凝结增长层、丛集层和淞附层三层。由于各层水平风速不同,雪带的三层结构并非垂直排列。多个雪带不断生成发展维持降雪,直至冰晶凝结生长层变空,云从冰晶凝结生长层分裂为多层云后各自消散。证明了Ka和X波段双偏振雷达结合的必要性和高效性,丰富了对锋面气旋系统雪带的认识,补充了Ka波段和X波段雷达对降雪的观测研究。
  • 图  1  2019年2月14日08꞉32(北京时,下同)至09꞉23时段内播种形成阶段IAPKa垂直对空(DTB)扫描回波变量:(a)ZHH;(b)V;(c)LDR

    Figure  1.  Vertical scan echo of IAPKa in a seeding process from 0832 BJT to 0923 BJT (Beijing time) on 14 Feb 2019: (a) Reflectivity factor (ZHH); (b) Doppler velocity (V); (c) Linear depolarization ratio (LDR)

    图  2  2019年2月14日09꞉30 IAPKa和IAPX进行同步距离—高度(RHI)扫描获得的IAPKa的变量(a)ZHH和(b)LDR以及IAPX的变量(c)ZDR和(d)ρhv。黑色实线区域是冰晶凝结增长层,白色线区域是丛集层,黑色虚线区域是凇附层

    Figure  2.  (a) IAPKa variable ZHH, (b) IAPKa variable LDR, (c) IAPX variable ZDR (differential reflectance factor), and (d) IAPX variable ρhv (correlation coefficient) obtained by the simultaneous range height indicator (RHI) scans of IAPKa and IAPX at 0930 BJT 14 Feb 2019. The black solid line area is the condensation layer, the white line area is the aggregation layer, and the black dotted line area is the riming layer

    图  3  2019年2月14日10꞉36 IAPKa和IAPX进行同步RHI扫描获得的IAPKa的变量(a)ZHH和(b)LDR以及IAPX的变量(c)ZDR和(d)ρhv

    Figure  3.  (a) IAPKa variable ZHH, (b) IAPKa variable LDR, (c) IAPX variable ZDR, and (d) IAPX variable ρhv obtained by the simultaneous RHI scans of IAPKa and IAPX at 1036 BJT 14 Feb 2019

    图  4  2019年2月14日12꞉46 IAPKa和IAPX进行同步RHI扫描获得的IAPKa的变量(a)ZHH和(b)LDR以及IAPX的变量(c)ZDR和(d)ρhv

    Figure  4.  (a) IAPKa variable ZHH, (b) IAPKa variable LDR, (c) IAPX variable ZDR, and (d) IAPX variable ρhv obtained by the simultaneous RHI scans of IAPKa and IAPX at 1246 BJT 14 Feb 2019

    图  5  2019年2月14日13꞉48 IAPKa和IAPX进行同步RHI扫描获得的IAPKa的变量(a)ZHH和(b)LDR以及IAPX的变量(c)ZDR和(d)ρhv

    Figure  5.  (a) IAPKa variable ZHH, (b) IAPKa variable LDR, (c) IAPX variable ZDR, and (d) IAPX variable ρhv obtained by the simultaneous RHI scans of IAPKa and IAPX at 1348 BJT 14 Feb 2019

    图  6  2019年2月14日16꞉12 IAPKa和IAPX进行同步RHI扫描获得的IAPKa的变量(a)ZHH和(b)LDR以及IAPX的变量(c)ZDR和(d)ρhv

    Figure  6.  (a) IAPKa variable ZHH, (b) IAPKa variable LDR, (c) IAPX variable ZDR, and (d) IAPX variable ρhv obtained by the simultaneous RHI scans of IAPKa and IAPX at 1612 BJT 14 Feb 2019

    图  7  2019年2月14日16꞉40 IAPKa和IAPX进行同步RHI扫描获得的IAPKa的变量(a)ZHH和(b)LDR以及IAPX的变量(c)ZDR和(d)ρhv

    Figure  7.  (a) IAPKa variable ZHH, (b) IAPKa variable LDR, (c) IAPX variable ZDR and (d) IAPX variable ρhv obtained by the simultaneous RHI scans of IAPKa and IAPX at 1640 BJT 14 Feb 2019

