高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向资料同化的FY-4A 卫星GIIRS探测仪偏差特征分析和偏差订正

刘娟娟 徐兰 成巍 王斌 巩欣亚 邓中仁 李亚云 狄迪

刘娟娟, 徐兰, 成巍, 等. 2022. 面向资料同化的FY-4A 卫星GIIRS探测仪偏差特征分析和偏差订正[J]. 大气科学, 46(2): 275−292 doi: 10.3878/j.issn.1006-9895.2111.21034
引用本文: 刘娟娟, 徐兰, 成巍, 等. 2022. 面向资料同化的FY-4A 卫星GIIRS探测仪偏差特征分析和偏差订正[J]. 大气科学, 46(2): 275−292 doi: 10.3878/j.issn.1006-9895.2111.21034
LIU Juanjuan, XU Lan, CHENG Wei, et al. 2022. Bias Characteristics and Bias Correction of GIIRS Sounder onboard FY-4A Satellite for Data Assimilation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(2): 275−292 doi: 10.3878/j.issn.1006-9895.2111.21034
Citation: LIU Juanjuan, XU Lan, CHENG Wei, et al. 2022. Bias Characteristics and Bias Correction of GIIRS Sounder onboard FY-4A Satellite for Data Assimilation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(2): 275−292 doi: 10.3878/j.issn.1006-9895.2111.21034

面向资料同化的FY-4A 卫星GIIRS探测仪偏差特征分析和偏差订正

doi: 10.3878/j.issn.1006-9895.2111.21034
基金项目: 国家重点研发计划重大自然灾害监测预警与防范项目2017YFC1501803,国家自然科学基金项目41905098
详细信息
    作者简介:

    刘娟娟,女,1980年出生,博士,副研究员,主要从事资料同化和集合预报研究。E-mail: ljjxgg@mail.iap.ac.cn

    通讯作者:

    狄迪,E-mail: didi@nuist.edu.cn

  • 中图分类号: P414.4

Bias Characteristics and Bias Correction of GIIRS Sounder onboard FY-4A Satellite for Data Assimilation

Funds: National Key R&D Program of China (Grant 2017YFC1501803), National Natural Science Foundation of China (Grant 41905098)
  • 摘要: 干涉式大气垂直探测仪(Geostationary Interferometric Infrared Sounder,简称GIIRS)是国际上第一部对地静止卫星平台上的高光谱红外大气垂直探测仪,能为对流尺度区域模式预报提供所需的高时空和高光谱分辨率的大气状态信息。本文利用高分辨率区域模式WRF及其同化系统WRFDA对GIIRS观测的偏差(观测亮温减去模拟亮温,记为O−B)分布特征进行了全景分析,结果表明:长波通道O−B偏差和标准差普遍小于中波通道,且都存在一段受污染的通道。O−B偏差的日变化和偏差与卫星天顶角的关系相对较弱,而所有筛选通道的偏差都与亮温值及卫星的扫描阵列位置有关,偏差的水平分布主要表现出“阵列偏差”的特征。2020年重新定标后,GIIRS观测数据质量比2019年有明显提高。在此基础上进一步进行了偏差订正试验,试验发现选取扫描阵列作为偏差订正的主要因子,都能有效地改进2019年和2020年筛选出的GIIRS通道的偏差,订正后O−B和O−A的系统性误差(偏差)都变小。该研究结果可为全球/区域模式中同化GIIRS长波及中波通道的辐射资料提供参考。
  • 图  1  2019年6月1日00:00(协调世界时,下同)(a)多通道扫描成像辐射计(AGRI)云掩膜产品(CLM) 和(b)干涉式大气红外高光谱探测仪(GIIRS)云检测的晴空视场分布。图红色和蓝色的圆点(即CLM=100% clear)代表该视场(Fields of View,简称FOV)云检测结果为完全晴空

    Figure  1.  Clear sky spatial distribution of (a) AGRI (Advanced Geosynchronous Radiation Imager) cloud mask products and (b) cloud detection results of the GIIRS (Geostationary Interferometric Infrared Sounder) at 0000 UTC on 1 June 2019. Red and blue dots in (a) and (b) represent the fields of view (FOV) with cloud mask products of 100% clear

