高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弱天气系统强迫下北京地区对流下山演变的热动力机制

肖现 陈明轩 高峰 王迎春

肖现, 陈明轩, 高峰, 王迎春. 弱天气系统强迫下北京地区对流下山演变的热动力机制[J]. 大气科学, 2015, 39(1): 100-124. doi: 10.3878/j.issn.1006-9895.1403.13318
引用本文: 肖现, 陈明轩, 高峰, 王迎春. 弱天气系统强迫下北京地区对流下山演变的热动力机制[J]. 大气科学, 2015, 39(1): 100-124. doi: 10.3878/j.issn.1006-9895.1403.13318
XIAO Xian, CHEN Mingxuan, GAO Feng, WANG Yingchun. A Thermodynamic Mechanism Analysis on Enhancement or Dissipation of Convective Systems from the Mountains under Weak Synoptic Forcing[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(1): 100-124. doi: 10.3878/j.issn.1006-9895.1403.13318
Citation: XIAO Xian, CHEN Mingxuan, GAO Feng, WANG Yingchun. A Thermodynamic Mechanism Analysis on Enhancement or Dissipation of Convective Systems from the Mountains under Weak Synoptic Forcing[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(1): 100-124. doi: 10.3878/j.issn.1006-9895.1403.13318

弱天气系统强迫下北京地区对流下山演变的热动力机制

doi: 10.3878/j.issn.1006-9895.1403.13318
基金项目: 公益性行业(气象)科研专项项目GYHY201306008,国家自然科学基金项目41305041

A Thermodynamic Mechanism Analysis on Enhancement or Dissipation of Convective Systems from the Mountains under Weak Synoptic Forcing

