高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

江西地区层状暖云微物理结构特征及云雨自动转化阈值函数的研究

靳雨晨 牛生杰 吕晶晶 王元 谢勇 林文

靳雨晨, 牛生杰, 吕晶晶, 等. 2021. 江西地区层状暖云微物理结构特征及云雨自动转化阈值函数的研究[J]. 大气科学, 45(5): 981−993 doi: 10.3878/j.issn.1006-9895.2102.20166
引用本文: 靳雨晨, 牛生杰, 吕晶晶, 等. 2021. 江西地区层状暖云微物理结构特征及云雨自动转化阈值函数的研究[J]. 大气科学, 45(5): 981−993 doi: 10.3878/j.issn.1006-9895.2102.20166
JIN Yuchen, NIU Shengjie, LÜ Jingjing, et al. 2021. Study of the Microphysical Structural Characteristics and Cloud–Rain Autoconversion Threshold Function of Stratiform Warm Clouds in Jiangxi [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 981−993 doi: 10.3878/j.issn.1006-9895.2102.20166
Citation: JIN Yuchen, NIU Shengjie, LÜ Jingjing, et al. 2021. Study of the Microphysical Structural Characteristics and Cloud–Rain Autoconversion Threshold Function of Stratiform Warm Clouds in Jiangxi [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 981−993 doi: 10.3878/j.issn.1006-9895.2102.20166

江西地区层状暖云微物理结构特征及云雨自动转化阈值函数的研究

doi: 10.3878/j.issn.1006-9895.2102.20166
基金项目: 国家重点研发计划“重大自然灾害监测预警与防范”重点专项2018YFC1507905,国家自然科学基金项目41775134、41822504、41675136、42075063,江苏省研究生科研创新计划项目KYCX20_0920
详细信息
    作者简介:

    靳雨晨,女,1995年出生,硕士研究生,主要从事云雾降水物理学研究。E-mail: jinyuchenxiaoyu@163.com

    通讯作者:

    牛生杰,E-mail: niusj@nuist.edu.cn

  • 中图分类号: P401

Study of the Microphysical Structural Characteristics and Cloud–Rain Autoconversion Threshold Function of Stratiform Warm Clouds in Jiangxi

Funds: National Key Research and Development Program“Monitoring, Warning, and Prevention of Major Natural Disasters”Key Project (Grant 2018YFC1507905), National Natural Science Foundation of China (Grants 41775134, 41822504, 41675136, 42075063), Innovative Project of Postgraduates in Jiangsu Province (Grant KYCX20_0920)
  • 摘要: 本文利用机载云粒子探测设备对2014年11月6日至12月25日期间在江西地区探测获得的7次暖云飞行个例资料,详细分析降水云和非降水云的微物理结构特征。云雨自动转化阈值函数(T)是描述云内碰并强度的重要微物理参量。我们发现T值在云内分布呈现云底较小,随着云内高度的增加T值逐渐增大,并且在云中部和上部达到最大值;研究还发现降水云的T值在0.6以上的频率远大于非降水云,表明降水云中的碰并过程更强,云滴更易通过凝结和碰并过程形成雨滴,符合暖云降水机制。降水云中云滴谱相对离散度(ε)和云滴数浓度(Nc)的负相关程度较非降水云更为显著,随着T的增大,二者的负相关程度增强;相比于云滴平均半径(ra)的变化,云滴谱标准差(σ)的变化主导εNc负相关程度的增强。
  • 图  1  飞机飞行轨迹和地形(彩色阴影,单位:m)

    Figure  1.  Flight trajectories and topography (shadings, units: m)

    图  2  2014年(a)11月6日、(b)11月7日、(c)11月10日、(d)11月11日、(e)11月30日、(f)12月3日、(g)12月25日08时500 hPa位势高度场(等值线,单位:dagpm)、700 hPa风场(风羽)。橙色圆点表示飞机起飞的地点