    图  2  (a)2019年6月3日00:00与(b)2020年8月3日00:00使用异常数据标示码(pclk)标识剔除异常值后通道6的观测亮温分布(单位:K)。缺少的FOV代表pclk标识剔除的异常FOV

    Figure  2.  Spatial distribution of the observed brightness temperature (units: K) of channel 6 after excluding the outliers using pclk marking at (a) 0000 UTC on 3 June 2019 and (b) 0000 UTC on 3 August 2020. The missing FOV represents the excluded outliers by pclk

    图  3  (a)2019年6月和(b)2020年8月GIIRS通道O−B(观测亮温减去模拟亮温)的偏差(红色)和标准差(蓝色)的一个月统计结果,单位:K。粉色阴影为CO2吸收波段;灰色阴影为窗区和O3吸收波段;绿色阴影为H2O吸收波段;黄色阴影为CO2和N2O吸收波段,红色辅助线代表偏差为0 K

    Figure  3.  Statistical results of the bias (units: K, red lines) and standard deviation (STD, units: K, blue lines) between the observed and simulated brightness temperature (O−B) in all channels in (a) June 2019 and (b) August 2020. The pink shade denotes the CO2 band; the gray shade denotes the window and the O3 band; the green shade denotes the H2O band; the yellow shade denotes the CO2 and N2O bands; the red auxiliary line denotes the O−B bias at 0 K

    图  4  2020年8月剔除观测异常后部分(a)长波通道及(b)中波通道O−B的偏差(红色)和标准差(蓝色)的一个月统计结果,单位: K。红色辅助线代表偏差为0 K

    Figure  4.  Statistical results of the bias (units: K, red lines) and standard deviation (STD, units: K, blue lines) between the observed and simulated brightness temperature (O−B) in August 2020 (a) in part of LWIR (long-wave infrared) channels with the elimination of the anomaly observation, (b) in part of MWIR (middle-wave infrared) channels with the elimination of the anomaly observation, units: K. The red auxiliary line denotes the O−B bias at 0 K

    图  5  (a)GIIRS通道的模拟亮温分布(单位:K)及挑选出的(b)长波通道的Jacobian(dTb dT−1, 单位:K K−1)和(c)中波通道的Jacobian(dTb dlnq−1, 单位:K [ln(g kg−1)] −1)的垂直分布。(a)中黑色实线代表所有通道的模拟亮温分布,蓝色圆点代表挑选出的通道的模拟亮温分布,阴影部分含义与图3一致;(b)中加粗了通道6和121的Jacobian分布;(c)中加粗了通道942和1286的Jacobian分布

    Figure  5.  (a) Simulated bright temperature distribution of the GIIRS, units: K, and the vertical distribution of the Jacobian in selected (b) LWIR (dTb dT−1, units: K K−1) and (c) MWIR (dTb dlnq−1, units: K [ln(g kg−1)] −1 channels. The black lines represent the simulated brightness temperature in all channels, blue dots represent the simulated brightness temperature in selected channels, the colorful shade in Fig 5a have the same meaning as in Fig. 3; the Jacobian of channels 6 and 121 is bold in Fig 5b; the Jacobian of channels 942 and 1286 is bold in Fig 5c

    图  6  2020年8月各通道O−B偏差(单位:K,红色)及标准差(单位:K,蓝色)的一个月时间序列:(a)通道6;(b)通道121;(c)通道942;(d)通道1286

    Figure  6.  Time series of the bias (units: K, red lines) and standard deviation (STD, units: K, blue lines) between the observed and simulated brightness temperature (O−B) in August 2020 in channels (a) 6, (b) 121, (c) 942, and (d) 1286

    图  7  2020年8月00:00、06:00、12:00和18:00各通道O−B的偏差(单位:K,红色)及标准差(单位:K,蓝色)的一个月统计结果:(a)通道6;(b)通道121;(c)通道942;(d)通道1286

