高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CMIP6模式对中国东部地区水循环的模拟能力评估

赵丹 张丽霞 周天军

赵丹, 张丽霞, 周天军. 2022. CMIP6模式对中国东部地区水循环的模拟能力评估[J]. 大气科学, 46(3): 557−572 doi: 10.3878/j.issn.1006-9895.2106.21030
引用本文: 赵丹, 张丽霞, 周天军. 2022. CMIP6模式对中国东部地区水循环的模拟能力评估[J]. 大气科学, 46(3): 557−572 doi: 10.3878/j.issn.1006-9895.2106.21030
ZHAO Dan, ZHANG Lixia, ZHOU Tianjun. 2022. Performance Assessment of CMIP6 Model in Simulating the Water Cycle over East China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(3): 557−572 doi: 10.3878/j.issn.1006-9895.2106.21030
Citation: ZHAO Dan, ZHANG Lixia, ZHOU Tianjun. 2022. Performance Assessment of CMIP6 Model in Simulating the Water Cycle over East China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(3): 557−572 doi: 10.3878/j.issn.1006-9895.2106.21030

CMIP6模式对中国东部地区水循环的模拟能力评估

doi: 10.3878/j.issn.1006-9895.2106.21030
基金项目: 国家自然科学基金项目42075037, 中国气象局兰州干旱气象研究所创新团队GHSCXTD-2020-2
详细信息
    作者简介:

    赵丹,女,1995年出生,博士研究生,主要从事大气水循环研究。E-mail: zhaodan@lasg.iap.ac.cn

    通讯作者:

    张丽霞, E-mail: lixiazhang@mail.iap.ac.cn

  • 中图分类号: P426

Performance Assessment of CMIP6 Model in Simulating the Water Cycle over East China

Funds: National Natural Science Foundation of China (Grant 42075037), Innovative Team Project of Lanzhou Institute of Arid Meteorology (Grant GHSCXTD-2020-2)
  • 摘要: 本文基于观测和再分析资料,采用Brubaker二元模型评估了第六次国际耦合模式比较计划(CMIP6)中19个模式对中国东部季风区气候态水循环过程的模拟能力,并分析了模拟误差来源。结果表明,CMIP6模式集合平均(MME)能够合理再现观测降水和蒸发的年平均气候态空间分布及年循环特征,与观测值的空间相关系数分别为0.92和0.87。较之观测,MME高估了华北地区降水(0.55 mm d−1),低估了华南沿海地区降水(−0.3 mm d−1)。所有CMIP6模式均高估蒸发强度(偏差0.03~0.98 mm d−1),使得模拟的降水与蒸发之差偏少。模式整体能够模拟出我国东部季风区降水再循环率及不同边界水汽来源的贡献率,但低估了由南边界进入季风区的水汽贡献,导致东亚季风区偏干。通过分析模式对影响水汽通量的两个气象要素(风速和大气比湿)的模拟能力,发现研究区南边界的风速大小决定了模式间水汽输送差异。南边界风速越大的模式,由南边界进入的水汽通量越大,模式模拟的降水越多。西北太平洋辐合带的东西位置是影响南边界南风速的重要系统之一,辐合带位置偏东的模式模拟的南风强度较弱,使得水汽输送偏弱、降水偏少;反之,南边界水汽输送偏强、降水偏多。本文通过评估最新一代CMIP6模式在东亚水循环方面的模拟性能,指出了当前气候模式在模拟西太平洋辐合带位置方面存在的偏差及其对东亚水循环的影响。
  • 图  1  1979~2014年中国东部地区气候态年平均降水强度(单位:mm d−1)的水平分布:(a)CN05.1资料;(b)CMIP6模式集合平均(MME);(c)MME与CN05.1资料的差值。红色框区为中国东部地区(下同),R表示MME与观测在中国东部地区的空间相关系数,bias表示中国东部地区平均的MME相对于观测的偏差

    Figure  1.  Horizontal distributions of the climatological annual mean precipitation intensity (units: mm d−1) in eastern China for 1979–2014: (a) CN05.1 data; (b) MME (multi-model ensemble) of CMIP6; (c) differences between MME and CN05.1 data. The red boxes indicate eastern China (the same below). R is the spatial correlation coefficient between MME and CN05.1 data over eastern China, and the bias represents the differences of the regional average precipitation values between MME and CN05.1 data over eastern China