    Figure  2.  500-hPa geopotential height (contours, units: dagpm) and 700-hPa wind (wind barbs) at 0800 BJT (Beijing time) on (a) 6 November, (b) 7 November (c) 10 November (d) 11 November (e) 30 November (f) 3 December (g) 25 December 2014. The orange points indicate where the plane takes off

    图  3  2014年11月7日飞机飞行轨迹。橙色矩形区域表示云区,彩色阴影表示云滴数浓度(Nc,单位:cm−3

    Figure  3.  Flight trace on 7 November 2014. The orange rectangle represents the cloud area, color shadings represent the number concentration of cloud droplets (Nc, units: cm−3)

    图  4  2014年11月6日至12月25日七架次飞行探测到的(a–c)降水云和(d–f)非降水云中云滴数浓度(Nc,单位:cm−3)、液态水含量(CLW,单位:g cm−3)、云滴平均直径(D,单位:μm)的垂直分布特征

    Figure  4.  Vertical distribution characteristics of the number concentration (Nc, units: cm−3) of cloud droplets, liquid water content (CLW, units: g cm−3), average diameter of cloud droplets (D, units: μm) in (a–c) precipitation clouds and (d–f) nonprecipitation clouds detected by seven sorties from 6 November to 25 December 2014

    图  5  2014年11月6日至12月25日七架次飞行探测到的不同高度下(a)降水云和(b)非降水云云滴谱分布特征。D表示云滴平均直径

    Figure  5.  Distribution characteristics of cloud droplet spectra in (a) precipitation cloud and (b) nonprecipitation cloud detected by seven sorties at different heights from 6 November to 25 December 2014. D represents average diameter of cloud droplet

    图  6  2014年11月(a)7日、(b)10日、(c)11日、(d)12月3日T的云内垂直分布。阴影表示T值的标准差

    Figure  6.  Vertical distributions of T (autoconversion threshold function) in the cloud on (a) 7 November, (b) 10 November, (c) 11 November, (d) 3 December 2014. The shadings represent the standard deviation of T

    图  7  2014年11月6日至12月25日七架次飞行探测到的非降水云和降水云中T分布的柱状图。纵坐标代表各范围所占百分比,阴影代表高度(单位:m)

    Figure  7.  Distribution histograms of T in nonprecipitation clouds (NP) and precipitation clouds (P) detected by seven sorties from 6 November to 25 December 2014. y-axis represents the percentage of each range, and shadings represent the height (units: m)

    图  8  2014年11月6日至12月25日七架次飞行探测到的不同T范围内(a)降水云和(b)非降水云的云滴谱分布特征

    Figure  8.  Distribution characteristics of cloud droplet spectra in (a) precipitation clouds and (b) nonprecipitation clouds detected by seven sorties at different ranges of T from 6 November to 25 December 2014

    图  9  2014年11月6日至12月25日七架次飞行探测到的(a)降水云、(b)非降水云Nc与云滴谱离散度ε相关关系随CLW(彩色阴影)变化的分布

    Figure  9.  Correlation distributions with CLW (color shadings) between Nc and ε (cloud droplet spectral dispersion) for (a) precipitation clouds, (b) nonprecipitation clouds detected by seven sorties from 6 November to 25 December 2014

    图  10  2014年11月6日至12月25日七架次飞行探测到的非降水云和降水云的云雨自动转化阈值(T)与云滴谱离散度(ε)的相关关系

    Figure  10.  Correlations between T (autoconversion threshold function) and ε for precipitation clouds and nonprecipitation clouds detected by seven sorties from 6 November to 25 December 2014

    图  11  2014年11月6日至12月25日七架次飞行探测到的(a)非降水云和(b)降水云在不同T范围内εNc相关关系

    Figure  11.  Correlations between Nc and ε for (a) nonprecipitation clouds and (b) precipitation clouds detected by seven sorties at different ranges of T from 6 November to 25 December 2014