    Figure  7.  Statistical results of the bias (units: K, red bars) and standard deviation (STD, units: K, blue bars) between the observed and simulated brightness temperature (O−B) of 0000 UTC, 0600 UTC, 1200 UTC, and 1800 UTC in August 2020 in channels (a) 6, (b) 121, (c) 942, and (d) 1286

    图  8  GIIRS观测区域扫描阵列探元分布(框中数值代表探元编号)

    Figure  8.  Positions and north–south pixel numbers of the GIIRS FOV in a single field-of-regard(the value in the boxes represents the number of detectors)

    图  9  2020年8月通道(a、b)6、(c、d)121、(e、f)942和(g、h)1286 O−B偏差(左列;单位:K)和标准差(右列;单位:K)与阵列的关系(Col 1~4代表从西到东的4列扫描阵列)

    Figure  9.  Dependence of the bias (units: K; left column) and standard deviation (STD, units: K; right column) between the observed and simulated brightness temperature (O−B) in August 2020 in channels (a, b) 6, (c, d) 121, (e, f) 942, and (g, h) 1286. Cols 1–4 represent the 4 scanning positions from west to east

    图  10  2020年8月通道(a、b)6、(c、d)121、(e、f)942和(g、h)1286 O−B偏差(左列,单位:K)和标准差(右列,单位:K)的空间分布

    Figure  10.  Spatial distribution characteristics of the bias (left column; units: K) and standard deviation (right column; units: K) between the observed and simulated brightness temperature (O−B) in August 2020 in channels (a, b) 6, (c, d) 121, (e, f) 942, and (g, h) 1286

    图  11  2020年8月通道(a)6、(b)121、(c)942和(d)1286 O−B偏差(单位:K)和观测亮温值(单位:K)的关系(Cor代表相关系数,阴影代表观测数量)

    Figure  11.  Dependence of the bias (units: K) between the observed and simulated brightness temperature (O−B) in August 2020 in channels (a) 6, (b) 121, (c) 942, and (d) 1286 on the value of observed brightness temperature (OBS, units: K). Cor represents the correlation coefficient; observation counts are shaded

    图  12  2020年8月通道(a)6、(b)121、(c)942和(d)1286 O−B偏差(单位:K)和卫星天顶角的关系(Cor代表相关系数,阴影代表观测数量)

    Figure  12.  Dependence of the bias (units: K) between the observed and simulated brightness temperature (O−B) in August 2020 in channels (a) 6, (b) 121, (c) 942, and (d) 1286 on the satellite zenith angle (units: °). Cor represents the correlation coefficient; observation counts are shaded

    图  13  2019年6月(左列)和2020年8月(右列)挑选出的通道观测分别与(a、b)背景场、(c、d)分析场的模拟偏差,单位:K。红色和蓝色分别代表进行VarBC偏差订正和未进行VarBC偏差订正的结果

    Figure  13.  Bias in June 2019 (a) between the observed and simulated background brightness temperature (O−B, units: K) and (c) between the observed and analysis brightness temperature (O−A, units: K). Bias in August 2020 (b) between the observed and simulated background brightness temperature (O−B, units: K) and (d) between the observed and analysis brightness temperature (O−A, units: K) in all selected channels (Red lines represent the results with VarBC; blue lines represent the results without VarBC)

