高级检索

夏季西北太平洋副热带高压主模态年际变化特征及其季节预报模型

Interannual Variability in the Dominant Modes of Western North Pacific Subtropical High in Summer and Its Statistical Prediction Model

  • 摘要: 作为东亚夏季风环流系统的重要成员,夏季西北太平洋副热带高压(简称副高)活动对我国降水和西北太平洋上热带气旋活动有重要影响,但副高季节预测仍然具有挑战性。本文采用1979~2022年月平均海气资料和海气指数,基于信息流方法特有的因果关系来挑选副高主模态变化的预报因子,并建立预报模型。本文首先利用经验正交函数(Empirical Orthogonal Function,EOF)分解,得到1979~2020年副高变化的前两个主模态及其对应的主成分(PCs),其分别与El Niño衰减和La Niña发展关系密切。然后利用信息流和多元逐步回归筛选1980~2015年建模期间PC1和PC2的预报因子。PC1、PC2的预报因子均为7个,PC1的预报因子主要包括了Niño 4指数、赤道中太平洋北部海表温度(SST)等。PC2的预报因子主要包括了热带中太平洋北部SST、大西洋多年代际振荡(AMO)指数等,表明由春季PMM(Pacific meridional mode)发展起来的夏季La Niña和北大西洋SST对接下来夏季EOF2模态的形成有重要影响。1980~2015年期间预报PCs和实际PCs序列的相关系数达到0.91和0.88,并用该预报模型预报2016~2020年PCs序列,相关系数分别达到0.74和0.85。1980~2022年的预报重构场与实际观测场的区域平均时间相关系数、多年平均的空间相关系数分别为0.63、0.48,均通过99%的信度检验,且预报的效果很大程度上依赖于预报上限。我们还通过PCs值进行相似年份预报,以弥补重构场异常较弱的缺陷。

     

    Abstract: As an important member of the East Asian summer monsoon system, the western North Pacific subtropical high (WPSH) significantly affects precipitation in China and tropical cyclone activity in the western North Pacific. However, predicting the WPSH’s summer behavior remains challenging. Using Liang’s (2014) causality of information flow method, we have selected predictors for the dominant modes of the summer WPSH, utilizing monthly air/sea datasets and indices from 1979 to 2022 to develop a seasonal statistical model. We first applied empirical orthogonal function (EOF) analysis to identify the two EOF modes and their corresponding principal components (PCs) of the summer WPSH from 1979 to 2020. The first two dominant modes are closely related to the fading of El Niño events, while the latter correlate with the emergence of La Niña. To identify predictors for these patterns, we used information flow analysis and multiple linear stepwise regression during the model training period of 1980–2015. We identified seven predictors for each PC. The predictors for PC1 mainly include the Niño 4 index and sea surface temperatures (SSTs) in the northern equatorial Central Pacific. For PC2, predictors mainly include SSTs in the northern tropical Central Pacific and the Atlantic multidecadal oscillation (AMO) index, suggesting that La Niña development from the Pacific meridional mode (PMM) in spring and North Atlantic SSTs significantly affect EOF2. During the training period (1980–2015), the correlation between predicted and actual PC time series was 0.91 for PC1 and 0.88 for PC2. For the forecasting period (2016–2020), these correlations were 0.74 and 0.85, respectively. Over the 1980–2022 period, the regional average time correlation coefficient and the multiyear average pattern correlation coefficient of the reconstructed fields compared to observations were 0.63 and 0.48, both exceeding the 99% significance level. The forecast success largely depends on its limitations. We also conduct similar year forecasts based on PC values to address weak anomalies in the reconstructed fields.

     

/

返回文章
返回