高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

云南一次典型降雹过程的冰雹微物理形成机理数值模拟研究

刘春文 郭学良 段玮 李辰 尹丽云

刘春文, 郭学良, 段玮, 等. 2021. 云南一次典型降雹过程的冰雹微物理形成机理数值模拟研究[J]. 大气科学, 45(5): 965−980 doi: 10.3878/j.issn.1006-9895.2104.20152
引用本文: 刘春文, 郭学良, 段玮, 等. 2021. 云南一次典型降雹过程的冰雹微物理形成机理数值模拟研究[J]. 大气科学, 45(5): 965−980 doi: 10.3878/j.issn.1006-9895.2104.20152
LIU Chunwen, GUO Xueliang, DUAN Wei, et al. 2021. Numerical Simulation on the Microphysical Formation Mechanism of a Typical Hailstorm Process in Yunnan, Southwestern China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 965−980 doi: 10.3878/j.issn.1006-9895.2104.20152
Citation: LIU Chunwen, GUO Xueliang, DUAN Wei, et al. 2021. Numerical Simulation on the Microphysical Formation Mechanism of a Typical Hailstorm Process in Yunnan, Southwestern China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 965−980 doi: 10.3878/j.issn.1006-9895.2104.20152

云南一次典型降雹过程的冰雹微物理形成机理数值模拟研究

doi: 10.3878/j.issn.1006-9895.2104.20152
基金项目: 第二次青藏高原科学考察-极端天气气候事件与灾害风险(2019QZKK0104),中国气象局关键技术集成与应用面上项目CMAGJ2015M56
详细信息
    作者简介:

    刘春文,男,1965年出生,高级工程师,主要从事人工影响天气工作。E-mail: chwliu@126.com

    通讯作者:

    郭学良,E-mail: guoxl@mail.iap.ac.cn

  • 中图分类号: P482

Numerical Simulation on the Microphysical Formation Mechanism of a Typical Hailstorm Process in Yunnan, Southwestern China

Funds: The Second Tibetan Plateau Scientific Expedition (Grant 2019QZKK0104), Key Technology Integration and Application Project of China Meteorological Administration (Grant CMAGJ2015M56)
  • 摘要: 冰雹形成的微物理机理是人工防雹的重要科学依据,但对我国西南地区冰雹形成的微物理机理研究很少。利用中国科学院大气物理研究所三维冰雹分档云模式对云南2016年7月11日一次冰雹云过程进行了数值模拟研究,揭示了冰雹形成的微物理机理。此次冰雹云生成发展快,强度大,是西南山区典型夏季冰雹云。数值模拟的降水、降雹和回波强度等物理量与对应的观测量基本一致。模拟的冰雹云的最大上升气流速度达到28.7 m s−1。通过对冰雹形成的微物理过程分析研究表明,雹/霰胚的主要生成来源是通过过冷雨滴的概率冻结产生的冻滴,占95%,而冰晶碰冻雨滴产生的雹/霰胚仅占5%,这与国外和我国其他地区雹/霰胚产生的来源和冻滴所占比例有明显差别;形成的雹/霰胚直径多数集中在0.3 mm至3.0 mm范围,雹/霰胚主要通过对过冷云水的碰并过程实现增长,直径小于0.3 mm的雹/霰胚较难增长;大雨滴冻结成较大直径的雹胚,可促成短时间内形成冰雹;在雹云发展过程中存在短时的过冷雨水累积带,但过冷雨水累积带对雹/霰胚的增长贡献不大。
  • 图  1  2016年7月11日14:00(北京时,系统)天气环流形势,粗黑实线为低压倒槽线,橙色实线为500 hPa高度场(单位:dagpm),箭头为500 hPa风场(单位:m s−1),阴影为850 hPa与500 hPa温度差T850−500(单位:°C)

    Figure  1.  Synoptic situation at 1400 BJT (Beijing time) on July 11, 2016. Thick black solid lines indicate the inverted trough with low pressure and orange solid lines indicate the height field of 500 hPa (units: dagpm), arrows indicate the wind field of 500 hPa (units: m s−1), and the shaded areas are the temperature difference between 850 hPa and 500 hPa (T850−500; units: °C)