    图  2  1979~2014年中国东部地区气候态年平均的蒸发强度(单位:mm d−1)的水平分布:(a)GLDAS资料;(b)CMIP6模式MME;(c)MME与GLDAS资料的差值

    Figure  2.  Horizontal distributions of the climatological annual evaporation intensity (units: mm d−1) in eastern China for 1979–2014: (a) GLDAS (Global Land Data Assimilation Systems) data; (b) MME of CMIP6; (c) differences between MME and GLDAS data

    图  3  1979~2014年观测、再分析资料及CMIP6模式中国东部地区区域平均的(a)降水、(b)蒸发及(c)降水与蒸发之差(PE)的气候态年循环分布。黑色线、红色线和深蓝色线分别代表观测、CMIP6模式MME和再分析资料集合平均,浅蓝色线、黄色线、绿色线和紫色线分别代表MERRA2、ERA-Interim、JRA55和ERA5,灰色线代表CMIP6各模式

    Figure  3.  Climatological annual cycle of the (a) precipitation, (b) evaporation, and (c) their differences (PE) in the observations, reanalysis, and CMIP6 models area-averaged over eastern China for 1979–2014. The black, red, and dark blue lines represent the observation, MME, and reanalysis mean, respectively. The light blue, yellow, green, and purple lines represent MERRA2 (Modern-Era Retrospective Analysis for Research and Applications) data, ERA-Interim (European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis) data, JRA55 (Japanese 55-year Reanalysis) data, and ERA5 (Fifth major global reanalysis produced by ECMWF) data, respectively. Gray lines denote the CMIP6 models

    图  4  1979~2014年ERA5资料与CMIP6模式中(a)本地蒸发和(b)西边界、(c)东边界、(d)北边界、(e)南边界来源水汽对中国东部地区降水贡献率的年循环。ERA5、CMIP6模式MME、湿模式平均和干模式平均分别用黑色、红色、绿色和黄色线表示,阴影表示19个CMIP6模式的范围,下同

    Figure  4.  Climate mean annual cycles of contributions to the precipitation over eastern China from the (a) local evaporation, moisture influxes from (b) western boundary, (d) eastern boundary, (d) northern boundary, (e) southern boundary derived from ERA5 data and CMIP6 models during 1979–2014. Results for ERA5, MME of CMIP6, wet models mean, and dry models mean are represented by black, red, green, and yellow lines, respectively. Shadings indicate the range of 19 CMIP6 models, the same below

    图  5  1979~2014年CMIP6各模式在气候态平均降水(Clim_PRE)、蒸发分布(Clim_EVP),降水(AC_PRE)、蒸发(AC_EVP),PE(AC_P-E),降水再循环率(Recycling),西(Contribution_west)、东(Contribution_east)、北(Contribution_north)及南(Contribution_south)边界输入水汽对降水贡献率的年循环分布方面的技巧评分

    Figure  5.  Skill score of each CMIP6 model in simulating the climatological precipitation (Clim_PRE) and evaporation (Clim_EVP), annual cycle of precipitation (AC_PRE), evaporation (AC_EVP), PE (AC_P-E), precipitation recycling ratio (Recycling), the contribution of western (Contribution_west), eastern (Contribution_east), northern (Contribution_north), and southern (Contribution_south) influx to the precipitation during 1979–2014

    图  6  1979~2014年平均的ERA5资料与CMIP6模式外部输入到中国东部地区的水汽通量(MI)的年循环:(a)水汽输入总量;(b)西边界;(c)东边界;(d)北边界;(e)南边界

    Figure  6.  Climate mean annual cycles of (a) total moisture influxes (MI) and (b) western boundary, (d) eastern boundary, (d) northern boundary, (e) southern boundary moisture influxes derived from ERA5 data and CMIP6 models to eastern China during 1979–2014

    图  7  1979~2014年平均的ERA5资料与CMIP6模式中由(a)西、(b)东、(c)北、(d)南边界不同层(整层、高、中、低)进入中国东部地区的水汽通量。实线表示ERA5资料,虚线表示CMIP6模式MME。整层、低层、中层和高层水汽分别用黑色、红色、黄色和蓝色线表示

    Figure  7.  Climate mean of moisture influxes to eastern China via (a) western, (b) eastern, (c) northern, and (d) southern boundary in different levels (vertical integrate, low-level, mid-level, and high-level) during 1979–2014 derived from ERA5 data and CMIP6 models. Solid lines indicate ERA5 data and dash lines indicate MME of CMIP6. Whole, low-level, mid-level, and high-level moisture influxes are represented by black, red, yellow, and blue lines, respectively