    图  12  2014年11月6日至12月25日七架次飞行探测到的不同T范围内云滴微物理量(a)ε、(b)σ、(c)raNc的关系

    Figure  12.  Correlations between Nc and (a) ε, (b) standard deviation (σ), (c) loud droplet mean radius (ra) detected by seven sorties at different ranges of T from 6 November to 25 December 2014

    表  1  飞行探测概况

    Table  1.   General situation of flight detection

    架次日期飞行时间段最大飞行高度/m天气形势降水量/mm
    F12014年11月6日13:40~16:103179高空低槽东移
    中层位于西南急流带,急流较弱
    0.0
    F22014年11月7日09:55~12:454471高空低槽东移,
    位于西南急流带,水汽条件较好
    2.6
    F32014年11月10日09:35~12:254461高空低槽东移
    中层位于西南急流带,急流较弱
    0.0
    F42014年11月11日09:48~12:033808高空低槽东移
    中层位于西南急流带
    0.1
    F52014年11月30日12:54~16:254783高空低槽东移,冷空气南下0.0
    F62014年12月3日09:35~12:554410高空低槽东移
    中层位于西南急流带
    0.4
    F72014年12月25日09:29~12:454126高空低槽东移
    中层位于西南急流带,急流较弱
    0.0
    注:降水量为飞机观测期间赣州机场附近地面气象观测站的6 h雨量。
    下载: 导出CSV
  • [1] Baker M B. 1993. Variability in concentrations of cloud condensation nuclei in the marine cloud-topped boundary layer [J]. Tellus B: Chem. Phys. Meteor., 45(5): 458−472. doi: 10.3402/tellusb.v45i5.15742
    [2] Chen Jingyi, Liu Yangang, Zhang Minghua, et al. 2016. New understanding and quantification of the regime dependence of aerosol–cloud interaction for studying aerosol indirect effects [J]. Geophys. Res. Lett., 43(4): 1780−1787. doi: 10.1002/2016GL067683
    [3] Chen Jingyi, Liu Yangang, Zhang Minghua, et al. 2018. Height dependency of aerosol–cloud interaction regimes [J]. J. Geophys. Res., 123(1): 491−506. doi: 10.1002/2017JD027431
    [4] Del Genio A D, Yao M S, Kovari W, et al. 1996. A prognostic cloud water parameterization for global climate models [J]. J. Climate, 9(2): 270−304. doi:10.1175/1520-0442(1996)009<0270:apcwpf>2.0.co;2
    [5] 胡嘉缨, 银燕, 陈倩, 等. 2019. 深对流云对不同高度示踪气体层垂直输送的数值模拟研究 [J]. 大气科学, 43(1): 171−182. doi: 10.3878/j.issn.1006-9895.1804.17290

    Hu Jiaying, Yin Yan, Chen Qian, et al. 2019. A numerical study on the vertical transport of tracer gases at different altitudes by deep convective clouds [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(1): 171−182. doi: 10.3878/j.issn.1006-9895.1804.17290
    [6] 黄兴友, 张帅, 李盈盈, 等. 2019. 云参数的两种地基雷达反演方法对比研究 [J]. 气象科学, 39(5): 608−616. doi: 10.3969/2019jms.0007

    Huang Xingyou, Zhang Shuai, Li Yingying, et al. 2019. Study on the two algorithms and result comparison of retrieving cloud microphysical parameters with ground-based radar [J]. J. Meteor. Sci. (in Chinese), 39(5): 608−616. doi: 10.3969/2019jms.0007
    [7] 黄钰, 郭学良, 毕凯, 等. 2020. 北京延庆山区降雪云物理特征的垂直观测和数值模拟研究 [J]. 大气科学, 44(2): 356−370. doi: 10.3878/j.issn.1006-9895.1903.18258

