高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BCC_CSM对全球海冰面积和厚度模拟及其误差成因分析

谭慧慧 张录军 储敏 吴统文 邱博 李江龙

谭慧慧, 张录军, 储敏, 吴统文, 邱博, 李江龙. BCC_CSM对全球海冰面积和厚度模拟及其误差成因分析[J]. 大气科学, 2015, 39(1): 197-209. doi: 10.3878/j.issn.1006-9895.1404.13301
引用本文: 谭慧慧, 张录军, 储敏, 吴统文, 邱博, 李江龙. BCC_CSM对全球海冰面积和厚度模拟及其误差成因分析[J]. 大气科学, 2015, 39(1): 197-209. doi: 10.3878/j.issn.1006-9895.1404.13301
TAN Huihui, ZHANG Lujun, CHU Min, WU Tongwen, QIU Bo, LI Jianglong. An Analysis of Simulated Global Sea Ice Extent, Thickness, and Causes of Error with the BCC_CSM Model[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(1): 197-209. doi: 10.3878/j.issn.1006-9895.1404.13301
Citation: TAN Huihui, ZHANG Lujun, CHU Min, WU Tongwen, QIU Bo, LI Jianglong. An Analysis of Simulated Global Sea Ice Extent, Thickness, and Causes of Error with the BCC_CSM Model[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(1): 197-209. doi: 10.3878/j.issn.1006-9895.1404.13301

BCC_CSM对全球海冰面积和厚度模拟及其误差成因分析

doi: 10.3878/j.issn.1006-9895.1404.13301
基金项目: 国家自然科学基金项目40975040,公益行业(气象)科研专项GYHY201106035、GYHY201006018

An Analysis of Simulated Global Sea Ice Extent, Thickness, and Causes of Error with the BCC_CSM Model