    表  1  IAPKa和IAPX参数表

    Table  1.   Parameters of Ka-band radar of Institute of Atmospheric Physics(IAPKa) and X-band radar of Institute of Atmospheric Physics (IAPX)

    IAPKa IAPX
    工作频率 35.075 GHz 9.375 GHz
    收发方式 单发双收(H-HV) 双发双收(HH-VV)
    偏振变量 线性退偏比LDR 差分反射率因子ZDR
    相关系数ρhv
    差分相位φDP
    观测模式 zenith-pointing(DTB)
    Range Height Indicator(RHI)
    Plan Position Indicator(PPI)
    RHI
    PRF 3500
    2800/3500 (4:5)
    1120/1400 (4:5)
    Nyquist速度 ±7.52 m s−1
    ±30.10 m s−1
    ±21 m s−1
    波束宽度 0.42° 1.1°
    脉冲宽度 0.2 μs 1 μs
    |K|2 0.87 0.93
    10 km灵敏度 −32 dBZ −12 dBZ
    下载: 导出CSV

    表  2  IAPKa和IAPX结合观测方式

    Table  2.   The combined observation method of IAPKa and IAPX

    配合方式编号 目的 IAPKa
    观测模式
    IAPX
    观测模式
    1 跟踪系统的移动变化
    确定目标雪带
    HTB PPI
    2 同步观测雪带的垂直结构 RHI RHI
    下载: 导出CSV

    表  3  雪带发展过程

    Table  3.   Evolution of snowbands

    阶段 雷达回波特征 内部过程 外部现象
    生成 形成由上至下分为三层的中尺度结构 “播种”到下方的冰晶凝结增长、丛集、凇附形成雪带 降雪增强
    发展 观测到多个如上结构 多个雪带不断形成发展维持降雪 降雪维持
    消亡 如上结构中最上层减弱到不能被观测到 从减弱“变空”的冰晶凝结增长层分裂,分裂后的云层各自减弱消散 云分裂为多层各自消散,降雪结束
    下载: 导出CSV
  • [1] Battan L J. 1959. Radar Meteorology [M]. Chicago: University of Chicago Press, 161pp.
    [2] Battan L J. 1973. Radar Observations of the Atmosphere [M]. Chicago: University of Chicago Press, 324pp.
    [3] Businger S, Reed R J. 1989. Cyclogenesis in cold air masses [J]. Wea. Forecasting, 4(2): 133−156. doi:10.1175/1520-0434(1989)004<0133:CICAM>2.0.CO;2
    [4] 陈羿辰, 金永利, 丁德平, 等. 2016. 毫米波测云雷达在降雪观测中的应用初步分析 [J]. 大气科学, 42(1): 134−149. doi: 10.3878/j.issn.1006-9895.1705.17121