    Huang Yu, Guo Xueliang, Bi Kai, et al. 2020. Vertical observation and numerical simulation of the clouds physical characteristics of snow-producing over Yanqing mountain area in Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(2): 356−370. doi: 10.3878/j.issn.1006-9895.1903.18258
    [8] Kessler E. 1969. On the distribution and continuity of water substance in atmospheric circulation [J]. Meteor. Monogr, 10(32). doi: 10.1007/978-1-935704-36-2_1
    [9] Kumar B, Bera S, Prabha T V, et al. 2017. Cloud-edge mixing: Direct numerical simulation and observations in Indian monsoon clouds [J]. J. Adv. Model. Earth Syst., 9(1): 332−353. doi: 10.1002/2016MS000731
    [10] Liou K N, Ou S C. 1989. The role of cloud microphysical processes in climate: An assessment from a one-dimensional perspective [J]. J. Geophys. Res., 94(D6): 8599−8607. doi: 10.1029/jd094id06p08599
    [11] Liu Yangang, Daum P H. 2002. Anthropogenic aerosols. Indirect warming effect from dispersion forcing [J]. Nature, 419(6907): 580−581. doi: 10.1038/419580a
    [12] Liu Yangang, Daum P H, McGraw R. 2004. An analytical expression for predicting the critical radius in the autoconversion parameterization [J]. Geophys. Res. Lett., 31(6): L06121. doi: 10.1029/2003GL019117
    [13] Liu Yangang, Daum P H, McGraw R L. 2005. Size truncation effect, threshold behavior, and a new type of autoconversion parameterization [J]. Geophys. Res. Lett., 32(11): L11811. doi: 10.1029/2005gl022636
    [14] Liu Yangang, Daum P H, McGraw R, et al. 2006. Generalized threshold function accounting for effect of relative dispersion on threshold behavior of autoconversion process [J]. Geophys. Res. Lett., 33(11): L11804. doi: 10.1029/2005gl025500
    [15] Lu Miaoling, Seinfeld J H. 2006. Effect of aerosol number concentration on cloud droplet dispersion: A large-eddy simulation study and implications for aerosol indirect forcing [J]. J. Geophys. Res., 111(D2): D02207. doi: 10.1029/2005JD006419
    [16] Lu Chunsong, Liu Yangang, Niu Shengjie, et al. 2012. Observed impacts of vertical velocity on cloud microphysics and implications for aerosol indirect effects [J]. Res. Lett., 39(21): L21808. doi: 10.1029/2012GL053599
    [17] Lu Chunsong, Niu Shengjie, Liu Yangang, et al. 2013. Empirical relationship between entrainment rate and microphysics in cumulus clouds [J]. Geophys. Res. Lett., 40(10): 2333−2338. doi: 10.1002/grl.50445
    [18] Ma Jianzhong, Chen Yue, Wang Wei, et al. 2010. Strong air pollution causes widespread haze-clouds over China [J]. J. Geophys. Res., 115(D18): D18204. doi: 10.1029/2009JD013065
    [19] Martin G M, Johnson D W, Spice A. 1994. The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds [J]. J. Atmos. Sci., 51(13): 1823−1842. doi:10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2
    [20] McGraw R, Liu Yangang. 2003. Kinetic potential and barrier crossing: A model for warm cloud drizzle formation [J]. Phys. Rev. Lett., 90(1): 018501. doi: 10.1103/physrevlett.90.018501
    [21] Rotstayn L D, Liu Yangang. 2005. A smaller global estimate of the second indirect aerosol effect [J]. Geophys. Res. Lett., 32(5): L05708. doi: 10.1029/2004GL021922
    [22] Sundqvist H. 1978. A parameterization scheme for non-convective condensation including prediction of cloud water content [J]. Quart. J. Roy. Meteor. Soc., 104(441): 677−690. doi: 10.1002/qj.49710444110
    [23] 唐洁, 郭学良, 常祎. 2018. 青藏高原那曲地区夏季一次对流云降水过程的云微物理及区域水分收支特征 [J]. 大气科学, 42(6): 1327−1343. doi: 10.3878/j.issn.1006-9895.1801.17202