  • 摘要: 利用三维数值云模式和雷达资料四维变分(4DVar)同化技术,通过对京津冀地区4部新一代多普勒天气雷达观测资料进行快速更新同化和云尺度模拟,初步分析了弱天气系统强迫下两次发生在北京地区对流风暴的低层动力和热力影响机制。这两次风暴过程处于弱天气系统强迫和弱层结背景下,局地冷池和环境风场的相互配合是造成山上对流风暴是否能够顺利传播下山的关键机制。起初,两个个例平原局地热、动力不均衡形成平原冷池,而冷池的“障碍物”作用进而阻碍环境风场的传播配置。在此机制下,导致在冷池东南边缘形成较强的辐合上升、垂直风切变和螺旋度。在6月26日个例中,由于冷池强度较强且位置偏南,因此阻断了东南暖湿气流向山区的输送,形成由平原至山区的辐散区使得山区的对流风暴不断减弱。但是,随着已经消散的对流风暴下沉气流,覆盖至冷池边缘东南气流上空形成了较强的风切变和垂直螺旋度,进而促使在冷池边缘形成新的对流风暴。而且,在新对流风暴生成后,由于平原地区整体切变强度较弱,因此形成了冷池扩张强度大于对流风暴传播速度的态势。这种配置会切断暖湿入流,从而导致对流风暴快速消亡。对于8月1日个例,冷池位置偏北,因而不受冷池阻挡作用的偏南风在山脚形成较强的辐合上升,同时与下山的偏西风形成明显辐合上升区,有利于山区对流风暴的不断增强;进而,受此影响,山上风暴降水产生若干冷池,新生冷池和原有冷池的相互挤压,在迫使中、北部风暴增强的同时,最终也导致这些风暴互相靠近,最终合并组织成带状对流系统。同时,北部冷池边缘形成的辐合带也为对流风暴向山下传播提供有利条件,而回波产生的冷池进一步增强,并明显扩展。低层风场指示冷池出流(阵风锋)更加强烈且存在明显的“前冲”特征,显现出部分飑线系统的热动力特征。但是由于此时平原地区处于弱切变环境中,风切变强度不能与冷池出流强度相平衡,同样冷池扩展将领先于对流风暴移动,切断东南暖湿入流,导致原有风暴快速减弱。在文章的最后,基于观测和模拟结果,对比分析这两个个例,初步得出了与对流风暴传播下山发展演变密切相关的低层热、动力配置概念模型。
  • [1] Carbone R E, Tuttle J D. 2008. Rainfall occurrence in the U. S. warm season: The diurnal cycle [J]. J. Climate, 21 (16): 4132-4146.
    [2] 陈敏, 范水勇, 郑佐芳, 等. 2011. 基于BJ-RUC系统的临近探空及其对强对流发生潜势预报的指示性能初探 [J]. 气象学报, 69 (1): 181-194. Chen Min, Fan Shuiyong, Zheng Zuofang, et al. The performance of the proximity sounding based on the BJ-RUC system and its preliminary implementation in the convective potential forecast [J]. Acta Meteorologica Sinica (in Chinese), 69(1): 181-194.
    [3] Chen M, Wang Y, Gao F, et al. 2012. Diurnal variations in convective storm activity over contiguous North China during the warm season based on radar mosaic climatology [J]. J. Geophys. Res., 117, doi: 10.1029/2012JD018158.
    [4] 陈明轩, 王迎春. 2012. 低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟 [J]. 气象学报, 70 (3): 371-386. Chen Mingxuan, Wang Yingchun. 2012. Numerical simulation study of interactional effects of the low-level vertical wind shear with the cold pool on a squall line evolution in North China [J]. Acta Meteorologica Sinica (in Chinese), 70(3): 371-386.
    [5] Chen M X, Gao F, Kong R, et al. 2007. A frequent-updating high resolution system based on radar for the 2008 Olympics [C]. The 33rd international Conference on Radar Meteorology. Cairns, Australia: American Meteorological Society, 4A. 7.
    [6] 陈明轩, 高峰, 孔荣, 等. 2010. 自动临近预报系统及其在北京奥运期间的应用 [J]. 应用气象学报, 21 (4): 395-404. Chen Mingxuan, Gao Feng, Kong Rong, et al. 2010. Introduction of Auto nowcasting system for convective storm and its performance in Beijing Olympics meteorological service [J]. Journal of Applied Meteorological Science (in Chinese), 21(4): 395-404.
    [7] 陈明轩, 王迎春, 高峰, 等. 2011. 基于雷达资料4DVAR的低层热动力反演系统及其在北京奥运期间的初步应用分析 [J]. 气象学报, 69 (1): 64-78. Chen Minxuan, Wang Yingchun, Gao Feng, et al. 2011. A low-level thermo dynamical retrieval system based on the radar data 4DVar and a preliminary analysis of its applications in support of the Beijing 2008 Olympics [J]. Acta Meteorologica Sinica (in Chinese), 69(1): 64-78.
    [8] 陈明轩, 王迎春, 肖现, 等. 2012. 基于雷达资料4维变分同化和三维云模式对一次超级单体风暴发展维持热动力机制的模拟分析 [J]. 大气科学, 36 (5): 929-944. Chen Mingxuan, Wang Yingchun, Xiao Xian, et al. 2012. A case simulation analysis on thermodynamical mechanism of supercell storm development Using 3-D cloud model and 4-D variational assimilation on radar data [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(5): 929-944.
    [9] 陈明轩, 王迎春, 肖现, 等. 2013. 北京 “7.21” 暴雨雨团的发生和传播机理 [J]. 气象学报, 71 (4): 569-592. Chen Mingxuan, Wang Yingchun, Xiao Xian, et al. 2013. Numerical simulation study on structure and propagation mechanism of the Beijing extreme heavy rainfall on 21 July 2012 based on radar data 4DVar assimilation [J]. Acta Meteorologica Sinica (in Chinese), 71(4): 569-592.
    [10] Crook N A, Sun J. 2002. Assimilation radar, surface and profiler data for the Sydney 2000 forecast demonstration project [J]. J. Atmos. Oceanic Tech., 19 (6): 888-898.
    [11] Davies-Jones R, Burgess D, Foster M. 1990. Test of helicity as a tornado forecast parameter [C]//Preprints, 16th Conference on Severe Local Storms. Canada: American Meteorological Society, 588-592.