    图  8  1979~2014年平均的ERA5资料与CMIP6模式中夏季各边界低层水汽输入量(横坐标)与水汽含量(纵坐标,左列)、风场(纵坐标,右列)的散点图。绿色字母表示湿模式,棕色字母表示干模式,红点表示ERA5资料

    Figure  8.  Scatter plots of climate mean summer low-level moisture influxes (x-axis) versus low-level water vapor content (y-axis, left panel), low-level wind field (y-axis, right panel) at each boundary in ERA5 data and CMIP6 models during 1979–2014. Green letters, brown letters, and red dots indicate wet models, dry models, and ERA5 data, respectively

    图  9  1979~2014年夏季平均的低层风场(箭头,单位:m s−1)、水汽含量(阴影,单位:mm)分布:(a)ERA5资料;(b)CMIP6模式MME、(c)湿模式MME、(d)干模式MME与ERA5资料的差值。黑色斜线区域表示水汽含量差异通过15%显著性水平,风场差值场只显示了通过15%显著性水平检验的区域

    Figure  9.  Spatial distributions of climate summer mean low-level winds (arrows, units: m s−1) and water vapor content (shadings, units: mm) during 1979–2014: (a) ERA5 data; differences between (b) MME of CMIP6 models, (c) wet models mean, (d) dry models mean and ERA5. The black lines indicate that the difference in water vapor content is at the 15% significance level. Only the wind difference vectors statistically at the 15% significance level are shown

    图  10  1979~2014年夏季平均的850 hPa风场(单位:m s−1)的水平分布:(a)ERA5资料;(b)CMIP6模式MME;(c)湿模式MME;(d)干模式MME。红点为西北太平洋地区纬向风速最小的位置,即西北太平洋辐合带的位置

    Figure  10.  Spatial distributions of climate summer mean winds at 850 hPa during 1979–2014 derived from (a) ERA5 data, (b) MME of CMIP6, (c) MME of wet models, and (d) MME of dry models. The red dots indicate the locations of the minimum wind speed over the Northwest Pacific, i.e., the location of the Northwest Pacific convergence zone

    图  11  1979~2014多年平均夏季ERA5资料与CMIP6模式西北太平洋辐合带经度位置与南边界低层(a)水汽输入量、(b)风场的散点图。绿色字母表示湿模式,棕色字母表示干模式,红点表示ERA5资料

    Figure  11.  Scatter plots of the climate summer mean location of the Northwest Pacific convergence zone versus (a) low-level moisture influxes and (b) low-level wind field at the southern boundary in ERA5 data and CMIP6 models during 1979–2014. Green letters, brown letters, and red dots indicate wet models, dry models, and ERA5, respectively

    表  1  19个CMIP6全球气候模式基本信息

    Table  1.   Basic information of the 19 CMIP6 (Coupled Model Intercomparison Project Phase 6) models

    模式名称所属国家(地区)所属机构简称大气资料水平分辨率(纬度×经度)
    BCC-CSM2中国BCC1.125°×1.125°
    BCC-ESM1中国BCC2.8°×2.8°
    CAMS-CSM1-0中国CAMS1.125°×1.125°
    CanESM5加拿大CCCma2.8°×2.8°
    CESM2美国NCAR0.9375°×1.25°
    CESM2-WACCM美国NCAR0.9375°×1.25°
    CNRM-CM6-1法国CNRM-CERFACS1.4°×1.4°
    CNRM-ESM2-1法国CNRM-CERFACS1.4°×1.4°
    EC-Earth3欧盟EC-Earth-Consortium0.7°×0.7°
    EC-Earth3-Veg欧盟EC-Earth-Consortium0.7°×0.7°
    GFDL-CM4美国NOAA-GFDL1°×1.25°
    GISS-E2-1-G美国NASA-GISS2°×2.5°
    GISS-E2-1-H美国NASA-GISS2°×2.5°
    IPSL-CM6A-LR法国IPSL1.25°×2.5°
    MIROC6日本MIROC1.4°×1.4°
    MIROC-ES2L日本MIROC2.8°×2.8°
    MRI-ESM2-0日本MRI1.125°×1.125°
    NESM3中国NUIST1.875°×1.875°
    UKESM1-0-LL英国MOHC1.25°×1.875°
    下载: 导出CSV
  • [1] Bao J W, Feng J M. 2016. Intercomparison of CMIP5 simulations of summer precipitation, evaporation, and water vapor transport over Yellow and Yangtze River basins [J]. Theoretical and applied climatology, 123(3): .437−452. doi: 10.1007/s00704-014-1349-y
    [2] Brubaker K L, Entekhabi D, Eagleson P S. 1993. Estimation of continental precipitation recycling [J]. J. Climate, 6(6): 1077−1089. doi:10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2
    [3] Chen L, Yu Y Q, Sun D Z. 2013. Cloud and water vapor feedbacks to the El Niño warming: Are they still biased in CMIP5 models? [J]. J. Climate, 26(14): 4947−4961. doi: 10.1175/JCLI-D-12-00575.1
    [4] 陈晓晨, 徐影, 许崇海, 等. 2014. CMIP5全球气候模式对中国地区降水模拟能力的评估 [J]. 气候变化研究进展, 10(3): 217−225. doi: 10.3969/j.issn.1673-1719.2014.03.011