    Chen Yichen, Jin Yongli, Ding Deping, et al. 2016. Preliminary analysis on the application of millimeter wave cloud radar in snow observation [J]. Chinese Journal of Atmospheric Sciences, 42(1): 134−149. doi: 10.3878/j.issn.1006-9895.1705.17121
    [5] Clark J H E, James R P, Grumm R H. 2002. A reexamination of the mechanisms responsible for banded precipitation [J]. Mon. Wea. Rev., 130(12): 3074−3086. doi:10.1175/1520-0493(2002)130<3074:AROTMR>2.0.CO;2
    [6] Fujiyoshi Y, Endoh T, Yamada T, et al. 1990. Determination of a Z-R relationship for snowfall using a radar and high sensitivity snow gauges [J]. J. Appl. Meteor., 29(2): 147−152. doi:10.1175/1520-0450(1990)029<0147:DOARFS>2.0.CO;2
    [7] Gosset M, Sauvageot H. 1992. A dual-wavelength radar method for ice-water characterization in mixed-phase clouds [J]. J. Atmos. Oceanic Technol., 9(5): 538−547. doi:10.1175/1520-0426(1992)009<0538:ADWRMF>2.0.CO;2
    [8] Heymsfield A J, Matrosov S Y, Wood N B. 2016. Toward improving ice water content and snow-rate retrievals from radars. Part I: X and W bands, emphasizing CloudSat [J]. J. Appl. Meteor. Climatol., 55(9): 2063−2090. doi: 10.1175/JAMC-D-15-0290.1
    [9] Heymsfield G M. 1979. Doppler radar study of a warm frontal region [J]. J. Atmos. Sci., 36(11): 2093−2107. doi:10.1175/1520-0469(1979)036<2093:DRSOAW>2.0.CO;2
    [10] Hobbs P V, Matejka T J, Herzegh P H, et al. 1980. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. I: A case study of a cold front [J]. J. Atmos. Sci., 37(3): 568−596. doi:10.1175/1520-0469(1980)037<0568:TMAMSA>2.0.CO;2
    [11] Houghton H G. 1968. On precipitation mechanisms and their artificial modification [J]. J. Appl. Meteor., 7(5): 851−859. doi:10.1175/1520-0450(1968)007<0851:OPMATA>2.0.CO;2
    [12] Houze R A. 2014. Cloud Dynamics [M]. 2nd ed. Oxford: Elsevier, 329pp.
    [13] Houze R A, Lee W C, Bell M M. 2009. Convective contribution to the genesis of Hurricane Ophelia (2005) [J]. Mon. Wea. Rev., 137(9): 2778−2800. doi: 10.1175/2009MWR2727.1
    [14] Jurewicz M L, Evans M S. 2004. A comparison of two banded, heavy snowstorms with very different synoptic settings [J]. Wea. Forecasting, 19(6): 1011−1028. doi: 10.1175/WAF-823.1
    [15] Kajikawa M. 1982. Observation of the falling motion of early snow flakes. Part I. Relationship between the free-fall pattern and the number and shape of component snow crystals [J]. J. Meteor. Soc. Japan, 60(2): 797−803. doi: 10.2151/jmsj1965.60.2_797
    [16] 李玉莲, 孙学金, 赵世军, 等. 2019. Ka波段毫米波云雷达多普勒谱降雪微物理特征分析 [J]. 红外与毫米波学报, 38(2): 245−253. doi: 10.11972/j.issn.1001-9014.2019.02.019