    表  1  选定的292条GIIRS通道

    Table  1.   292 selected GIIRS channels

    GIIRS通道
    CO2吸收波段窗区和O3吸收波段H2O吸收波段CO2和 N2O吸收波段
    2 4151154159163166 935 937 93913041310
    6 8168170172174176 942 951 95313151317
    10 12178180182184186 955 957 95913211325
    14 16188190192194196 961 965 98913461348
    18 2019820020220420610081010101413531356
    22 2420821021221421610161020102313691382
    26 2821822022222422610251028104513891393
    32 3522823023223423610471049105314001402
    67 6923824024224424610561058106614061409
    71 7324825025225425610721075108114111415
    75 7725826026226426610841086109614201423
    79 8126827027227527711031105110714331436
    83 8527928128729429611251129114214441447
    87 8929830030230430611441162116514511457
    91 9330831031231431611691177118014671469
    95 9731832032232432611821187118914701472
    9910132833133333533712001202121114741483
    10310533934134334534712131232123614851494
    10710934935135335736112401247125015081510
    11111336436736937137312621264126615431549
    115117375377379381383127612781282
    119121385387389398403128612881294
    123125406410413416419
    127129421435439474476
    131133478480482484486
    135137488490492550587
    139141
    143145
    148
    下载: 导出CSV
  • [1] Auligné T, McNally A P, Dee D P. 2007. Adaptive bias correction for satellite data in a numerical weather prediction system [J]. Quart. J. Roy. Meteor. Soc., 133(624): 631−642. doi: 10.1002/qj.56
    [2] Borbas E E and Ruston B C. 2010. The RTTOV UWiremis IR land surface emissivity module [EB/OL]. http://nwpsaf.eu/vs_reports/nwpsaf-mo-vs-042.pdf.
    [3] Cintineo R M, Otkin J A, Jones T A, et al. 2016. Assimilation of synthetic GOES-R ABI infrared brightness temperatures and WSR-88D radar observations in a high-resolution OSSE [J]. Mon. Wea. Rev., 144(9): 3159−3180. doi: 10.1175/MWR-D-15-0366.1
    [4] Collard A D. 2007. Selection of IASI channels for use in numerical weather prediction [J]. Quart. J. Roy. Meteor. Soc., 133(629): 1977−1991. doi: 10.1002/qj.178
    [5] Collard A D, McNally A P. 2009. The assimilation of infrared atmospheric sounding interferometer radiances at ECMWF [J]. Quart. J. Roy. Meteor. Soc., 135(641): 1044−1058. doi: 10.1002/qj.410
    [6] Dee D P. 2004. Variational bias correction of radiance data in the ECMWF system [EB/OL]. https://www.ecmwf.int/sites/default/files/elibrary/2004/8930-variational-bias-correction-radiance-data-ecmwf-system.pdf
    [7] Dee D P. 2005. Bias and data assimilation [J]. Quart. J. Roy. Meteor. Soc., 131(613): 3323−3343. doi: 10.1256/qj.05.137
    [8] 狄迪. 2019. 风云四号高光谱红外探测仪资料同化相关问题研究 [D]. 中国气象科学研究院博士学位论文. Di Di. 2019. Data assimilation research for geosynchronous interferometric infrared sounder onboard FengYun-4 satellite [D]. Ph. D. dissertation (in Chinese), Chinese Academy of Meteorological Sciences.
    [9] Di D, Li J, Han W, et al. 2018. Enhancing the fast radiative transfer model for FengYun-4 GIIRS by using local training profiles [J]. J. Geophys. Res., 123(22): 12583−12596. doi: 10.1029/2018JD029089
    [10] Di D, Li J, Han W, et al. 2021. Geostationary hyperspectral infrared sounder channel selection for capturing fast-changing atmospheric information [J]. IEEE Trans. Geosci. Remote Sens., 60: 4102210. doi: 10.1109/TGRS.2021.3078829
    [11] 董超华, 李俊, 张鹏. 2013. 卫星高光谱红外大气遥感原理和应用[M]. 北京: 科学出版社, 5–9