    图  2  昆明2016年7月11日15:00的玉屏村处模拟探空曲线:(a)温度廓线(T,实线)和露点温度廓线(Td,虚线);(b)风廓线(实线为U分量,虚线为V分量)

    Figure  2.  Atmospheric sounding curves from the simulation at 1500 BJT (Beijing time) on July 11, 2016, Kunming: (a) Temperature profile (T, solid line) and dew point temperature profile (Td, dashed line), (b) wind profiles (U-wind, solid line; V-wind, dashed line)

    图  3  2016年7月11日15:13昆明(a)多普勒雷达观测与(b)模式模拟的21 min雷达回波垂直剖面分布

    Figure  3.  Vertical distributions of reflectivity factor (a) observed by Kunming Doppler radar at 1513 BJT and that (b) simulated by hail model at 21 min on July 11, 2016

    图  4  2016年7月11日玉屏自动气象站观测的分钟降水强度(单位:mm h−1)与模式输出最大降水强度(单位:mm h−1)变化对比

    Figure  4.  Comparison of the temporary variations of precipitation intensity (units: mm·h−1) in one minute observed by Yuping automatic weather station and the maximum precipitation intensity (units: mm·h−1) output by the model on July 11, 2016

    图  5  2016年7月11日模拟的近地面层9~15档雹/霰粒子(a)最大数浓度在24~40 min期间的变化与(b)降雹浓度水平分布。图5b中绿色线和红色线分别表示直径为7.10 mm和9.85 mm的冰雹数浓度分布区,灰色阴影为5.11 mm的冰雹数浓度分布区

    Figure  5.  (a) Temporal evolution of the modeled maximum number concentration during 24–40 min and (b) horizontal distribution of hail/graupel in 9–15 bins at the near-surface on July 11, 2016. The green line in Fig.5b is the number concentration of hailstones in diameters of 7.10 mm, red line is for 9.85 mm, and the shaded area is for 5.11 mm.

    图  6  2016年7月11日模拟的最大上升和下沉气流速度时间变化。图中实线为最大上升气流速度,虚线为最大下沉气流速度

    Figure  6.  Time evolution of the simulated maximum updraft and downdraft. The solid line indicates the updraft, and the dashed line indicates the downdraft on July 11, 2016

    图  7  模式模拟的雹/霰胚(a)最大生成率时序图与(b)高度—时间分布:(a)GNUrg、FRrg;(b)qr、qi与GNUrg、FRrg。(a)中黑实线、红实线分别代表GNUrg、FRrg(单位:g kg−1 s−1)。(b)中黑实线代表GNUrg,红实线代表FRrg,单位:10−3 g kg−1·s−1;绿虚线代表qr,蓝虚线代表qi,单位:g kg−1

    Figure  7.  Time sequence of the simulated hail/graupel embryo production rates and altitude–time distribution: (a) The maximum GNUrg (black solid line), FRrg (red solid line), units: g kg−1 s−1; (b) height–time variation distribution of the maximum qr (green dotted line, units: g kg−1), qi (blue dotted line, units: g kg−1) and GNUrg (black solid line, units: 10−3 g kg−1 s−1) and FRrg (red solid line, units: 10−3 g kg−1 s−1)

    图  8  模式模拟1~13档(按粒子直径分档)雹/霰胚最大数浓度随时间变化

    Figure  8.  Time evolution of the simulated maximum number concentration of hail/graupel embryos in 1–13 bins

    图  9  模式模拟(a)1、2档和(b–l)3~13档雹/霰数浓度(填色,单位:m−3)高度—时间分布

    Figure  9.  Height–time distribution of the simulated number concentration (shaded, units: m−3) of hail/graupel embryos in (a) 1 and 2 bins, (b) 3–13 bins

    图  10  模拟时间10~35 min的3~13档雹/霰粒子碰并过冷云水增长率(CLcg)最大值的时间变化

    Figure  10.  Time evolution of maximum growth rate through collection of supercooled water by gaupel/hail (CLcg) in 3–13 bins for the simulation time 10–35 min