    Chen X C, Xu Y, Xu C H, et al. 2014. Assessment of precipitation simulations in China by CMIP5 multi-models [J]. Progressus Inquisitiones de Mutatione Climatis (in Chinese), 10(3): 217−225. doi: 10.3969/j.issn.1673-1719.2014.03.011
    [5] Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system [J]. Quart. J. Roy. Meteor. Soc., 137(656): 553−597. doi: 10.1002/qj.828
    [6] 丁一汇, 胡国权. 2003. 1998年中国大洪水时期的水汽收支研究 [J]. 气象学报, 61(2): 129−145. doi: 10.11676/qxxb2003.014

    Ding Y H, Hu G Q. 2003. A study on water vapor budget over China during the 1998 severe flood periods [J]. Acta Meteorologica Sinica (in Chinese), 61(2): 129−145. doi: 10.11676/qxxb2003.014
    [7] Ding Y H, Chan J C L. 2005. The East Asian summer monsoon: An overview [J]. Meteor. Atmos. Phys., 89(1-4): 117−142. doi: 10.1007/s00703-005-0125-z
    [8] Gelaro R, McCarty W, Suárez M J, et al. 2017. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2) [J]. J. Climate, 30(14): 5419−5454. doi: 10.1175/JCLI-D-16-0758.1
    [9] Guo L, Klingaman N P, Demory M E, et al. 2018. The contributions of local and remote atmospheric moisture fluxes to East Asian precipitation and its variability [J]. Climate Dyn., 51(11-12): 4139−4156. doi: 10.1007/s00382-017-4064-4
    [10] Guo L, van der Ent R J, Klingaman N P, et al. 2019. Moisture sources for East Asian precipitation: Mean seasonal cycle and interannual variability [J]. J. Hydrometeor., 20(4): 657−672. doi: 10.1175/JHM-D-18-0188.1
    [11] Held I M, Soden B J. 2006. Robust responses of the hydrological cycle to global warming [J]. J. Climate, 19(21): 5686−5699. doi: 10.1175/JCLI3990.1
    [12] Hersbach H, Bell W, Berrisford P, et al. 2019. Global reanalysis: Goodbye ERA-Interim, hello ERA5 [J]. ECMWF Newsletter, 159: 17−24. doi: 10.21957/vf291hehd7
    [13] Huang R H, Huang G, Wei Z G. 2004. Climate variations of the summer monsoon over China [M]//Chang C P. East Asian Monsoon. London: World Scientific, 213–268. doi: 10.1142/9789812701411_0006
    [14] Jiang D B, Hu D, Tian Z P, et al. 2020. Differences between CMIP6 and CMIP5 models in simulating climate over China and the East Asian monsoon [J]. Adv. Atmos. Sci., 37(10): 1102−1118. doi: 10.1007/s00376-020-2034-y
    [15] Kobayashi S, Ota Y, Harada Y, et al. 2015. The JRA-55 reanalysis: General specifications and basic characteristics [J]. J. Meteor. Soc. Japan Ser. II, 93(1): 5−48. doi: 10.2151/jmsj.2015-001
    [16] 刘敏, 江志红. 2009. 13个IPCC AR4模式对中国区域近40a气候模拟能力的评估 [J]. 南京气象学院学报, 32(2): 256−268. doi: 10.3969/j.issn.1674-7097.2009.02.013