    [12] Durran D R, Klemp J B. 1983. A compressible model for the simulation of moist mountain waves [J]. Mon. Wea. Rev., 111: 2341-2361.
    [13] 郭虎, 段丽, 杨波, 等. 2008. 0679香山局地大暴雨的中小尺度天气分析 [J]. 应用气象学报, 19 (3): 265-275. Guo Hu, Duan Li, Yang Bo, et al. 2008. Mesoscale and microscale analysis on a local torrential rain event in fragrant hills area of Beijing on July 9, 2006 [J]. Journal of Applied Meteorological Science (in Chinese), 19(3): 265-275.
    [14] Kerr B W, Darkow G L. 1996. Storm-relative winds and helicity in the tornadic thunderstorm environment [J]. Wea. Forecasting, 11 (4): 489-505.
    [15] 黄荣. 2012. 北京地区雷暴下山增强的特征分析及个例研究 [D]. 中国气象科学研究院硕士毕业论文. Huang Rong. 2012. Features of intensifying thunderstorms moving down from the mountains and case study in Beijing [D]. M. S. thesis (in Chinese), Chinese Academy of Meteorological Sciences.
    [16] James C N, Robert A. Houze Jr. 2001. A real-time four-dimensional Doppler dealiasing scheme [J]. J. Atmos. Oceanic Technol., 18 (10): 1674-1683.
    [17] 矫梅燕, 毕宝贵. 2005. 夏季北京地区强地形雨中尺度结构分析 [J]. 气象, 31 (6): 9-14. Jiao Meiyan, Bi Baogui. 2005. Mesoscale structure analysis of topography-induced heavy rainfall in Beijing in summer [J]. Meteorological Monthly (in Chinese), 31(6): 9-14.
    [18] Lilly D K. 1986. The structure, energetics and propagation of rotating convective storms. Part II: Helicity and storm stabilization [J]. J. Atmos. Sci., 43 (2): 126-140.
    [19] Molinari J, Vollaro D. 2008. Extreme helicity and intense convective towers in hurricane Bonnie [J]. Mon. Wea. Rev., 136 (11): 4355-4372.
    [20] Parker M D, Johnson R H. 2000. Organizational modes of midlatitude mesoscale convective systems [J]. Mon. Wea. Rev., 128: 3413-3436.
    [21] Parker M D, Johnson R H. 2004. Structures and dynamics of quasi-2D mesoscale convective systems [J]. J. Atmos. Sci., 61 (5): 545-567.
    [22] Roberts, R, Sun J, Yin Z, et al. 2011. Meso-scale Analysis and Predictability of Taiwan Heavy Rainfall Using VDRAS and WRF [C]. 2011 AMS Conf. on Radar Meteorology, Pittsburgh, PA.
    [23] Rotunno R, Klemp J B, Weisman M L. 1990. A theory for strong, long-lived squall lines [J]. J. Atmos. Sci., 45: 463-485.
    [24] 盛裴轩, 毛节泰, 李建国, 等. 2003. 大气物理学 [M]. 北京: 北京大学出版社, 99pp. Sheng Peixuan, Mao Jietai, Li Jianguo, et al. 2003. Atmospheric Physics (in Chinese) [M]. Beijing: Peking University Press, 99pp.
    [25] Sun J, Crook N A. 1997. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint: I. Model development and simulated data experiments [J]. J Atmos Sci., 54: 1642-1661.
    [26] Sun J, Crook N A. 1998. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint: II. Retrieval experiments of an observed Florida convective storm [J]. J. Atmos. Sci., 55: 835-852.
    [27] Sun J Z, Crook N A. 2001. Real-time low-level wind and temperature analysis using single WSR-88D date [J]. Wea. Forecasting, 16: 117-132.
    [28] Sun J Z, Zhang Y. 2008. Analysis and prediction of a squall line observed during IHOP using multiple WSR-88D observations [J]. Mon. Wea. Rev., 136: 2364-2388.
    [29] Sun J Z, Chen M X, Wang Y C. 2010. A frequent-updating analysis system based on radar, surface, and mesoscale model data for the Beijing 2008 Forecast Demonstration Project [J]. Wea. Forecasting, 25 (6): 1715- 1735.
    [30] 孙继松, 王华, 王令, 等. 2006. 城市边界层过程在北京2004年7月10日局地暴雨过程中的作用 [J]. 大气科学, 30 (2): 221-234. Sun Jisong, Wang Hua, Wang Ling, et al. 2006. The role of urban boundary layer in local convective torrential rain happening in Beijing on 10 July 2004 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30 (2): 221-234.
    [31] 孙继松, 杨波. 2008. 地形与城市环流共同作用下的β中尺度暴雨 [J]. 大气科学, 32(6): 1352-1364. Sun Jisong, Yang Bo. 2008. Meso-β scale torrential rain affected by topography and the urban circulation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(6): 1352-1364.