    图  11  沿雹云中心(X=18 km,Y=18 km)的模式时间(a–f)12~17 min上升气流速度和雨水混合比廓线分布。黑实线为雨水含量,绿实线为上升气流速度,灰色阴影区为过冷雨水区,浅蓝色阴影区为累积带区;黑虚线、蓝虚线分别为0°C、−25°C层所在高度位置,绿虚线为最大上升气流速度所在的高度

    Figure  11.  Profiles of the updraft and rainwater mixing ratio at hail cloud center (X=18 km, Y=18 km) during stimulation time 12–17 min. The vertical axis is the height (units: km), the low horizontal axis is updraft (units: m s−1), and the upper horizontal axis is rainwater mixing ratio (units: g kg−1). The black solid line is the profile of the rainwater content, and the green dashed one is the profile of the updraft. The gray shaded area is the supercooled rainwater and the shallow blue shaded area is the accumulation zone. The horizontal black and blue dashed lines are the heights of 0°C and −25°C, respectively. The horizontal green dashed lines are the heights with the maximum updraft

    图  12  模式模拟时间(a–d)14~17 min雹/霰数浓度(Ng)与雨水混合比(qr)垂直剖面(X=18 km)分布。图中水平黑色虚线为温度等值线(单位:°C),彩色阴影区为Ng分布(单位:m−3),蓝色等值线为qr混合比(单位:g kg−1),绿色等值线为直径大于2.5 mm的Ng(单位:m−3

    Figure  12.  Simulated vertical profiles of hail/graupel number concentration (Ng) and rainwater mixing ratio (qr) during stimulation time (a–d) 14–17 min (X=18 km). Black dashed lines correspond to the temperature (units: °C). The color shaded area is the distribution of Ng (units: m−3), the blue solid lines represent the rainwater content qr (units: g kg−1), and the green solid lines represent the Ng (units: m−3) with a diameter greater than 2.5 mm

    表  1  文中符号的物理意义

    Table  1.   List of Symbols

    符号 Symbol物理含义
    qg雹/霰混合比
    Ng雹/霰数浓度
    qr雨水混合比
    qi云冰混合比
    HNUrg过冷雨水匀质冻结核化为雹/霰胚的生成率
    GNUrg过冷雨滴概率冻结为雹胚的生成率
    FRrg冰晶碰冻过冷雨滴形成雹胚的生成率
    Rgaut雪团凇附或雪团间碰并形成霰胚生成率
    CLrsg雪团碰冻雨滴形成霰胚生成率
    CLcg雹/霰碰并过冷云水增长率
    CLrg雹/霰碰并过冷雨水增长率
    CLsg雹/霰碰并雪团增长率
    CLig雹/霰碰并云冰增长率
    VDgv雹/霰的凝华/升华增长率
    MLgr雹/霰融化为雨水的转化率
    下载: 导出CSV
  • [1] Adams-Selin R D, Ziegler C L. 2016. Forecasting hail using a one-dimensional hail growth model within WRF [J]. Mon. Wea. Rev., 144(12): 4919−4939. doi: 10.1175/MWR-D-16-0027.1
    [2] Anderson M E, Carey L D, Petersen W A, et al. 2011. C-band dual-polarimetric radar signatures of hail [J]. Electron. J. Oper. Meteor, 12(2): 1−30.
    [3] Battan L J. 1975. Doppler radar observations of a hailstorm [J]. J. Appl. Meteor., 14(1): 98−108. doi:10.1175/1520-0450(1975)014<0098:DROOAH>2.0.CO;2
    [4] Berry E X. 1967. Cloud droplet growth by collection [J]. J. Atmos. Sci., 24(6): 688−701. doi:10.1175/1520-0469(1967)024<0688:CDGBC>2.0.CO;2
    [5] Bluestein H B. 1993. Synoptic-Dynamic Meteorology in Mid-Latitudes. Vol. II: Observations and Theory of Weather Systems [M]. Oxford, U.K.: Oxford University Press, 445pp.
    [6] 蔡淼, 周毓荃, 蒋元华, 等. 2014. 一次超级单体雹暴观测分析和成雹区识别研究 [J]. 大气科学, 38(5): 845−860. doi: 10.3878/j.issn.1006-9895.1402.13107