    Dong Chaohua, Li Jun, Zhang Peng. 2013. Atmospheric Remote Sensing Principle and Application of Hyperspectral Infrared Satellite Sounder (in Chinese) [M]. Beijing: Science Press, 5–9.
    [12] 董佩明, 薛纪善, 黄兵, 等. 2008. 数值天气预报中卫星资料同化应用现状和发展 [J]. 气象科技, 36(1): 1–7. Dong Peiming, Xue Jishan, Huang Bing, et al. 2008. Application status and development of satellite data assimilation in numerical weather forecast [J]. Meteorological Science and Technology (in Chinese), 36(1): 1−7. doi: 10.19517/j.1671-6345.2008.01.001
    [13] ECMWF. 2014. The WMO Vision for global observing systems in 2025: To what extent will it be met by space agencies’ plans [EB/OL]. https://www.ecmwf.int/sites/default/files/elibrary/2015/9328-wmo-vision-global-observing-systems-2025-what-extent-will-it-be-met-space-agencies-plans.pdf.
    [14] ECMWF. 2020. Fact sheet: ECMWF’ s use of satellite observations [EB/OL]. https://www.ecmwf.int/en/about/media-centre/focus/2020/fact-sheet-ecmwfs-use-satellite-observations.
    [15] Eyre J R. 1992. A bias correction scheme for simulated TOVS brightness temperatures [M]. Reading: ECMWF, 81–109. https://www.ecmwf.int/en/elibrary/9330-bias-correction-scheme-simulated-tovs-brightness-temperatures.
    [16] Eyre J R, Kelly G A, McNally A P, et al. 1993. Assimilation of TOVS radiance information through one-dimensional variational analysis [J]. Quart. J. Roy. Meteor. Soc., 119(514): 1427−1463. doi: 10.1002/qj.49711951411
    [17] Fan S H, Han W, Gao Z Q, et al. 2019. Denoising algorithm for the FY-4A GIIRS based on principal component analysis [J]. Remote Sens., 11(22): 2710. doi: 10.3390/rs11222710
    [18] 耿晓雯, 闵锦忠, 杨春, 等. 2020. FY-4A AGRI辐射率资料偏差特征分析及订正试验 [J]. 大气科学, 44(4): 679–694. Geng Xiaowen, Min Jinzhong, Yang Chun, et al. 2020. Analysis of FY-4A AGRI radiance data bias characteristics and a correction experiment [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(4): 679−694. doi: 10.3878/j.issn.1006-9895.1907.18254
    [19] Goldberg M D, Kilcoyne H, Cikanek H, et al. 2013. Joint polar satellite system: The United States next generation civilian polar–orbiting environmental satellite system [J]. J. Geophys. Res., 118(24): 13463−13475. doi: 10.1002/2013JD020389
    [20] Gong X Y, Li Z L, Li J, et al. 2018. Intercomparison between VIIRS and CrIS by taking into account the CrIS subpixel cloudiness and viewing geometry [J]. J. Geophys. Res., 123(10): 5335−5345. doi: 10.1029/2017JD027849
    [21] Gong X Y, Li Z L, Li J, et al. 2019. Monitoring the VIIRS sensor data records reflective solar band calibrations using DCC with collocated CrIS measurements [J]. J. Geophys. Res., 124(15): 8688−8706. doi: 10.1029/2018JD030019
    [22] Harris B A, Kelly G. 2001. A satellite radiance–bias correction scheme for data assimilation [J]. Quart. J. Roy. Meteor. Soc., 127(574): 1453−1468. doi: 10.1002/qj.49712757418
    [23] Honda T, Miyoshi T, Lien G Y, et al. 2018. Assimilating All-Sky Himawari-8 Satellite Infrared Radiances: A Case of Typhoon Soudelor (2015) [J]. Mon. Wea. Rev., 146(1): 213−229. doi: 10.1175/MWR-D-16-0357.1
    [24] 靳双龙, 王根. 2017. 正则化变分同化AIRS红外高光谱水汽资料研究 [J]. 红外, 38(11): 11−15. doi: 10.3969/j.issn.1672-8785.2017.11.003