    Li Yulian, Sun Xuejin, Zhao Shijun, et al. 2019. Analysis of snowfall's microphysical process from Doppler spectrum using Ka-band millimeter-wave cloud radar [J]. J. Infrared Millim. Waves, 38(2): 245−253. doi: 10.11972/j.issn.1001-9014.2019.02.019
    [17] Liao L, Meneghini R, Iguchi T, et al. 2005. Use of dual-wavelength radar for snow parameter estimates [J]. J. Atmos. Oceanic Technol., 22(10): 1494−1506. doi: 10.1175/JTECH1808.1
    [18] Locatelli J D, Hobbs P V. 1974. Fall speeds and masses of solid precipitation particles [J]. J. Geophys. Res., 79(15): 2185−2197. doi: 10.1029/JC079i015p02185
    [19] Martin J E. 1999. Quasigeostrophic forcing of ascent in the occluded sector of cyclones and the trowal airstream [J]. Mon. Wea. Rev., 127(1): 70−88. doi:10.1175/1520-0493(1999)127<0070:QFOAIT>2.0.CO;2
    [20] Martner B E, Wuertz D B, Stankov B B, et al. 1993. An evaluation of wind profiler, RASS, and microwave radiometer performance [J]. Bull. Amer. Meteor. Soc., 74(4): 599−614. doi:10.1175/1520-0477(1993)074<0599:AEOWPR>2.0.CO;2
    [21] Matrosov S Y. 2007. Modeling backscatter properties of snowfall at millimeter wavelengths [J]. J. Atmos. Sci., 64(5): 1727−1736. doi: 10.1175/JAS3904.1
    [22] Matrosov S Y, Kropfli R A, Reinking R F, et al. 1999. Prospects for measuring rainfall using propagation differential phase in X- and Ka-radar bands [J]. J. Appl. Meteor., 38(6): 766−776. doi:10.1175/1520-0450(1999)038<0766:PFMRUP>2.0.CO;2
    [23] Matrosov S Y, Campbell C, Kingsmill D, et al. 2009. Assessing snowfall rates from X-band radar reflectivity measurements [J]. J. Atmos. Oceanic Technol., 26(11): 2324−2339. doi: 10.1175/2009JTECHA1238.1
    [24] Nakamura K, Inomata H, Kozu T, et al. 1990. Rain observation by an X- and Ka-band dual-wavelength radar [J]. J. Meteor. Soc. Japan, 68(5): 509−521. doi: 10.2151/jmsj1965.68.5_509
    [25] Nicosia D J, Grumm R H. 1999. Mesoscale band formation in three major northeastern United States snowstorms [J]. Wea. Forecasting, 14(3): 346−368. doi:10.1175/1520-0434(1999)014<0346:MBFITM>2.0.CO;2
    [26] Novak D R, Colle B A, McTaggart-Cowan R. 2009. The role of moist processes in the formation and evolution of mesoscale snowbands within the comma head of northeast U.S. cyclones [J]. Mon. Wea. Rev., 137(8): 2662−2686. doi: 10.1175/2009MWR2874.1
    [27] Picca J C, Schultz D M, Colle B A, et al. 2014. The value of dual-polarization radar in diagnosing the complex microphysical evolution of an intense snowband [J]. Amer. Meteor. Soc., 95(12): 1825−1834. doi: 10.1175/BAMS-D-13-00258.1
    [28] Rutledge S A, Hobbs P V. 1983. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the "Seeder–Feeder" process in warm-frontal rainbands [J]. J. Atmos. Sci., 40(5): 1185−1206. doi:10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2
    [29] Ryzhkov A V, Zrnic D S. 2019. Polarimetric microphysical retrievals [M]//Ryzhkov A V, Zrnic D S. Radar Polarimetry for Weather Observations. Cham: Springer. doi: 10.1007/978-3-030-05093-1_11
    [30] Sanders F, Bosart L F. 1985. Mesoscale structure in the megalopolitan snowstorm, 11–12 February 1983. Part II: Doppler radar study of the New England snowband [J]. J. Atmos. Sci., 42(13): 1398−1407. doi:10.1175/1520-0469(1985)042<1398:MSITMS>2.0.CO;2
    [31] Schrom R S, Kumjian M R, Lu Y H. 2015. Polarimetric radar signatures of dendritic growth zones within Colorado winter storms [J]. J. Appl. Meteor. Climatol., 54(12): 2365−2388. doi: 10.1175/JAMC-D-15-0004.1
    [32] Schultz D M, Schumacher P N. 1999. The use and misuse of conditional symmetric instability [J]. Mon. Wea. Rev., 127(12): 2709−2732. doi:10.1175/1520-0493(1999)127<2709:TUAMOC>2.0.CO;2
    [33] Stolzenburg M, Rust W D, Smull B F, et al. 1998. Electrical structure in thunderstorm convective regions: 1. Mesoscale convective systems [J]. J. Geophys. Res., 113(D12): 14059−14078. doi: 10.1029/97JD03546
    [34] Tyynelä J, Chandrasekar V. 2014. Characterizing falling snow using multifrequency dual-polarization measurements [J]. J. Geophys. Res., 119(13): 8268−8283. doi: 10.1002/2013JD021369
    [35] Vivekanandan J, Zhang G, Politovich M K. 2001. An assessment of droplet size and liquid water content derived from dual-wavelength radar measurements to the application of aircraft icing detection [J]. J. Atmos. Oceanic Technol., 18(11): 1787−1798. doi:10.1175/1520-0426(2001)018<1787:AAODSA>2.0.CO;2
    [36] 王柳柳, 刘黎平, 余继周, 等. 2017. 毫米波云雷达冻雨—降雪微物理和动力特征分析 [J]. 气象, 43(12): 1473−1486. doi: 10.7519/j.issn.1000-0526.2017.12.003

    Wang Liuliu, Liu Liping, Yu Jizhou, et al. 2017. Microphysics and dynamic characteristic analysis of freezing rain and snow observed by millimeter-wave radar [J]. Meteor. Mon., 43(12): 1473−1486. doi: 10.7519/j.issn.1000-0526.2017.12.003
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  66
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-08
  • 录用日期:  2020-12-23
  • 网络出版日期:  2020-12-30
  • 刊出日期:  2021-10-14

目录

    /

    返回文章
    返回