    Cai Miao, Zhou Yuquan, Jiang Yuanhua, et al. 2014. Observations, analysis, and hail-forming area identification of a supercell hailstorm [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(5): 845−860. doi: 10.3878/j.issn.1006-9895.1402.13107
    [7] 陈宝君, 肖辉. 2007. 过冷雨水低含量条件下冰雹形成和增长机制及其催化效果的数值模拟 [J]. 大气科学, 31(2): 273−290. doi: 10.3878/j.issn.1006-9895.2007.02.09

    Chen Baojun, Xiao Hui. 2007. Numerical simulation of hail formation and growth in a storm with low supercooled rain water content and the effect of AgI seeding on hail suppression [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(2): 273−290. doi: 10.3878/j.issn.1006-9895.2007.02.09
    [8] 陈宝君, 郑凯琳, 郭学良. 2012. 超级单体风暴中大冰雹增长机制的模拟研究 [J]. 气候与环境研究, 17(6): 767−778. doi: 10.3878/j.issn.1006-9585.2012.06.14

    Chen Baojun, Zheng Kailin, Guo Xueliang. 2012. Numerical investigation on the growth of large hail in a simulated supercell thunderstorm [J]. Climatic and Environmental Research (in Chinese), 17(6): 767−778. doi: 10.3878/j.issn.1006-9585.2012.06.14
    [9] 陈宗瑜. 2001. 云南气候总论 [M]. 北京: 气象出版社, 3–8.

    Chen Zongyu. 2001. Yunnan Climate Overview (in Chinese) [M]. Beijing: China Meteorological Press, 3–8.
    [10] Cotton W R, Bryan G H, Van den Heever S C. 2010. Storm and Cloud Dynamics [M]. London: Academic Press, 49pp.
    [11] Doswell III C A. 2001. Severe convective storms—An overview [M]//Doswell III C A. Severe Convective Storms. Boston: American Meteorological Society, 1–26. doi: 10.1007/978-1-935704-06-5_1
    [12] 段玮, 胡娟, 赵宁坤, 等. 2017. 云南冰雹灾害气候特征及其变化 [J]. 灾害学, 32(2): 90−96. doi: 10.3969/j.issn.1000-811X.2017.02.016

    Duan Wei, Hu Juan, Zhao Ningkun, et al. 2017. Climatic characteristics and changes of hail disasters in Yunnan [J]. Journal of Catastrophology (in Chinese), 32(2): 90−96. doi: 10.3969/j.issn.1000-811X.2017.02.016
    [13] 樊明月, 张佃国, 龚佃利, 等. 2013. 山东冰雹形成机制及雹云催化技术模拟——个例研究 [J]. 大气科学学报, 36(1): 107−120. doi: 10.3969/j.issn.1674-7097.2013.01.012

    Fan Mingyue, Zhang Dianguo, Gong Dianli, et al. 2013. A case study of hail formation mechanism and hail suppression technique in Shandong Province [J]. Transactions of Atmospheric Sciences (in Chinese), 36(1): 107−120. doi: 10.3969/j.issn.1674-7097.2013.01.012
    [14] 范皓, 杨永胜, 段英, 等. 2019. 太行山东麓一次强对流冰雹云结构的观测分析 [J]. 气象学报, 77(5): 823−834. doi: 10.11676/qxxb2019.063