    Jin Shuanglong, Wang Gen. 2017. Research on regularization variational assimilation of water vapour data from atmospheric infrared sounder [J]. Infrared (in Chinese), 38(11): 11−15. doi: 10.3969/j.issn.1672-8785.2017.11.003
    [25] Jones T A, Wang X G, Skinner P, et al. 2018. Assimilation of GOES-13 imager clear-sky water vapor (6.5 μm) radiances into a Warn-on-Forecast system [J]. Mon. Wea. Rev., 146(4): 1077−1107. doi: 10.1175/MWR-D-17-0280.1
    [26] Jung J A, Le Marshall J F, Riishojgaard L P, et al. 2009. The development of hyperspectral infrared water vapor radiance assimilation techniques in the NCEP global forecast system [EB/OL].https://www.ecmwf.int/sites/default/files/elibrary/2009/10310-development-hyperspectral-infrared-water-vapor-radiance-assimilation-techniques-ncep-global.pdf
    [27] Karbou F, Aires F, Prigent C, et al. 2005. Potential of advanced microwave sounding Unit-A (AMSU-A) and AMSU-B measurements for atmospheric temperature and humidity profiling over land [J]. J. Geophys. Res., 110(D7): D07109. doi: 10.1029/2004JD005318
    [28] Le Marshall J, Jung J, Derber J, et al. 2006. Improving global analysis and forecasting with AIRS [J]. Bull. Amer. Meteor. Soc., 87(7): 891−895. doi: 10.1175/BAMS-87-7-891
    [29] Li J, Wang P, Han H, et al. 2016. On the assimilation of satellite sounder data in cloudy skies in numerical weather prediction models [J]. J. Meteor. Res., 30(2): 169−182. doi: 10.1007/s13351-016-5114-2
    [30] Li X, Zou X L, Zeng M J. 2019. An alternative bias correction scheme for CrIS data assimilation in a regional model [J]. Mon. Wea. Rev., 147(3): 809−839. doi: 10.1175/MWR-D-18-0044.1
    [31] 刘乐, 李耀东. 2016. RTTOV快速辐射传输模式应用研究进展 [J]. 安徽农业科学, 44(3): 230−232. doi: 10.13989/j.cnki.0517-6611.2016.03.082

    Liu Le, Li Yaodong. 2016. The application and research advances of RTTOV fast radiative transfer mode [J]. Journal of Anhui Agricultural Science (in Chinese), 44(3): 230−232. doi: 10.13989/j.cnki.0517-6611.2016.03.082
    [32] Liu Z Q and Barker D. 2006. Radiance assimilation in WRF-Var: Implementation and initial results [EB/OL]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.575.5684&rep=rep1&type=pdf [2021-02-20].
    [33] Liu Z Q, Schwartz C S, Snyder C, et al. 2012. Impact of assimilating AMSU-A radiances on forecasts of 2008 atlantic tropical cyclones initialized with a limited-area ensemble kalman filter [J]. Mon. Wea. Rev., 140(12): 4017−4034. doi: 10.1175/MWR-D-12-00083.1
    [34] 陆风, 张晓虎, 陈博洋, 等. 2017. 风云四号气象卫星成像特性及其应用前景 [J]. 海洋气象学报, 37(2): 1−12. doi: 10.19513/j.cnki.issn2096-3599.2017.02.001