    Liu M, Jiang Z H. 2009. Simulation ability evaluation of surface temperature and precipitation by thirteen IPCC AR4 coupled climate models in China during 1961–2000 [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 32(2): 256−268. doi: 10.3969/j.issn.1674-7097.2009.02.013
    [17] Liu Y S, Yang Z S, Huang Y H, et al. 2018. Spatiotemporal evolution and driving factors of China’s flash flood disasters since 1949 [J]. Sci. China Earth Sci., 61(12): 1804−1817. doi: 10.1007/s11430-017-9238-7
    [18] Masson D, Knutti R. 2011. Spatial-scale dependence of climate model performance in the CMIP3 ensemble [J]. J. Climate, 24(11): 2680−2692. doi: 10.1175/2011JCLI3513.1
    [19] Rodell M, Houser P R, Jambor U, et al. 2004. The global land data assimilation system [J]. Bull. Amer. Meteor. Soc., 85(3): 381−394. doi: 10.1175/BAMS-85-3-381
    [20] Simmonds I, Bi D H, Hope P. 1999. Atmospheric water vapor flux and its association with rainfall over China in summer [J]. J. Climate, 12(5): 1353−1367. doi:10.1175/1520-0442(1999)012<1353:awvfai>2.0.co;2
    [21] Song F F, Zhou T J. 2014a. The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air–sea coupling improve the simulations? [J]. J. Climate, 27(23): 8761−8777. doi: 10.1175/JCLI-D-14-00396.1
    [22] Song F F, Zhou T J. 2014b. Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean–Western Pacific anticyclone teleconnection [J]. J. Climate, 27(4): 1679−1697. doi: 10.1175/JCLI-D-13-00248.1
    [23] Sperber K R, Annamalai H, Kang I S, et al. 2013. The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century [J]. Climate Dyn., 41(9-10): 2711−2744. doi: 10.1007/s00382-012-1607-6
    [24] Trenberth K E. 1991. Climate diagnostics from global analyses: Conservation of mass in ECMWF analyses [J]. J Clim., 4: 707−722. doi:10.1175/1520-0442(1991)004<0707:CDFGAC>2.0.CO;2
    [25] Trenberth K E, Guillemot C J. 1998. Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses [J]. Climate Dyn., 14(3): 213−231. doi: 10.1007/s003820050219
    [26] Wei J F, Dirmeyer P A, Bosilovich M G, et al. 2012. Water vapor sources for Yangtze River valley rainfall: Climatology, variability, and implications for rainfall forecasting [J]. J. Geophys. Res. :Atmos., 117(D5): D05126. doi: 10.1029/2011JD016902
    [27] 吴佳, 高学杰. 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比 [J]. 地球物理学报, 56(4): 1102−1111. doi: 10.6038/cjg20130406

    Wu J, Gao X J. 2013. A gridded daily observation dataset over China region and comparison with the other datasets [J]. Chinese Journal of Geophysics (in Chinese), 56(4): 1102−1111. doi: 10.6038/cjg20130406
    [28] Xin X G, Wu T W, Zhang J, et al. 2020. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon [J]. Int. J. Climatol., 40(15): 6423−6440. doi: 10.1002/joc.6590
    [29] Zhang L X, Zhou T J. 2015. Drought over East Asia: A review [J]. J. Climate, 28(8): 3375−3399. doi: 10.1175/JCLI-D-14-00259.1
    [30] Zhao T T G, Zhao J S, Hu H C, et al. 2016. Source of atmospheric moisture and precipitation over China’s major river basins [J]. Front. Earth Sci., 10(1): 159−170. doi: 10.1007/s11707-015-0497-4
    [31] Zhao D, Zhang L X, Zhou T J, et al. 2021. Contributions of local and remote atmospheric moisture fluxes to East China precipitation estimated from CRA-40 reanalysis [J]. J. Meteor. Res., 35(1): 32−45. doi: 10.1007/s13351-021-0083-5
    [32] Zhou T J, Yu R C. 2005. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China [J]. J. Geophys. Res.: Atmos., 110(D8): D08104. doi: 10.1029/2004JD005413
    [33] 周天军, 邹立维, 陈晓龙. 2019. 第六次国际耦合模式比较计划(CMIP6)评述 [J]. 气候变化研究进展, 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193

    Zhou T J, Zou L W, Chen X L. 2019. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6) [J]. Climate Change Research, 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  83
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-09
  • 录用日期:  2021-07-20
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2022-05-19

目录

    /

    返回文章
    返回