    Fan Hao, Yang Yongsheng, Duan Ying, et al. 2019. An observational analysis of the cloud structure of a severe convective hailstorm over the eastern foothill of Taihang Mountain [J]. Acta Meteor. Sinica (in Chinese), 77(5): 823−834. doi: 10.11676/qxxb2019.063
    [15] Farley R D, Orville H D. 1986. Numerical modeling of hailstorms and hailstone growth. Part I: Preliminary model verification and sensitivity tests [J]. Journal of Applied Meteorology and Climatology, 25(12): 2014−2035. doi:10.1175/1520-0450(1986)025<2014:NMOHAH>2.0.CO;2
    [16] Foote G B, Knight C A. 1979. Results of a randomized hail suppression experiment in Northeast Colorado. Part I: Design and conduct of the experiment [J]. J. Appl. Meteor., 18(12): 1526−1537. doi:10.1175/1520-0450(1979)018<1526:ROARHS>2.0.CO;2
    [17] 付丹红, 郭学良, 肖稳安, 等. 2003. 北京一次大风和强降水天气过程形成机理的数值模拟 [J]. 南京气象学院学报, 26(2): 190−200. doi: 10.3969/j.issn.1674-7097.2003.02.006

    Fu Danhong, Guo Xueliang, Xiao Wenan, et al. 2003. Numerical study on the formation a severe storm accompanied with gale and heavy rain in Beijing [J]. J. Nanjing Inst. Meteor. (in Chinese), 26(2): 190−200. doi: 10.3969/j.issn.1674-7097.2003.02.006
    [18] 郭欣, 郭学良, 陈宝君, 等. 2019. 一次大冰雹形成机制的数值模拟 [J]. 应用气象学报, 30(6): 651−664. doi: 10.11898/1001-7313.20190602

    Guo Xin, Guo Xueliang, Chen Baojun, et al. 2019. Numerical Simulation on the Formation of Large-size Hailstones [J]. J. Appl. Meteor. Sci. (in Chinese), 30(6): 651−664. doi: 10.11898/1001-7313.20190602
    [19] 郭学良. 1997. 三维强对流云(雹暴)的冰雹形成机制及降雹过程的冰雹分档数值模拟研究 [D]. 中国科学院大气物理研究所博士学位论文.

    Guo Xuelian. 1997. The studies on three-dimensional hail category numerical simulations of hail formation and hailfall process [D]. Ph. D. dissertation (in Chinese), The Institute of Atmospheric Physics, Chinese Academy of Science.
    [20] 郭学良, 黄美元, 洪延超, 等. 2001a. 三维冰雹分档强对流云数值模式研究Ⅰ. 模式建立及冰雹的循环增长机制 [J]. 大气科学, 25(5): 707−720. doi: 10.3878/j.issn.1006-9895.2001.05.13

    Guo Xueliang, Huang Meiyuan, Hong Yanchao, et al. 2001a. A study of three-dimensional hail-category hailstorm model. Part I: Model description and the mechanism of hail recirculation growth [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 25(5): 707−720. doi: 10.3878/j.issn.1006-9895.2001.05.13
    [21] 郭学良, 黄美元, 洪延超, 等. 2001b. 三维冰雹分档强对流云数值模式研究Ⅱ. 冰雹粒子的分布特征 [J]. 大气科学, 25(6): 856−864. doi: 10.3878/j.issn.1006-9895.2001.06.13

    Guo Xueliang, Huang Meiyuan, Hong Yanchao, et al. 2001b. A study of three-dimensional hail-category hailstorm model. Part II: Characteristics of hail-category size distribution [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 25(6): 856−864. doi: 10.3878/j.issn.1006-9895.2001.06.13
    [22] Han J, Pan H L. 2011. Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System [J]. Wea. Forecasting, 26(4): 520−533. doi: 10.1175/WAF-D-10-05038.1
    [23] 胡朝霞, 李宏宇, 肖辉, 等. 2003. 旬邑冰雹云的数值模拟及累积带特征 [J]. 气候与环境研究, 8(2): 196−208. doi: 10.3969/j.issn.1006-9585.2003.02.007

    Hu Zhaoxia, Li Hongyu, Xiao Hui, et al. 2003. Numerical simulation of hailstorms and the characteristics of accumulation zone of supercooled raindrops in Xunyi County [J]. Climatic and Environmental Research (in Chinese), 8(2): 196−208. doi: 10.3969/j.issn.1006-9585.2003.02.007
    [24] 胡朝霞, 齐彦斌, 郭学良, 等. 2007a. 青藏高原东部冰雹形成机理的数值模拟 [J]. 气候与环境研究, 12(1): 37−48. doi: 10.3969/j.issn.1006-9585.2007.01.005