    Tang Jie, Guo Xueliang, Chang Yi. 2018. Cloud microphysics and regional water budget of a summer precipitation process at Naqu over the Tibetan Plateau [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(6): 1327−1343. doi: 10.3878/j.issn.1006-9895.1801.17202
    [24] 王元, 牛生杰, 雷恒池. 2017. 利用三架飞机联合探测资料分析层积混合云催化物理效应 [J]. 大气科学学报, 40(5): 686−696. doi: 10.13878/j.cnki.dqkxxb.20161012002

    Wang Yuan, Niu Shengjie, Lei Hengchi. 2017. An examination of the microphysical responses to aircraft seeding of stratiform clouds with embedded convection using the joint observational data of three aircrafts [J]. Trans. Atmos. Sci. (in Chinese), 40(5): 686−696. doi: 10.13878/j.cnki.dqkxxb.20161012002
    [25] Wang Xiaofeng, Xue Huiwen, Fang Wen, et al. 2011. A study of shallow cumulus cloud droplet dispersion by large eddy simulations [J]. Acta Meteor. Sinica, 25(2): 166−175. doi: 10.1007/s13351-011-0024-9
    [26] Wang Yuan, Niu Shengjie, Lu Chunsong, et al. 2019. An observational study on cloud spectral width in North China [J]. Atmosphere, 10(3): 109. doi: 10.3390/atmos10030109
    [27] Xie Xiaoning, Liu Xiaodong. 2011. Effects of spectral dispersion on clouds and precipitation in mesoscale convective systems [J]. J. Geophys. Res., 116(D6): D06202. doi: 10.1029/2010JD014598
    [28] Xie Xiaoning, Liu Xiaodong. 2015. Aerosol–cloud-precipitation interactions in WRF model: Sensitivity to autoconversion parameterization [J]. J. Meteor. Res., 29(1): 72−81. doi: 10.1007/s13351-014-4065-8
    [29] 解小宁, 刘晓东, 王昭生. 2015. 云滴谱离散度对气溶胶间接效应影响的研究进展 [J]. 地球环境学报, 6(2): 127−134. doi: 10.7515/JEE201502008

    Xie Xiaoning, Liu Xiaodong, Wang Zhaosheng. 2015. Review of influence of cloud droplet spectral dispersion on aerosol indirect effects [J]. J. Earth Environ. (in Chinese), 6(2): 127−134. doi: 10.7515/JEE201502008
    [30] Zhao Chunsheng, Tie Xuexi, Brasseur G, et al. 2006. Aircraft measurements of cloud droplet spectral dispersion and implications for indirect aerosol radiative forcing [J]. Geophys. Res. Lett., 33(16): L16809. doi: 10.1029/2006gl026653
    [31] Zhao Chuanfeng, Qiu Yanmei, Dong Xiaobo, et al. 2018. Negative aerosol–cloud re relationship from aircraft observations over Hebei, China [J]. Earth and Space Science, 5(1): 19−29. doi: 10.1002/2017ea000346
    [32] 周后福, 孔令帅, 赵倩, 等. 2017. 基于观测资料的云系分裂现象分析 [J]. 气象科学, 37(4): 535−541. doi: 10.3969/2016jms.0059

    Zhou Houfu, Kong Lingshuai, Zhao Qian, et al. 2017. Analysis on split phenomenon of clouds based on observation data [J]. J. Meteor. Sci. (in Chinese), 37(4): 535−541. doi: 10.3969/2016jms.0059
    [33] 朱磊, 陆春松, 高思楠, 等. 2020. 海洋层积云中的云滴谱宽度及其影响因子 [J]. 大气科学, 44(3): 575−590. doi: 10.3878/j.issn.1006-9895.1905.19115

    Zhu Lei, Lu Chunsong, Gao Sinan, et al. 2020. Spectral width of cloud droplet spectra and its impact factors in marine stratocumulus [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(3): 575−590. doi: 10.3878/j.issn.1006-9895.1905.19115
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  40
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-06
  • 录用日期:  2021-02-26
  • 网络出版日期:  2021-02-25
  • 刊出日期:  2021-10-14

目录

    /

    返回文章
    返回