高级检索

气溶胶对云和降水的微物理效应

A Short Review about the Influence of Aerosols on Cloud and Precipitation

  • 摘要: 气溶胶主要通过调节辐射能量收支,并通过气溶胶-云相互作用改变云滴性质,显著影响云和降水的发生与发展,本文主要就气溶胶对云的微物理效应开展了综述研究。作为云凝结核或冰核,气溶胶可以有效地改变云的辐射与微物理特性。在辐射收支方面,气溶胶的增多会使得云滴粒径减小,云对短波辐射的反照率增大,形成云反照率效应;同时,它也会使得薄云的长波辐射系数增强,将更多的地面长波辐射阻挡在云层之下,形成云长波辐射效应。但吸收性气溶胶可能会促进云滴蒸发,从而减小云的反照率。在降水方面,当水汽不充分或风切变较强时,云滴数目的增多伴随云滴有效半径减小,从而抑制了降水,延长了云的生命时间;但是当云发展较为深厚时,更多更小的云滴可以被输送到0 ℃层以上,通过冻结释放潜热,从而促进了对流降水的产生。因此,气溶胶的云微物理效应可以抑制弱降水的形成,促进强降水的发生,进而导致极端天气事件发生频率的增加。然而,有许多研究观测到了与以上理论不一致的现象。为了解释这些现象,本文通过总结前人的观测与理论研究成果,系统地提出了气溶胶-云相互作用背后的四种物理机理:单滴的水汽凝结与蒸发效应,群滴的水汽竞争效应、碰并效应和夹卷效应。这些机制的相互竞争导致了研究中观测到的不同结果。最后,本文指出了气溶胶-云-降水相互作用研究中的挑战及未来研究方向,主要包括提高数据观测能力,构建多因素影响下的气溶胶-云相互作用系统框架,优化参数化方案,以及推动人工智能在相关研究中的应用。

     

    Abstract: Aerosols mainly influence cloud formation and precipitation by regulating the radiative energy balance and altering cloud droplet properties through aerosol-cloud interactions. This paper provides a comprehensive review of the microphysical effects of aerosols. As cloud condensation nuclei or ice nuclei, aerosols can significantly alter the radiative and microphysical characteristics of clouds. An increase in aerosol concentration can lead to smaller cloud droplet sizes, increasing the cloud albedo to shortwave radiation, referred to cloud albedo effect. Simultaneously, aerosols can enhance the longwave radiation emitted by thiner clouds, blocking more longwave radiation in atmosphere, which is known as the cloud thermal emissivity effect. However, absorbing aerosols may promote cloud droplet evaporation, thus reducing the cloud albedo. Ferthermore, aerosols have significant impact on precipitation. When water vapor is insufficient or wind shear is strong, an increase in cloud droplet and a reduction in droplet effective radius can suppress precipitation and extend the cloud"s lifetime. However, when clouds develop more deeply, more and smaller droplets can be transported above the 0°C level, where freezing releases latent heat, promoting convective rainfall. Therefore, the microphysical effects of aerosols can suppress weak precipitation and enhance strong precipitation, leading to an increase in extreme weather events. However, many studies have observed phenomena that are inconsistent with these theories. To explain these discrepancies, this paper systematically presents four physical mechanisms behind aerosol-cloud interactions: condensation and evaporation effects, water vapor competition effects, collision and coalescence effects, and entrainment effects. The competition among these mechanisms leads to the varied results observed in studies. Finally, the paper discusses the challenges and future research directions, with an emphasis on enhancing observational data capabilities, developing a comprehensive framework for aerosol-cloud interactions under varying conditions, optimizing parameterization schemes, and advancing the application of artificial intelligence.

     

/

返回文章
返回