    Hu Zhaoxia, Qi Yanbin, Guo Xueliang, et al. 2007a. Numerical simulation of hail formation mechanism in east of the Tibetan Plateau [J]. Climatic and Environmental Research (in Chinese), 12(1): 37−48. doi: 10.3969/j.issn.1006-9585.2007.01.005
    [25] 胡朝霞, 郭学良, 李宏宇, 等. 2007b. 慕尼黑一次混合型雹暴的数值模拟与成雹机制 [J]. 大气科学, 31(5): 973−986. doi: 10.3878/j.issn.1006-9895.2007.05.20

    Hu Zhaoxia, Guo Xueliang, Li Hongyu, et al. 2007b. Numerical simulation of a hybrid-type hailstorm in Munich and the mechanism of hail formation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(5): 973−986. doi: 10.3878/j.issn.1006-9895.2007.05.20
    [26] Knight C A, Knight N C. 1970. Hailstone embryos [J]. Journal of Atmospheric Sciences, 27(4): 659−666. doi:10.1175/1520-0469(1970)027<0659:HE>2.0.CO;2
    [27] Knight C A, Knight N C. 1979. Results of a randomized hail suppression experiment in Northeast Colorado. Part V: Hailstone embryo types [J]. Journal of Applied Meteorology and Climatology, 18(12): 1583−1588. doi:10.1175/1520-0450(1979)018<1583:ROARHS>2.0.CO;2
    [28] Knight C A, Knight N C. 2001. Hailstorms [M]//Doswell III C A. Severe Convective Storms. Boston: American Meteorological Society, 223–254. doi: 10.1007/978-1-935704-06-5_6
    [29] Knight C A, Knight N C, Dye J E, et al. 1974. The mechanism of precipitation formation in northeastern Colorado cumulus. I: Observations of the precipitation itself [J]. J. Atmos. Sci., 31(8): 2142−2147. doi:10.1175/1520-0469(1974)031<2142:TMOPFI>2.0.CO;2
    [30] Knight N C. 1981. The climatology of hailstone embryos [J]. J. Appl. Meteor., 20(7): 750−755. doi:10.1175/1520-0450(1981)020<0750:TCOHE>2.0.CO;2
    [31] 刘术艳, 肖辉, 杜秉玉, 等. 2004. 北京一次强单体雹暴的三维数值模拟 [J]. 大气科学, 28(3): 455−470. doi: 10.3878/j.issn.1006-9895.2004.03.12

    Liu Shuyan, Xiao Hui, Du Bingyu, et al. 2004. Three-dimensional numerical simulation of a strong convective storm in Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28(3): 455−470. doi: 10.3878/j.issn.1006-9895.2004.03.12
    [32] 马振骅. 1977. 一次累积带降雹的雷达观测 [J]. 大气科学, 1(2): 149−152. doi: 10.3878/j.issn.1006-9895.1977.02.09

    Ma Zhenhua. 1977. Radar observation of an accumulation zone generating hail fallout [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 1(2): 149−152. doi: 10.3878/j.issn.1006-9895.1977.02.09
    [33] Macklin W C. 1977. The characteristics of natural hailstones and their interpretation [M]//Borland S W, Browning K A, Changnon Jr S A, et al. Hail: A Review of Hail Science and Hail Suppression. Boston, MA: American Meteorological Society, 65–91. doi: 10.1007/978-1-935704-30-0_3
    [34] 梅森B J. 1979. 云物理学 [M]. 北京: 科学出版社, 336pp

    Mason B. J. 1979. Cloud Physics (in Chinese) [M]. Beijing: Science Press, 336pp.
    [35] Miller L J, Tuttle J D, Foote G B. 1990. Precipitation production in a large Montana hailstorm: Airflow and particle growth trajectories [J]. J. Atmos. Sci., 47(13): 1619−1646. doi:10.1175/1520-0469(1990)047<1619:PPIALM>2.0.CO;2
    [36] Morrison H, Thompson G, Tatarskii V. 2009. Impact of cloud microphysics on the development of trailing Stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes [J]. Mon. Wea. Rev., 137(3): 991. doi: 10.1175/2008MWR2556.1
    [37] 秦剑, 琚建华, 解明恩. 1997. 低纬高原天气气候 [M]. 北京: 气象出版社, 2–8.