  • 摘要: 本文评估了国家气候中心发展的BCC_CSM模式对全球海冰的模拟能力,结果表明:该气候系统模式能够较好地模拟出全球海冰面积和厚度的时空分布特征,且南半球海冰模拟能力优于北半球。通过对比分析发现:年平均海冰面积模拟误差最大的区域位于鄂霍次克海、白令海和巴伦支海等海区,年平均海冰厚度分布与观测相近,在北半球冬季模拟的厚度偏薄;从海冰季节变化来看,模拟的夏季海冰面积偏低,冬季偏高;从海冰年际变化来看,近60年南北半球海冰面积模拟都比观测偏多,但南半球偏多幅度较小,然而北半球海冰年际变化趋势的模拟却好于南半球。另外,通过对海冰模拟误差成因分析,发现模拟的净辐射能量收入偏低使得海温异常偏冷,是导致北半球冬季海冰模拟偏多的主要原因。
  • [1] Arzel O, Fichefet T, Goosse H. 2006. Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs [J]. Ocean Modelling, 12 (3-4): 401-415.
    [2] Balcerak E. 2012. Arctic report card: Sea ice and snow reached record lows in 2012 [J]. Eos, Trans. Amer. Geophys. Union, 93 (51): 536-536.
    [3] 卞林根, 林学椿. 2005. 近30年南极海冰的变化特征 [J]. 极地研究, 17 (4): 233-244. Bian Lingen, Lin Xuechun. 2005. Variation of Antarctic sea ice in the latest 30 years [J]. Chinese Journal of Polar Research (in Chinese), 17(4): 233-244.
    [4] Comiso J C, Nishio F. 2008. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data [J]. J. Geophys. Res., 113: C02S07, doi: 10.1029/2007JC004257.
    [5] Comiso J C, Parkinson C L, Gersten R, et al. 2008. Accelerated decline in the Arctic sea ice cover [J]. Geophys. Res. Lett., 35: L01703, doi:10. 1029/2007GL031972.
    [6] Fetterer F, Knowles K, Meier W, et al. 2002. Sea Ice Index [DB/OL]. National Snow and Ice Data Center, Boulder, Colorado, USA. http://dx.doi.org/10.7265/N5QJ7F7W [2013-05-07].
    [7] Flato G, Marotzke J, Abiodun B, et al. 2013. Evaluation of climate models [M]//Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T F, Qin D, Plattner G K, et al., Eds. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 787-789.
    [8] 高峰, 辛晓歌, 吴统文. 2012. BCC_CSM1.1对10年尺度全球及区域温度的预测研究 [J]. 大气科学, 36 (6): 1165-1179. Gao Feng, Xin Xiaoge, Wu Tongwen. 2012. A study of the prediction of regional and global temperature on decadal time scale with BCC_CSM1.1 model [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (6): 1165- 1179.
    [9] Hunke E C, Dukowicz J K. 1997. An elastic-viscous-plastic model for sea ice dynamics [J]. J. Phys. Oceanogr., 27 (9): 1849-1867.
    [10] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77 (3): 437-471.
    [11] Kurtz N T, Markus T. 2012. Satellite observations of Antarctic sea ice thickness and volume [J]. J. Geophys. Res., 117: C08025, doi: 10.1029/2012JC008141.
    [12] Kwok R, Rothrock D A. 2009. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958-2008 [J]. Geophys. Res. Lett., 36: L15501, doi: 10.1029/2009GL039035.
    [13] Lange M A, Eicken H. 1991. The sea ice thickness distribution in the northwestern Weddell Sea [J]. J. Geophys. Res., 96 (C3): 4821-4837.
    [14] McLaren A J, Banks H T, Durman C F, et al. 2006. Evaluation of the sea ice simulation in a new coupled atmosphere-ocean climate model (HadGEM1) [J]. J. Geophys. Res., 111: C12014, doi: 10.1029/2005JC003033.
    [15] Perovich D K, Richter-Menge J A. 2009. Loss of sea ice in the Arctic [J]. Annual Review of Marine Science, 1: 417-441.
    [16] Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century [J]. J. Geophys. Res., 108(D14), 4407, doi: 10.1029/2002JD002670.
    [17] Rothrock D A, Percival D B, Wensnahan M. 2008. The decline in Arctic sea-ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data [J]. J. Geophys. Res., 113: C05003, doi: 10.1029/2007JC004252.
    [18] Semtner A J. 1976. A model for the thermodynamic growth of sea ice in numerical investigations of climate [J]. J. Phys. Oceanogr., 6 (3): 379- 389.
    [19] Serreze M C, Barry R G. 2005. The Arctic Climate System [M]. New York: Cambridge University Press, 424.
    [20] Stackhouse P W, Gupta S K, Cox S J, et al. 2011. The NASA/GEWEX surface radiation budget release 3.0: 24.5-year dataset [J]. GEWEX News, 21 (1): 10-12.
    [21] Stroeve J C, Serreze M C, Holland M M, et al. 2012. The Arctic's rapidly shrinking sea ice cover: A research synthesis [J]. Climatic Change, 110 (3-4): 1005-1027.
    [22] Turner J, Bracegirdle T J, Phillips T, et al. 2013. An initial assessment of Antarctic sea ice extent in the CMIP5 models [J]. J. Climate, 26 (5): 1473-1484.
    [23] Wadhams P, Lange M A, Ackley S F. 1987. The ice thickness distribution across the Atlantic sector of the Antarctic Ocean in midwinter [J]. J. Geophys. Res., 92 (C13): 14535-14552.
    [24] 王秀成, 刘骥平, 俞永强, 等. 2009. FGOALS_g1.1极地气候模拟 [J]. 气象学报, 67 (6): 961-972. Wang Xiucheng, Liu Jiping, Yu Yongqiang, et al. 2009. Polar climate simulation in FGOALS_g1.1 [J]. Acta Meteorologica Sinica (in Chinese), 67(6): 961-972.
    [25] 王秀成, 刘骥平, 俞永强, 等. 2010. 海冰模式CICE4.0与LASG/IAP气候系统模式的耦合试验 [J]. 大气科学, 34 (4): 780-792. Wang Xiucheng, Liu Jiping, Yu Yongqiang, et al. 2010. Experiment of coupling sea ice model CICE 4.0 to LASG/IAP climate system model [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34 (4): 780- 792.
    [26] Winton M. 2000. A reformulated three-layer sea ice model [J]. J. Atmos. Oceanic Technol., 17 (4): 525-531.
    [27] Wu Xingren, Simmonds I, Budd W F. 1997. Modeling of Antarctic sea ice in a general circulation model [J]. J. Climate, 10 (4): 593-609.
    [28] Xu Chonghai, Xu Ying. 2012. The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble [J]. Atmospheric and Oceanic Science Letters, 5 (6): 527-533.
    [29] 张莉, 吴统文, 辛晓歌, 等. 2013. BCC_CSM模式对热带降水年循环模态的模拟 [J]. 大气科学, 37 (5): 994-1012. Zhang Li, Wu Tongwen, Xin Xiaoge, et al. 2013. The annual modes of tropical precipitation simulated by the Beijing Climate Center Climate System Model (BCC_CSM) [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(5): 994-1012.
    [30] 张璐, 张占海, 李群, 等. 2009. 近30年北极海冰异常变化趋势 [J]. 极地研究, 21 (4): 344-352. Zhang Lu, Zhang Zhanhai, Li Qun, et al. 2009. Status of the recent declining of Arctic sea ice studies [J]. Chinese Journal of Polar Research (in Chinese), 21(4): 344-352.
  • 加载中
计量
  • 文章访问数:  3174
  • HTML全文浏览量:  30
  • PDF下载量:  2584
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-05
  • 修回日期:  2014-04-04

目录

    /

    返回文章
    返回