    [32] 孙继松, 何娜, 郭锐, 等. 2013. 多单体雷暴的形变与列车效应传播机制 [J]. 大气科学, 37 (1): 137-148. Sun Jisong, He Na, Guo Rui, et al. 2013. The configuration change and train effect mechanism of multi-cell storms [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(1): 137-148.
    [33] Thorpe A J, Miller M J, Moncrieff M W. 1982. Two-dimensional convection in non-constant shear: A model of mid latitude squall lines [J]. Quart. J. Roy. Meteor. Soc., 108 (458): 739-762.
    [34] Wakimoto R M, Murphey H V, Browell E V, et al. 2006a. The “Triple Point” on 24 May 2002 during IHOP. Part I: Airborne Doppler and LASE analyses of the frontal boundaries and convection initiation [J]. Mon. Wea. Rev., 134: 231-250.
    [35] Wakimoto R M, Murphey H V, Nester A, et al. 2006b. High winds generated by bow echoes. Part I: Overview of the Omaha bow echo 5 July 2003 storm during BAMEX [J]. Mon. Wea. Rev., 134, 2793-2812.
    [36] 王玉彬, 周海光, 于东昌, 等. 2009. 奥运短时临近预报实时数据处理 [J]. 气象, 34 (7): 75-82. Wang Yubing, Zhou Haiguang, Yu Dongchang, et al. 2009. Real time data processing technique on very short range and nowcasting for Beijing 2008 Olympic Games [J]. Meteorological Monthly (in Chinese), 34 (7): 75-82.
    [37] 王婷婷, 王迎春, 陈明轩, 等. 2011. 北京地区干湿雷暴形成机制的对比分析 [J]. 气象, 37 (2): 142-155. Wang Tingting, Wang Yingchun, Chen Mingxuan, et al. 2011. The contrastive analysis of formation of dry and moist thunderstorms in Beijing [J]. Meteorological Monthly (in Chinese), 37 (2): 142-155.
    [38] Wilson J W, Schreiber W E. 1986. Initiation of convective storms at radar-observed boundary-layer convergence lines [J]. Mon. Wea. Rev., 114 (12): 2516-2536.
    [39] Wilson J W, Ebert E, Saxen T, et al. 2004. Sydney 2000 forecast demonstration project: Convective storm nowcasting [J]. Wea. Forecasting, 19 (1): 131-150.
    [40] Wilson J W, Feng Y, Chen M, et al. 2010. Nowcasting challenges during the Beijing Olympics: Successes, failures, and implications for future nowcasting systems [J]. Wea. Forecasting, 25 (6): 1691-1714.
    [41] 肖辉, 王孝波, 周非非, 等. 2004. 强降水云物理过程的三维数值模拟研究 [J]. 大气科学, 28 (3): 385-404. Xiao Hui, Wang Xiaobo, Zhou Feifei, et al. 2004. A three-dimensional numerical simulation on microphysical processes of torrential rainstorms [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28 (3): 385-404.
    [42] 肖现, 廖菲, 肖辉, 等. 2010. 北京对流性降水的雨滴尺寸分布瞬时特征与雷达降水的关系 [J]. 热带气象学报, 26 (4): 445-451. Xiao Xian, Liao Fei, Xiao Hui, et al. 2010. Systematic variation of drop size in convective of Beijing and radar-rainfall relations [J]. Journal of Tropical Meteorology (in Chinese), 26 (4): 445-451.
    [43] 肖现, 王迎春, 陈明轩, 等. 2013. 基于雷达资料四维变分同化技术对北京地区一次下山突发性增强风暴热动力机制的模拟分析 [J]. 气象学报, 71 (5): 797-816. Xiao Xian, Wang Yingchun, Chen Mingxuan, et al. 2013. A mechanism analysis on thermo-dynamical field of a suddenly intensifying storm from mountains with radar data 4DVar [J]. Acta Meteorologica Sinica (in Chinese), 71 (5): 797-816.
    [44] 俞小鼎, 王迎春, 陈明轩, 等. 2005. 新一代天气雷达与强对流天气预警 [J]. 高原气象, 24 (3): 456-463. Yu Xiaoding, Wang Yingchun, Chen Mingxuan, et al. 2005. Severe convective weather warnings and its improvement with the introduction of the NEXRAD [J]. Plateau Meteorology (in Chinese), 24 (3): 456-463.
    [45] Zhang G J. 2003. Roles of tropospheric and boundary layer forcing in the diurnal cycle of convection in the U. S. southern great plains [J]. Geophys. Res. Lett., 30 (24): doi: 10.1029/2003GL018554.
    [46] 张培昌, 杜秉玉, 戴铁丕. 2001. 雷达气象学 [M]. 北京: 气象出版社, 137. Zhang Peichang, Du Bingyu, Dai Tiepi. 2001. Radar Meteorology (in Chinese) [M]. Beijing: China Meteorological Press, 137.
    [47] Ziegler C L, Lee T J, Pielke R A Sr. 1997. Convective initiation at the dryline: A modeling study [J]. Mon. Wea. Rev., 125 (6): 1001-1026.
  • 加载中
计量
  • 文章访问数:  2873
  • HTML全文浏览量:  23
  • PDF下载量:  2452
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-25
  • 修回日期:  2014-03-31

目录

    /

    返回文章
    返回