    Qin Jian, Ju Jianhua, Xie Mingen. Weather & Climate Over Low Latitude Plateau (in Chinese) [M]. Beijing: China Meteorological Press, 2–8.
    [38] Skripniková K, Řezáčová D. 2014. Radar-based hail detection [J]. Atmospheric Research, 144: 175−185. doi: 10.1016/j.atmosres.2013.06.002
    [39] Sulakvelidze G K, Bibilashviti N S, Lapcheva V F. 1967. Formation of Precipitation and Modification of Hail Processes [M]. Washington: Israel Programme for Scientific Translations, 208pp.
    [40] 王鹏飞, 李子华. 1989. 微观云物理学 [M]. 北京: 气象出版社, 425pp

    Wang Pengfei, Li Zihua. 1989. Micro Cloud Physics (in Chinese) [M]. Beijing: China Meteorological Press, 425pp.
    [41] 许焕斌, 段英, 刘海月. 2006. 雹云物理与防雹的原理和设计: 对流云物理与雹云增雨(第二版) [M]. 北京: 气象出版社.

    Xu Huanbin, Duan Ying, Liu Haiyue. 2006. Hail Cloud Physics and Principles and Design of Hail Prevention (in Chinese) [M]. 2nd ed. Beijing: China Meteorological Press.
    [42] 许美玲, 段旭, 杞明辉, 等. 2011. 云南省天气预报员手册 [M]. 北京: 气象出版社, 1–9, 158–182.

    Xu Meiling, Duan Xu, Qi Minghui, et al. 2011. Yunnan Weather Forecaster's Manual (in Chinese) [M]. Beijing: China Meteorological Press, 1–9, 158–182.
    [43] Young K C. 1977. A numerical examination of some hail suppression concepts [M]//Borland S W, Browning K A, Changnon Jr S A, et al. Hail: A Review of Hail Science and Hail Suppression. Boston, MA: American Meteorological Society, 195–214. doi: 10.1007/978-1-935704-30-0_10
    [44] 郑国光. 1987. 冰雹生长“水份累积带”存在吗?——对“过量播撒”防雹假说的一点质疑 [J]. 新疆气象(6): 29−32.

    Zheng Guoguang. 1987. Does the hail growth "supercooled rainwater accumulation zone" exist?—Some doubts about the hypothesis of "over-seeding" for hail suppression [J]. Xinjiang Meteorology (in Chinese)(6): 29−32.
    [45] 周玲, 陈宝君, 李子华, 等. 2001. 冰雹云中累积区与冰雹的形成的数值模拟研究 [J]. 大气科学, 25(4): 536−550. doi: 10.3878/j.issn.1006-9895.2001.04.10

    Zhou Ling, Chen Baojun, Li Zihua, et al. 2001. A numerical simulation of hailstorm accumulation zone and hail formation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 25(4): 536−550. doi: 10.3878/j.issn.1006-9895.2001.04.10
    [46] 周泓, 段玮, 赵爽, 等. 2014. 滇中地区冰雹的多普勒天气雷达及闪电活动特征分析 [J]. 气象, 40(9): 1132−1144. doi: 10.7519/j.issn.1000-0526.2014.09.011

    Zhou hong, Duan Wei, Zhao shuang, et al. 2014. Characteristics analysis of Doppler radar echoes and lightning of hailstorms in central Yunnan Province [J]. Meteorological Monthly (in Chinese), 40(9): 1132−1144. doi: 10.7519/j.issn.1000-0526.2014.09.011
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  58
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-06
  • 录用日期:  2021-04-22
  • 网络出版日期:  2021-06-03
  • 刊出日期:  2021-10-14

目录

    /

    返回文章
    返回