高级检索

微雨雷达雨滴谱和降雨参数反演精度分析

Precision Evaluation of DSD and Rainfall Parameters Retrieved by Micro Rain Radar

  • 摘要: 本文基于北京地区2016-2018年暖季(5-9月)降水观测数据,利用二维视频雨滴谱仪(2DVD)和X波段双偏振雷达(XPOL),系统评估了微雨雷达(MRR)在层状云和对流云降水中的雨滴谱(Raindrop size distribution,DSD)及降雨参数(降雨率R、液态含水量W、反射率因子Z、质量加权平均直径Dm和标准化伽马分布截距参数Nw)的反演精度。针对MRR原始功率谱数据,提出了一种新处理方法(“REP”),通过退折叠和垂直气流订正优化反演流程,并与标准输出数据(“AVG”)对比。结果表明:(1)两种数据对层状云降雨参数的反演精度优于对流云,“REP”数据显著提升了DSD和降雨参数的反演精度,特别是对流云降水中,Z偏差从“AVG”的-23.74 dB改善至0.74 dB(2)与2DVD相比,“AVG”数据系统性低估DSD参数和降雨参数,且偏差随降雨强度增大而加剧。而“REP”数据的相关系数(Z、R、W、Dm和Nw的CC分别达0.96、0.94、0.93、0.87 和 0.78)和误差指标均显著优于“AVG”数据。(3)与“AVG”DSD模拟结果相比,“REP”DSD模拟的反射率(Z)和差分反射率(ZDR)与XPOL观测值的吻合度更高,“REP”(“AVG”)模拟的Z和ZDR偏差分别为-1.14(-3.04) 和0.02(0.12) dB。(4)MRR垂直分辨率对反演结果影响显著:层状云降水中,30 m、100 m和200 m分辨率下反演的DSD和2DVD一致性较高;而对流云降水中, 30 m分辨率表现最优, 200 m略优于100 m。总之,退折叠和垂直气流订正可有效提升MRR对层状云和对流云降水DSD和降雨参数的反演能力,为降水精细化垂直微物理结构研究提供了更可靠的技术手段。

     

    Abstract: The performance of the Micro Rain Radar (MRR) in estimating raindrop size distribution (DSD) and integral rainfall parameters (i.e., rainfall intensity R, liquid water content W, radar reflectivity factor Z, mean mass-weighted raindrop diameter Dm and intercept parameter Nw of the normalized gamma distribution) was comprehensively evaluated using coincident data from a 2D video disdrometer (2DVD) and an X-band dual-polarization radar (XPOL) in Beijing during the warm seasons (May-September) from 2016 to 2018. A comparative analysis between the standard MRR products (“AVG” data) and the reprocessed data ("REP") derived from raw MRR spectra was conducted to assess MRR’s accuracy in both stratiform and convective precipitation. Key findings are as follows: (1) The retrieval accuracy of DSD and rainfall parameters for "REP" data outperformed "AVG" data, with superior performance in stratiform rain compared to convective rain. The reflectivity (Z) bias improved from -23.74 dB ("AVG") to 0.74 dB ("REP") in convective precipitation. (2) Compared to 2DVD measurements, "AVG" data systematically underestimated DSD and rainfall parameters, with underestimation increasing with rainfall intensity. In contrast, "REP" data exhibited higher correlation coefficients (Z: 0.96; R: 0.94; W: 0.93; Dm: 0.87; log10Nw: 0.78), lower absolute biases and reduced root mean square errors. (3) Simulations of reflectivity (Z) and differential reflectivity (ZDR) based on "REP" DSD showed better agreement with XPOL observations, with biases of -1.14 dB (vs. -3.04 dB for "AVG") and 0.02 dB (vs. 0.12 dB for "AVG"), respectively. (4) The vertical resolution of MRR significantly influenced retrieval performance. In stratiform rain, MRR-retrieved DSD and rainfall parameters at 30 m, 100 m, and 200 m resolutions shows high consistency with 2DVD measurements. But in convective rain, the optimal agreement occurred at 30 m, while the 200 m resolution performs marginally better than the 100 m resolution. In summary, these results demonstrate that applying de-aliasing and vertical wind correction to MRR raw spectra significantly enhances its capability to retrieve DSD and rainfall parameters in both stratiform and convective precipitation, providing a more reliable technical means for investigating the fine-scale vertical microphysical structure of precipitation.

     

/

返回文章
返回