    Lu Feng, Zhang Xiaohu, Chen Boyang, et al. 2017. FY-4 geostationary meteorological satellite imaging characteristics and its application prospects [J]. Journal of Marine Meteorology (in Chinese), 37(2): 1−12. doi: 10.19513/j.cnki.issn2096-3599.2017.02.001
    [35] McNally A P, Watts P D, Smith J A, et al. 2006. The assimilation of AIRS radiance data at ECMWF [J]. Quart. J. Roy. Meteor. Soc., 132(616): 935−957. doi: 10.1256/qj.04.171
    [36] Menzel W P, Schmit T J, Zhang P, et al. 2018. Satellite-based atmospheric infrared sounder development and applications [J]. Bull. Amer. Meteor. Soc., 99(3): 583−603. doi: 10.1175/BAMS-D-16-0293.1
    [37] Min M, Wu C Q, Li C, et al. 2017. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series [J]. J. Meteor. Res., 31(4): 708−719. doi: 10.1007/s13351-017-6161-z
    [38] Newman K M, Schwartz C S, Liu Z Q, et al. 2015. Evaluating forecast impact of assimilating microwave humidity sounder (MHS) radiances with a regional ensemble kalman filter data assimilation system [J]. Wea. Forecasting, 30(4): 964−983. doi: 10.1175/WAF-D-14-00091.1
    [39] Saunders R W, Blackmore T A, Candy B, et al. 2013. Monitoring satellite radiance biases using NWP models [J]. IEEE Trans. Geosci. Remote Sens., 51(3): 1124−1138. doi: 10.1109/TGRS.2012.2229283
    [40] Schmit T J, Li J, Ackerman S A, et al. 2009. High-spectral- and high-temporal-resolution infrared measurements from geostationary orbit [J]. J. Atmos. Oceanic Technol., 26(11): 2273−2292. doi: 10.1175/2009JTECHA1248.1
    [41] Shen F F, Shu A Q, Li H, et al. 2021. Assimilation of Himawari-8 imager radiance data with the WRF-3DVAR system for the prediction of Typhoon Soudelor [J]. Nat. Hazards Earth Syst. Sci., 21(5): 1569−1582. doi: 10.5194/nhess-21-1569-2021
    [42] Sherlock V J. 1999. ISEM-6: Infrared surface emissivity model for RTTOV-6 [R]. Forecasting Research Technical Report No. 299.
    [43] Smith W L, Revercomb H, Bingham G, et al. 2009. Technical Note: Evolution, current capabilities, and future advance in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphere [J]. Atmos. Chem. Phys., 9(15): 5563−5574. doi: 10.5194/acp-9-5563-2009
    [44] Szyndel M D E, Kelly G, Thépaut J N. 2005. Evaluation of potential benefit of assimilation of SEVIRI water vapour radiance data from Meteosat-8 into global numerical weather prediction analyses [J]. Atmos. Sci. Lett., 6(2): 105−111. doi: 10.1002/asl.98
    [45] Wang Y B, Liu Z Q, Yang S, et al. 2018. Added value of assimilating Himawari-8 AHI water vapor radiances on analyses and forecasts for “7.19” severe storm over North China [J]. J. Geophys. Res., 123(7): 3374−3394. doi: 10.1002/2017JD027697
    [46] Xu D M, Min J Z, Shen F F, et al. 2016. Assimilation of MWHS radiance data from the FY-3B satellite with the WRF Hybrid-3DVAR system for the forecasting of binary typhoons [J]. Journal of Advances in Modeling Earth Systems, 8(2): 1014−1028. doi: 10.1002/2016MS000674
    [47] 薛纪善. 2009. 气象卫星资料同化的科学问题与前景 [J]. 气象学报, 67(6): 903−911. doi: 10.3321/j.issn:0577-6619.2009.06.001

    Xue Jishan. 2009. Scientific issues and perspective of assimilation of meteorological satellite data [J]. Acta Meteorologica Sinica (in Chinese), 67(6): 903−911. doi: 10.3321/j.issn:0577-6619.2009.06.001
    [48] Yang J, Zhang Z Q, Wei C Y, et al. 2017. Introducing the new generation of Chinese geostationary weather satellites, FengYun-4 [J]. Bull. Amer. Meteor. Soc., 98(8): 1637−1658. doi: 10.1175/BAMS-D-16-0065.1
    [49] Yin R Y, Han W, Gao Z Q, et al. 2020. The evaluation of FY4A's Geostationary Interferometric Infrared Sounder (GIIRS) long-wave temperature sounding channels using the GRAPES global 4D-Var [J]. Quart. J. Roy. Meteor. Soc., 146(728): 1459−1476. doi: 10.1002/qj.3746
    [50] 郑祚芳, 沈桐立, 张秀丽. 2001. 气象卫星探测资料在数值天气预报中的应用 [J]. 气象, 27(9): 3−8. doi: 10.3969/j.issn.1000-0526.2001.09.001

    Zheng Zuofang, Shen Tongli, Zhang Xiuli. 2001. Application of satellite data to numerical model [J]. Meteorological Monthly (in Chinese), 27(9): 3−8. doi: 10.3969/j.issn.1000-0526.2001.09.001
    [51] Zou X, Zhuge X, Weng F. 2016. Characterization of bias of advanced himawari imager infrared observations from NWP background simulations using CRTM and RTTOV [J]. J. Atmos. Oceanic Technol., 33(12): 2553−2567. doi: 10.1175/JTECH-D-16-0105.1
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  34
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-22
  • 录用日期:  2021-11-29
  • 网络出版日期:  2021-11-30
  • 刊出日期:  2022-03-16

目录

    /

    返回文章
    返回